
INCLUDES ... LAUNCHING SHELL, I

EDITORS and BASIC INTERFACE

....
a&: .. ; ~

'" co

~
..... ~

l u

-.J = ; 5 0 -.J Col) ;;
r.tl > ..

~
:t: III
:-: ~
<.:: '" I ~ ~
;-- ~ ~ :::

cd :.::, '<
<t:

~

~ Q ..;; < . c ¢
:z: iii ,

:J:
N

'" = :?
"' Col)

--

I

I

Call BoxM TPS
The Toolbox Programming System

Version 2.0 lS-Jan-90

SO WHAT
10221 Slater Ave. Suite 103 Fountain Valley,Ca\92708 ,) , ..

I

NOTICE
So What Software reserves the right to make improvements in the product described in this manual
at any time without notice.

This manual is copyrighted. All Rights are Reserved. No part of this manual may be copied,
reproduced, translated or reduced to any electronic medium or machine readable form without the
prior written consent of

So What Software
10221 Slater Ave.

Suite 103,
Fountain Valley CA.

92708

So What Software provides a 90 day warranty against mechanical failure and physical defects in this
product from the date of purchase. The warranty card must be filled out and sent back to So What
Software before this warranty can be honored. So What Software makes no warranties with respect
to this product, its quality, performance, merchantability or fitness for any particular purpose.

© Software 1989-90 So What Software

© Manual 1989-90 So What Software

Software Design: SHELL- William Stephens, Eric Joham BASIC- William Stephens, Eric
Joham EDITORS- William Stephens, Joe Jaworski DEMOS- Ed Rambeau, Eric Joham, William
Stephens
Manual Design: Don Druce, William Stephens, Eric Joham

Call Box™ is a registered trademark of So What Software

APPLE, APPLE IIgs, APW, as/os, are registered trademarks of Apple Computer Inc.

ORCA is a registered trademark of Byte Works Inc.

This software package was created using the following software and hardware products:
Apple IIgs /W 105M & GS/OS V5.0, Applied Ingenuity 40M Inner Drive, Apple Laserwriter
IINT, Apple 3.5 drives, Apple LocalTalk network, Applied Engineering TranswarpGS, Byte
Works Orca/M assembler/linker, Claris AppleworksGS.

So What Software Product #M400-001A

Welcome

Welcome to the Call Box TPS (Toolbox Programming System). The Call Box system introduces
a toolbox driver which allows you to create launchable desktop applications in enhanced
Applesoft BASIC.
This driver can act as the ideal prototyping language for the professional and can open up the
mysteries of the llgs for the amatuer and beginner. This driver is supported by WYSIWYG
(What You See Is What You Get) editors which create commonly used toolbox data structures
which up till now required hours of tedious planning, guesswork and re-work to make. You can
create Windows, Dialogs, Menus, Icons, Cursors and pixel images in a fraction of the time that it
usually takes and incorporate them into am: language in a variety offonns.

The Call Box TPS is designed to grow with new advancements in the IIgs and upgrades will be
made available to registered owners of this software as they become available. Be sure to send
in your warranty card when you receive this product so we can notify you when
upgrades are available ... there is really no way we can find you without this.

This manual is divided into 3 sections (Launcher, BASIC Driver and Editors). In order to take full
advantage of all the features in this software we recommend that you actually READ this manual to
serve as a resource for any questions you may have.

IMPORTANT NOTE:
The version 2.0 release of this software is full featured as advertised. We would like to thank the
customers who purchased the Version 1.0 Call Box TPS for their patience and understanding with
the prior limitations to this system. All registered owners of Version 1.0 are entitled to a free
upgrade to Version 2.0.

" ,/,'1 ",1

~ .--

Launching Shell
Version 2.0 15-Jan-90

SO WHAT SOFTWARE
'10221 Slater Ave. Suite 103 Fountain Valley,Ca.9270e

Call Box Launching Shell Manual Chapter 1 • Overview

CHAPTER 1 .. OVERVIEW
r t ,~ j r f t: ~"" ,".;' , !

OVERVIEW
The Call Box launching shell gives the user access to the various functions of the Call Box Toolbox
programming system. This shell has 3 major functions or divisions.

SYSTEM: This group of functions are found in the File menu of the launchers menu bar. These
functions include a programmable launcher, file utilities such as delete, rename, set filetype, set
auxtype and file access bits, launcher desktop preferences, system installer, and eject drive(s).

EDITORS: This is where the WYSIWYG editors are launched from. These editors create source,
object code or resources segments for use by any programming language. The editors create
Window, Dialog, Menu, Icon, Cursor and pixel image data structures. Other editors will be released
in the future and this menu will grow automatically as the need presents itself. (See. The EDITORS
MANUAL for details)

BASI C: This is where the Call Box BASIC Interface resides. You can start Call Box BASIC, or
Applesoft BASIC from their menu items and can run the Call Box BASIC Deom/tutorial as well.
Another utility is provided to edit the CB.V ARS file used with the BASIC interface.(See. The
BASIC INTERFACE MANUAL)

This manual will explain how to use the utilities found in the launching shell as well as how to use
this shell with several different system configurations. The exact use of the EDITORS and BASIC
Interface is described in their own manuals.

8/15/89 Page 1.1

Call Box Launching Shell Manual Chapter 1 • Overview

THE DESKr.OP... .'; <.1 "r ".

When the CALL BOX LAUNCInNG SHELL disk is booted up a menu bar with the selections
(APPLE), File, Edit, Editors and BASIC will appear and a 320 mode graphic image will appear as
your desktop. This image is in fact 2-65 block type $C1 super hi-res pictures named XXX and
XXXX. These pictures can be edited by any paint program or can be replaced by any ones that you
have created. Just a portion of the second picture (XXXX) is actually displayed by selecting the
menu selection Apple-About CALL BOX ...

The desktop can be displayed in anyone of 4 different ways ... 320 mode picture desktop, 320 mode
standard desktop (periwinkle blue) 640 mode picture desktop or 640 mode standard desktop. Select
File-Preferences to set the way you want the desktop to appear. (See. Figure 1.1)

The next time the launcher is booted or launched your preferences will take effect.

If you exclude either or both of the pictures from your disk then the standard desktop appears by
default. Eliminating the pictures will free up 130 blocks of disk space and will eliminate 2 or 3
seconds of loading time I prefer to have a picture type of desktop, it looks fancier and the time
difference is negligeable.

8/15/89

mDlm D D [PU'mf1mU'mIDCBmm

@ 320 mode 0 Pic Desktop
o 6140 mode @ Std Desktop

¢ Done »

Figure 1.1 Shell preferences

Page 1.2

- .
. -

Call Box Launching Shell Manual Chapter 1 • Overview

FILE UTILITIES
The selection File-File Utilities will bring up a Standard file selector box. Use the disk button to
display the drive that contains the file you want to edit. use OPEN and the scroll bar to put this file
in the scroll window. Point and click the arrow cursor on the file in question and it will hilite, then
click the OPEN button. (You can just double-click the files title to accomplish the same thing).

The standard file box will disappear and the file utilities box will appear. (See Figure 1.2) This
"Mini-utility" allows you to do five things to a ProDOS file.

1. To rename a file press the DELETE key and then type in your new filename, it will appear in the
line edit box named Filename: Press RETURN or click the OK button to accept the new name.

2. To change the filetype of your file triple-click the line edit box named Flletype, press delete and
type in the new filetype. You can enter the filetypes hex number (ie: $04 .. $C1) or enter any of
the standard 3 letter designators (ie: BAS, BIN, S16 ...) Press RETURN or click the OK button
to accept the new name.

3. To change the Aux Type of your file follow the same procedure as outlined in the previous
description. You can only enter the hex number (minus the $... dollar sign) and it must be 4
digits. Press RETURN or click the OK button to accept the new name.

4. To set the access bits set the check boxes named Destroy, Rename, Backup, Write or Read to
reflect the desired settings. A checked box "enables" the access and an unchecked one"disables"
it. Press RETURN or click the OK button to accept the new name.

5. To delete a file click the DELETE button. A second box will appear as a safety which allows you
to change your mind before doing something permanent and possibly destructive.

NOTE: If you accidentally delete a file you did not want deleted, all is not lost. STOP ALL
WRITING TO DISK NOW!!! Utilities such as Disc Commander or Copy II Plus have undelete
functions which wil fix things up, but they are ineffective if you have written to disk after the file is
deleted.

The File utilities box has one more button and that is CANCEL its function should be obvious.

I'CALL.BOXI'CALl.BOX

filename: r.1[~i~!l-.-.r.:~lInm'---------'

181 Dest.roy I S161 fi I et.ype
181 Rename

I 0100 I Auxt.yp~ 181 Backup
181 Writ.e
181 Read

(Delet.e) (Cancel][OK »

Figure 1.2 File utilities

8/15/89 Page 1.3

Call Box Launching Shell Manual Chapter 1 • Overview

MY~iAPPLICATION

The menu selection FILE-MY APPLICATION will allow you to launch your own program from
this launching shell. Your program may be your programming language environment, the finder, or
any launchable application. This selection provides you quick access to another program which will
return to the CALL BOX launching shell when the other application is quit.

To set which program you want to launch with this feature select FILE-SET MY APPLICATION
and a standard file box will appear. (See Figure 1.3) Use the disk button to display the drive that
contains the file you want to launch. Use OPEN and the scroll bar to put this file in the scroll
window. Point and click the arrow cursor on the file in question and it will hilite, then click the
OPEN button. (You can just double-click the files title to accomplish the same thing).

:CALL.BOX:CALL.BOX
til :CALL.BOX:

(Disk)
ystem

<til CALL.BOX
) D Icons Open

<til Installer
(C t (I ~>~~) <til ProD OS

CSTARTUP
DScr ts (Cancel)

Figure 1.3 My application

8/15/89 Page 1.4

Call Box Launching Shell Manual Chapter 1 • Overview

CONFIGURE CB.VARS

This utility allows the user to alter the variable names assigned for the functions of the CALL BOX
BASIC interface. These variable names are contained in a variables file named CB.V ARS. This file
is RESTOREd at the beginning of each CB BASIC program to link the program to the CALL BOX
BASIC Interface.

The selection BASIC-CONFIGURE CB.V ARS will bring up a Standard file selector box. Use the
disk button do display the drive that contains the CB.V ARS file you want to edit. Use OPEN and
the scroll bar to put this file in the scroll window. Point and click the arrow cursor on the file in
question and it will hilite, then click the OPEN button. (You can just double-click the files title to
accomplish the same thing).
The standard file selector box will disappear and the CB.V ARS configuration box will appear. To
alter a variable triple-click the desired variable, press DELETE and then type in the new variable.
CALL BOX BASIC interface variables must be "Real" and have 2 letters. A real variable is one in
floating point format. (See Figures 1.4)

Repeat this process for each variable you want to alter. When done either click the OK button or
press RETURN.

CB.VARS Variable Equivalents ...

IIilD I Big Poke (]I] Rect I WN I Window
IE[JBig Peek [[[)Oval [HI) Menu
(]I] Shutdown [![] RRect [[[) Dia I 09

[ill Screen (]K]At·c ffi] Tool
(1h]Palette [R]Event [h[] L-Call
[IDSCB [£[]Cursor []I] Arra!f
[ill Pen [fKlText [][] BufAddr
[!]JUne l!I1Port (]I] BufLen

« OK])

Figure 1.4 Configure CB.VARS

8/15/89 Page 1.5

Call Box Launching Shell Manual Chapter 1 • Overview

hQR.IVE OPERATION
Single drive operation of the CALL BOX Toolbox Programming System is the least recommended
type of operation. You can successfully operate this system on one drive but you will have to eject
and insert disks quite often.

NOTE: Always use backup copys of the CALL BOX disks when operating from disk. Many
things can happen to a computer system while operating it such as power transients or bad
keypresses and even bad programming procedures. Any of these occurrences can cause disk
damaged. Play it safe and use only backup disks when programming this applies to all software,
not just ours.

Boot-up the Launching Shell disk and the desktop will appear. The EDITORS menu selection will
be disabled at this time and the CALL BOX BASIC specific selections in the BASIC menu selection
will be disabled as well.

To launch an editor eject the launching shell disk and insert the editors disk ... the EDITORS menu
selection will become selectable. Pull-down and select the desired editor and it will be launched. In
the launching process the editor will need to load or access some things in the launching shell disk
and you will be prompted to insert the needed disk(s) as applicable.

While in the editor you will need to load or save editor data to or from your own disk. Eject the
EDITORS disk and insert your disk to load or save things. The EDITORS disk can remain out of
the drive during the editing session because the editors are loaded entirely in memory and need no
further disk access to operate once up and running.

When you QUIT the Editor you will need the Launching Shell disk back in the drive, if you forget,
the system will prompt you to do so.

This procedure holds true for the BASIC Interface disk as well. The system is designed so you can
not select a system function that is not on-line currently.

The FILE-EJECT .. functions are provided to eject the disks from the drives. You can just press the
button on the face of your disk drive to accomplish the same function.

There are 3 CALL BOX disks, the names of the disks differ from their volume names. When
prompted for a different disk the actual volume name is requested and not the name on the disk
label.

Launching Shell = /CALL.BOX

Editors = /CALL.BOX.2

BASIC Interface = /CALL.BOX.3

8115/89 Page 1.6

Call Box Launching Shell Manual Chapter 1 • Overview

2 DRIVE OPERATION

Double drive operation of the CALL BOX Toolbox Programming System is quite similar to single
drive operation except that you will have to swap disks less frequently.

NOTE: Always use backup copies of the CALL BOX disks when operating from disk. Many
things can happen to a computer system while operating it such as power transients or bad
keypresses and even bad programming procedures. Any of these occurrences can cause disk
damaged. Play it safe and use only backup disks when programming this applies to all
software, not just ours.

Boot-up the Launching Shell disk and insert either the EDITORS or the BASIC Interface disk in
drive 2. The system will automatically sense which disk(s) is on-line and will enable the
appropriate menu selections.

Removing either the EDITORS disk or the BASIC Interface disk will disable the menu selections
automatically ... reinserting them will enable the selections.

You can boot-up the Launching shell disk and when the desktop comes up you can then eject this
disk and put the EDITORS and BASIC interface disks in the 2 drives. No matter how you use your
drives the system will prompt you when a disk that is not currently on-line is needed.

There are 3 CALL BOX disks, the names of the disks differ from their volume names. When
prompted for a different disk the actual volume name is requested and not the name on the disk
label.

Launching Shell = /CALL.BOX

Editors = /CALL.BOX.2

BASIC Interface = /CALL.BOX.3

8/15/89 Page 1.7

- .

Call Box Launching Shell Manual Chapter 1 • Overview

HARD DRIVE OPERATIONIINSTALLATION

The CALL BOX TPS was designed with the hard drive user in mind. A large storage device such
as a hard drive is basically necessary for any serious program development task. The limitations of
disk drives becomes apparent when developing software on a par with commercial and professional
applications.

An installer script is provided to install the system on a hard drive. The only prerequisite is that the
hard drive volwne must be GS/OS VS.O minimwn. Using this software with versions prior to S.O
will create all kinds of problems and will probably not work. The Shell and Editors take advantage
of NEW GS/OS and toolbox calls plus utilize the Resource Manager which is not present on earlier
versions.

The Launching Shell disk has a minimal GS/OS VS.O system on it which does not include many of
the segments that a real GS/OS VS.O system disk does. There is only enough of the system present
to make it boot and support the functions of this software. If you do not already have GS/OS VS.O
min. Installed in your hard drive, go to your local Apple dealer and purchase a copy and install it.

To install the CALL BOX TPS on your hard drive select FILE-INSTALLER from the launching
shell menu. Click the INSTALL button from the installer program and follow the prompts as they
come up That's all there is to it!

There are 3 CALL BOX disks, the names of the disks differ from their volwne names. When the
installer asks for a different disk the actual volwne name is requested and not the name on the disk
label.

Launching Shell = /CALL.BOX

Editors = /CALL.BOX.2

BASIC Interface = /CALL.BOX.3

A subdirectory named CALL.BOX will be created in your root directory and will contain the
Launching Shell, Editors and the BASIC Interface all together. Segments from all 3 disks will be
required for this installation procedure. An additional tool will be installed and the basic.launcher
program will be overwritten with a different version the finder will not be affected by this.

To use the CALL BOX TPS Launch the file named CALL.BOX in the CALL.BOX subdirectory
with whatever launcher you have in the START position of your hard drive volwne.

8/15/89 Page 1.8

Call Box Launching Shell Manual Chapter 1 • Overview

ICONS
This disk contains special icons for use by the "Finder" or other icon based programs. These icons
are CALL BOX specific and are in 640 mode using dithered colors. The installer script for putting
CALL BOX on a hard drive automatically installs them in the icons folder of you hard drive root
directory. If you will be using disk drives instead of a hard drive then copy the file CB.ICONS
from the CALL BOX icons folder to the same folder on your system disk so the "Finder" on that
disk can bring them up.

These icons are simply cosmetic and do not affect the operation of CALL BOX in any way.

TOOL053
There is a "NEW" tool on the CALL.BOX disk called Too1053. This tool provides the user interface
for loading and saving resources.

All CALL BOX editors depend on the presence of this tool and will not operate without it. You
must include this tool in any system disk that will be used in conjunction with the CALL BOX
editors. This tool goes in the SYSTEM/fOOLS folder of your boot volume.

There are 2 functions in addition to the normal housekeeping functions for tools, these functions are
RFPutFile and RFGetFile.

RFPutFile will provide the user with point-and-click access to any resource fork, showing the
resource I.D.'s for any specified resource type. (See the save sections for each editor in the
EDITORS manual for detailed operating procedures)

RFGetFile will provide the user with point-and-click access to any resource fork, showing the
resource I.D.'s for any specified resource type. (See the load sections for each editor in the
EDITORS manual for detailed operating procedures)

A complete ToolO53 reference document is available separately from us for those of you who wish
to incorporate this tool in your own programs. (product #M400-004)

8/15/89 Page 1.9

Call Box™ BASIC
Version 2.0 15-Jan-90

SO WHAT SOFTWARE
·10221 Slater Ave. Suite 103 Fountain Valley,Ca.92708

Call Box™ BASIC Contents

Call Box BASIC in the Launching Shell 1.1

Bootable 3.5" Call Box Program Disks 1.1

Launchable Call Box Programs 1.1

Call Box BASIC and Desk Accessories 1.2

Call Box BASIC Program Structure 1.2

BASIC Concepts 1.3

Entities 1.3

Bank Zero Memory Use 1.4

User Buffer 1.5

Making a Call Box BASIC Desktop Applic. 1.5

Using Call Box BASIC 1.6

Error Messages 1.7

Command Structure 1.8

CALL AR (Arcs)

CALL AY (Super Array)

CALL CU (Cursor/Icon)

CALL DI (Dialog)

CALL EV (E ventlTaskM aster)

CALL LC (Long Call)

CALL LN (Line)

CALL ME (Menu)

CALL OV (Oval)

CALL PE (Big Peek)

So What Software

2.1

2.3

2.5

2.7

2.13

2.17

2.21

2.23

2.27

2.29

Page

Call Box TM BASIC '. < Contents

CALL PO (Big Poke) 2.30

CALL PL (Palette) 2.31

CALL PN (Pen) 2.33

CALL PT (Port) 2.37

CALL QF (Shutdown) 2.39

CALL RE (Rectangle) 2.41

CALL RR (Rounded Rectangle) 2.43

CALL SB (Scan Line Control Bytes) 2.45

CALL SC (Screen) 2.46

CALL TL (Toon 2.47

CALL TX (Text) 2.49

CALL WN (Window) 2.51

So What Software Page ii

Call BOX™ BASIC .' Manual

OVERVIEW

The Call Box BASIC driver gives Applesoft BASIC new commands and capabilities that
utilize the Apple IIgs Toolbox. These tools give you the ability to draw in either 320 or 640
mode plus make use of Icons, Cursors, Fonts, Dialogs, Menus, Windows ... In fact, almost any
tool call is made possible with the Call Box BASIC Interface.

Call Box BASIC in the Launching Shell
The Call Box TPS (Toolbox Programming System) launching shell has a menu bar selection named
BASIC. This menu contains selections which deal with Call Box BASIC and Applesoft.

Applesoft BASIC

Call Box BASIC

Configure CB.VARS

This selection puts you in Applesoft BASIC and ProDOS 8. All of the
usual Applesoft and ProDOS 8 functions are available here.

This selection puts you in Call Box BASIC, ProD OS 8 and
SoDOS. Call Box BASIC is an enhanced Applesoft BASIC and
SoDos is a GS/OS emulator.

This selection allows you to change the variable names given to the
Call Box functions.

Call Box Demo This selection runs a DemolTutorial on the Call Box BASIC driver.
This program demonstrates by example each interface command and
shows programming line examples with each demonstration.

The launching shell provides you with a convienent environment from which you can create Call
Box BASIC programs. Call Box BASIC programs can be used on bootable 3.5 inch disks and can
be launched from any program launcher using RAM or Hard Disk Drives.

Bootable 3.5" Call Box Program Disks
A bootable program disk can be made by inserting a blank disk in Slot 5 Drive 1 and then selecting
FILE·FORMAT DISK from the Call Box Launching Shell. This will format the disk as volume
CB.BASIC. Next select FILE·INSTALLER and run the script named INITIALIZE
CB.BASIC, this will install GS/OS and all the necessary Call Box files to make-up a bootable
disk. When this disk is booted it will result in running a mock STAR TUP program using Call
Box BASIC. Replace this program with your own program(s) ... your ready to go!

Launchable Call Box Programs
Call Box BASIC programs can be launched by any program launcher capable of launching BASIC
programs. Launchers that use the desktop like HyperLaunch and the Finder need no special
handling but launchers that use the text screen display like ProSel will need to run the
CB.PreLaunch program before running Call Box BASIC programs in order to install and
initialize the desktop tools. The boot volume must contain the init file called CB.Init in any case.
Your Call Box BASIC programs should be in their own subdirectory which must also contain the
files CB and CB. V ARS. More than one Call Box style subdirectory can exist and any kind of file
can be in these subdirectorysas long as the minimum required files are present, which are CB and
CB.V ARS. The file CB.PreLaunch can be put anywhere.

So What Software Page 1. 1

Call Box ™ BASIC Manual
OVERVIEW cont.

Call Box BASIC and Desk Accessories
Classic Desk Accessories (CDA's) are always available by pressing OPEN APPLE·
CONTROL·ESCAPE and 3 are supplied with the Call Box Toolbox Programming System.

Reveal: This one will show the text screen while the Super Hi-res screen is active.

Applesoft Memory: This one shows the current boundaries and locations in Applesoft BASIC.

Call Box Memory: This one shows special locations and data behind the scenes in Call Box
BASIC.

New Desk Accessories (NDA's)
Call Box BASIC gives you the ability to display and run desktops from Applesoft BASIC. The
system menu bar in a desktop application has a (colored) Apple menu selection which contains all of
the active New Desk Accessories in the :SYSTEM:DESK.ACCS subdirectory of your boot
volume. Some caution must be observed with NDA's ... NDA's that access disks or ones that show
as/os or P16 system status will probably hang or crash while Call Box BASIC is active. As an
example, one of our machines has the following NDA's in it: Memory, Analog Clock, Clock,
System Control and Control Panel. Everything operates except the Control Panel NDA and
the STATUS function of the System Control NDA. Trial and error will sort out what will work and
what will not.

Call Box BASIC Program Structure
The file CB must be run to startup the Call Box BASIC driver. This file loads into bank 0 at $2000
and then executes itself. When it is done this area is freed up and can be used by Applesoft code.
Many programs will be small enough to fit under this area and can run CB from within them.
Larger programs should have a smaller program initialize CB and load in the entities, then run a
second program (which can be up to 31 K in length) which can subsequently R UN or CHAIN
other programs ... all without shutting down Call Box BASIC. V ARS files can be used to pass
variables from program segment to program segment and you need only shutdown Call Box BASIC
when you QUIT or BYE from the program(s). This allows you to create Applesoft programs of
incredible length and complexity. The loading of Entities, Fonts, Icons, Cursors, and Pictures from
within any of the program segments will not interfer with even the largest of segments. The demo in
the Call Box Launching Shell is a good example of this. The actual structure of the program code is
really up to you ... (spaghetti code* works justfine!)

Each Applesoft program segment must RESTORE CB.VARS if they are RUN, if these
Applesoft segments are CHAINed then the variables are preserved from segment to segment and
only an initial RESTORE CB. V ARS is needed in the first segment.

Spaghetti code ... Program code that is written without a plan, resulting in redundant routines, patches and
entangled program flow.

So What Software Page 1. 2

Call Box™ BASIC ' . Manual
OVERVIEW cont.

BASIC Concepts
The Apple IIgs has a vast memory area of which only a small portion is used for Applesoft BASI C.
Applesoft does not run under ProDOS 16 or GS/OS and tools do not run under ProDOS 8 ... well
this is not exactly true, most tools need to be installed under ProDOS 16, after that any system can
use them as long as certain rules and restrictions are observed.

The Call Box BASIC driver can be thought of as a tool manager for Applesoft BASIC giving the
novice and advanced programmer alike the ability to use most of the advanced features of the Apple
IIgs with ease. The BASIC Interface also handles memory allocation/de-allocation and organization
in those areas not under the control of ProDOS 8 or Applesoft. Namely bank 1 and up.

The memory area above bank 0 can contain tools, desk accessories, handles, pointers, flags and
various and sundry pieces of data or code that makes your IIgs what it is. There are special memory
areas and ROM up there as well. You do not need to know about these things to create Call Box
driven programs, but if you want more information try the Apple IIgs reference manuals published
by Addison-Wesely as a starting point.

Entities
The Call Box BASIC driver has to have a way of knowing what type of data it is dealing with be it a
font, icon, window, dialog or menu etc ... To accomplish this task, the data is broken down into a
particular type called an entity. Each entity has a kind and an I.D. associated with it. You need only
use the entity LD. when writing your programs but each kind of entity is restricted in the number of
LDls it can have so it is important to know these as well.

Type

GrafPort
Window
Dialog
Menu
Font
Cursor
Icon

Kind

Port
Port
Port
Port
Image
Image
Image

1.0.

0-31

0-15
0-15
0-63

Description of reserved I.D.'s

Port 0 = SHGR screen in $E1

Font 0 is Shaston 8

Figure 1.1 Entity types
The Entities come in 2 kinds:

Port

Image

A port is a special record that Quickdraw II keeps to define the drawing environment.
Graphic ports are always 200 x 320 or 200 x 640 pixels in size, depending on the
screen mode. Ports need graphic images drawn to them, otherwise their contents appear
as a blank rectangle. Drawing takes the form of either loading in a pixel image or
filetype $CI picture from disk, or drawing directly to the port using Quickdraw II
commands. Ports are also Managed screen items such as Windows, Dialogs and
Menus, all of these items are handled in similar ways by the toolbox managers.

An image is a data segment that can reside anywhere in memory "a<; is" and has no
absolute references. The file format for images is binary.

So What Software Page 1.3

Call Box ™ BASIC Manual
OVERVIEW cont.

Port entity I.D. 0 is reserved for the super hi-res screen. This allows up to 31 port entities that can
be defined elsewhere in memory. Each image entity has its own set of I.D.'s (0 - J 5 with some pre
defined, refer to Figure 1.1) so there can be 16 of each type of image entity with the exception of
Icon image entities of which there can be 64 in addition to the 32 port entities already mentioned.

You do not need to worry about where the entities you will use in your program reside in memory.
The Call Box BASIC driver manages this for you, however, you must specify the particular I.D.
number of the entity you wish to use so the BASIC driver will know where to look as well as
detennine the kind of entity being dealt with.

Bank Zero Memory Use
The Call Box BASIC driver and various tools need some pages in bank zero. Normally, these pages
would be dynamically allocated by the memory manager (Toolset #2). Applesoft BASIC and
ProDOS 8 use most of the available memory in bank zero. The only safe and track able area of bank
zero common to both P8 and the memory manager is the area between ProDOS 8 and its buffers, see
Figure 1.2. The exact address at which this allocation takes place can vary depending on how the
memory is being used when the Call Box BASIC driver is initialized. If another application is using
the same area, the BASIC driver will fit around it automatically. Additional memory for other tools
is allocated between the already allocated pages and the ProDOS buffers. This causes the ProDOS
buffers and HIMEM to move down in memory.

ProDOS 8
$9AOO

Call Box BASIC interface

$9800

Quickdraw II

$9500
Event Manager

$9400 Additional
memory

ProDOS buffers allocated
here ...

HIMEM $9000
Applesoft

Figure 1.2 Direct page allocation

So What Software Page 1.4

Call Box ™ BASIC · Manual

OVERVIEW cant.

User Buffer
Every program needs some space to use for storing bits of data and to use as a "scratchpad'
workspace. This space is located at the bank zero (this means that you can directly peek and poke it)
address specified by variable U A and is as big as variable UL specifies.

When using the Long Call command (see CALL LC) you will often need to pass a pointer to a
string or for a place to put a string. You would use the User Buffer for this purpose. Sometimes
you need to pass a pointer to a pattern or table. You would write the pattern or table in the User
Buffer and then pass the address of the buffer to the Long Call routine.

By using the User Buffer and Long Call you can operate the toolbox with a precision only found in
assembly language.

Making a Call Box BASIC Desktop Application
A standard sequence of steps is used to create a desktop application, the first of which is to make a
plan! This plan looks like drawings, each one being a different screen display which are linked by a
logic diagram describing how the program will operate (the exact form that the plan takes is up to
you, this is just my own personal conceptualization).

From this plan you use the Editors in the Call Box Launching Shell to create the entities you
will be needing based on your drawings. Make sure that when you create an entity, you record
any I.D. numbers associated with controls or items it may contain. You will need these for your
Applesoft code.

You now would enter Call Box BASIC and start writing your program. This program will start
off by starting up Call Box BASIC, RESTORING CB. V ARS, HOMEing the screen and setting up
the super hi-res screen and the desktop. Next you would load all of the entities you will be using in
your program and start-up the system menu bar and anything else that needs to be up at startup.

After this "housekeeping" is finished you call TaskMaster (see CALL EV ...) and check the
results to see where or what was selected by the mouse or the keyboard. The main thing in a
desktop application is to check and see if the mouse was pressed in the system menu bar, you
would also check and see if the click was in the close region of the currently active window as well
as other things determined by your particular program structure. If none of these things have
occured then you would loop back to the TaskMaster call. If you had a click in the system menu bar
then you would run a subroutine indexed by the menu item I.D. returned to you by TaskMaster.
When the subroutine was finished you would UnHilite the menu bar selection and loop back to the
TaskMaster call. This type of action keeps occuring until you select the menu item that you have
setup as Quit. At this point you would close any open entities, shutoff Call Box BASIC and either
END or BYE the program.

The previous description is very generalized and simple ... however ... this is the fundamental
structure for all or at least most desktop application~;. Reference the commands Event, Window,
Menu and Dialog in this manual for more exact programming examples and examine the programs
on the Call Box disks (the Applesoft ones . .ji/erype BAS) to get an understanding of how to get one
of these things up and running.

So What Software Page 1.5

Call Box: ™ BASIC Manual

[OVERVIEW cont .

. Using Call Box: BASIC
The principle behind the BASIC driver is twofold: to make toolbox calls accessible to Applesoft and
to make them as simple as possible to use. In order to keep things orderly, while not compromising
on power and flexibility, the following method is used. To access the toolbox, you issue a CALL
statement from BASIC. Some CALLs are predefined to access a particular tool function, while
some allow you complete access to the entire toolsets, as long as you understand how the toolset
works.

CALLs take the form of a variable name and parameters if necessary.
For example:

100 CALL OF

This command would shutdown the BASIC interface (QF stands for Quit Function)
whereas:

100 CALL SC,1

This command would turn on the super hi-res screen (SC for Screen) but more on commands later.

The BASIC driver is the file named CB. It is a "System" file of type $FF. You talk to the BASIC
interface thru the variables in the me CB. V ARS which is an Applesoft/ProDOS 8 variable file.
The BASIC driver (CE) is initialized by running the file CB directly from the keyboard or from
within a program:

PRINT CHR$(4) ;"·CB"

This installs the Call Box BASIC driver, allocates some memory, starts-up the Tool Locator,
Memory Manager, Misc. Tools, Integer Math, Quickdraw II, Event Manager, and Quickdraw II
aux. Other tools are started-up as needed using the CALL TL (tools) commands.

CB bootstraps in from address $0012000 so if you are executing it from a program, the size of the
program should be smaller than $1800 (to allow room for simple variables) or the -CB will
overwrite the BASIC program. Once CB has finished executing, the entire range from $800 to
HIMEM is free for Applesoft BASIC.

A usual tactic for installing CB is from within a short ST ARTUP program. This technique is just
fine, but it should be noted that editing while CB is active causes several bus problems which,
while not terminal, can be quite annoying - like, no more repeat key function. CB will shutdown
itself automatically when a non-Applesoft error occurs but you will have to handle the CALL QF
in all other circumstances.

The other half of this equation is the fileC B. V A R S. Every. program that uses CB needs to include
the following line before any CB calls are made:

PRINT CHR$(4) ;"RESTORE CB.VARS"

So What Software Page 1. 6

Call Box ™ BASIC ' . Manual

OVERVIEW cont.

This installs the variables that you need for the Call Box BASIC driver.

Many times when you are making an Applesoft program it is necessary to hit the old CONTROL·
RESET and break out of some endless loop. This type of event is quite destructive to the tools and
will most probably result in a bouncing apple system error message $0206 ... not the Applesoft
cursor like you expected.

The last little hint is to be sure to issue a CALL QF before exiting to anywhere ... This is
analogous to putting your toys away, If you don't you will get away with it for a little while but
later on when your father (GS/OS) gets home he'll CRASH the whole system!

Error Messages
Errors are returned in text mode regardless of the display mode when the error occured. A typical
error message would look like this:

Tool not supported
Error in line ->75
]

You will be in Applesoft immediate mode and all variables will be null and the Call Box BASIC
driver will be shut down .. You will have to re-initialize the Call Box BASIC driver to run your
program again.
The following is a list of Call Box generated error messages ... Applesoft returns its own messages
and can be distinguished from Call Box error messages by their appearance. Presently, you cannot
trap Call Box errors.

So What Software

I/O Error
Pathname has invalid syntax
Path to files subdirectory is bad
Volume directory not found
Damaged disk
Access refused
Disk full
Disk is write protected
Font not found
Template not found
Resource not found
Out of memory (mem.mgr)
Tool not found
Bad parameter
Tool not supported
Not Dialog
Not Window
Not Menu
Entity is already assigned

Page 1. 7

Call Box™ BASIC Manual

OVERVIEW cant.

Command Structure
This section describes the Call Box BASIC interface commands. These commands are arranged in
alphabetical order. Before you look at the commands let's review the command syntax first.

Call Box commands are Calls to a global page address followed by parameters, separated by
commas. The parameters can be of several different types as described in Fi gu re 1.3 and the
global page addresss are automatically installed by RESTORE-ing CB. V ARS described in
Figure 1.4.

A typical command line may look like this ...

CALL SC,0,640 : CALL S8,0,!10000000,0,200 : CALL SC,3,$FFFF

This line sets the screen mode to 640, sets the SCBs to use 640 mode and palette 0, and finally
clears the screen to white.

CONSTANT:

VARIABLE:

STRING:

MATH EXPRESSION:

Decimal (0123456789)
Hex ($0123456789ABCDEF)
Binary (101)

Floating pOint (A .. ZZ)
Integer (A% .. ZZ%)

String ("string text")
String variable (A$.. ZZ$)

Must start with a numeric value
and may not contain hex or
binary representations.

Figure 1.3 Legal Parameter Types

The types can be mixed in a single call without incident. The numeric limits are the same as
Applesofts.

AR = Arc
A Y = Super Array
CU = Cursor
DI = Dialog
EV = Event
LC = Long Call

LN = Line
ME=Menu
OV=Oval
PE= Big Peek
PL = Palette
PN = Pen

PO = Big Poke
PT=Port
QF = Shutdown
RE = Rectangle
RR = RRr,ctangle
SB = SCB's

Figure 1.4 CB.VARS variable equivalents

So What Software

SC = Screen
TL=Tool
TX = Text
UA = Buffer Addr.
UL = Buffer length
WN=Window

Page 1.8

Call Box TM BASIC , Manual
OVERVIEW cont.

A command has 3 basic parts:

Call statement:

Function code:

Parameters:

Call statement ____ C_A iL
TXT,4,F,"SHASITON.8"

Function code -

Parameter(s)

Figure 1.5 Command Structure

This is a standard Applesoft CALL statement using the variables
supplied by the CB.V ARS file.

Most calls have function codes. The function code identifies the
particular operation you want.

This is any data needed to complete the call such as color number,
height, width, mode, etc. etc ... All parameters are separated by
commas.

Be sure to RESTORE CB.V ARS the very first thing in your program to assure that the Call
variables are available ... changing a program line, issuing a CLEAR or a NEW will wipe out these
variables.

From within an Applesoft program:

PRINT CHR$(4) ;"RESTORE CB.VARS"

or from the keyboard directly:

RESTORE CB.VARS

Observe the usual rules of good programming in Applesoft BASIC like, put frequently used
subroutines at the beginning of your program, don't go overboard with REM statements and use
the X = FRE(O) to clean up string storage when you are concatenating strings a lot and so on.

The following pages describe in detail each Call Box BASIC driver command.

So What Software Page 1.9

Call Box TM_ BASIC Commands

CALL AR the ARC commands

There are 5 commands that draw arcs. The arcs are drawn with the pen in the current port.

Note:Any command that draws draws to a graphics port. You must make sure that the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates ... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will the GLOBAL coordinates.

CALL AR,O,X,V,W,H,SA,AA

CALL AR,1,X,V,W,H,SA,AA

CALL AR,2,X,V,W,H,SA,AA

CALL AR,3,X,V,W,H,SA,AA

CALL AR,4,X,V,W,H,SA,AA,P

X

FRAME ARC: draws an arc outline in the current
pen color.
PAINT ARC: draws an arc and fills it with the
current pen color.
ERASE ARC: draws an arc and fills it with color
O.
INVERT ARC: draws an arc and inverts the pixels
colors.
FILL ARC: draws an arc and fills it with the
current pen pattern.

Left edge of the enclosing rectangle for the arc in LOCAL coordinates.

y
Top edge of the enclosing rectangle for the arc in LOCAL coordinates.

W
Width of the enclosing rectangle for the arc in pixels.

H
Height of the enclosing rectangle for the arc in pixels.

SA
Starting angle in degrees

AA
Ending angle in degrees

P
Pattern used to fill arc (0-15)

So What Software Page 2. 1

TM •

Call Box BASIC·" Commands
CALL AR the ARC commands (continued)

(X) Left edge (0' or 360') .r- (SA) Starting angle
(Y) Top edge-__ ... 1 _ __ +-___ ' (45')

(H) Height

-----Arc

.....,:;....---.... - (EA) Ending angle
(90')

L (W) Wldth-J

Figure 2.1 Arc construction

---Enclosing
rectangle

Arcs are constructed inside of an imaginary rectangle (Enclosing rectangle) specified by X, Y ,W
and H. The starting angle (SA) and the ending angle (EA) are specified in degrees (0· to 360·). 0
degrees is at the 12 o-clock position and the angle increases clockwise around the center of the
enclosing rectangle, refer to Figure 2.1. Arcs made in 320 mode will follow a circular path if the
width and height are the same, however arcs created in 640 mode will have to have the widtll twice
the height for the same effect.

Paint, Erase, Invert, and Fill will create filled arcs as shown by the (pie-wedged) example in
Fi gure 2.1. Frame will produce just me curved portion of me arc.

Specifying O· for me starting angle and 360· for me ending angle will produce an Oval or Circle
depending on the shape of me enclosing rectangle.

So What Software Page 2. 2

Call Box ™ BASIC Commands
CALL AY the SUPER ARRAY commands

Due to the limited Applesoft program code area (about 31 K) it is advantageous to put as much of
the programs support data as possible out of this area (bank 0). Super Arrays allow you to put all of
your Arrayed data up in the upper banks of your computers memory, this frees up a lot of room
down in bank 0 and allows for bigger program code. These arrays also provide the capability of
much larger arrays than was possible before ... their size is directly dependent on how much
memory your IIgs has available.

There are 5 commands that control arrays.

CALL AV,O,N

CALL A V, 1 ,N,{O, 1 , ... ,S7}

CALL A V ,2,N,{0, 1 " .. ,S7}, V

CALL AV,3,N,{0,1 , .. "S7}, V

CALL AV,4,N,V

N

UNDIMENSION ARRAY: Remove an array
from the array table.
DIMENSION ARRAY: Reserve memory for an
array (N{O,l , ... ,87)).
GET VALUE: gets a value (V) from array
(N{O,1, ... ,87}).
SET VALUE: sets a value (V) in array
(N{0,1, ... ,87}).
SET ALL VALUES: sets all entries in array (N)
to value (V).

The name of an array. Should be a valid Applesoft type variable (real, integer, or string). Once a
type is set,
all subsequent calls to that array should use the same type and same name for the array.

{O,1, ... ,87}
Array subscripts. Use to define the size of the array or to get/set a value. Each number represents
a particular element within the array. You must specify at least one element. Subscripts can be any
valid numeric type (including decimal, binary, and hexadecimal) and are limited in size to 64K
(altlwugh your particular menwlY configuration may impose a greater limit). Also, you are limited
to only 88 dimensions.

V
Array value. Should be a variable of the same type as the array. In other words, if your array is a
string array then V should be a string variable.

Super Array Operation
Super Arrays follow similar conventions to Applesoft arrays. However, you have the added
abillity to "undimension" a super array (i.e. de-allocate the memory associated with it) and to set
all values in a super array to the same value. To use a super array use should first use the
dimension command. You would define a real array called "A" in the following manner:

100 CALL AV,1,A,{4,4,4,4}

The above line will dimesion a 5 by 5 by 5 by 5 element array for a total of 625 elements. If you

So What Software Page 2. 3

Call Box™ BASIC ." . ··Commands

CALL AY the SUPER ARRAY commands (continued)

want to set all the values in this array to ° you would use the Set All Values caB with a value of
zero,

110 CALL AY,4,A,0

Suppose you wanted to set the value of the {1,O,3,2} element to 15. Use the Set Value call to do
this:

120 CALL AY ,3,A,{1 ,0,3,2}, 15

If you wanted to examine the same element you would use the Get Value call as follows:

130 CALL AY,2,A,{1,0,3,2},V

The value of the element will be in the variable "V," Make sure that any variable or value used to
get or set a value should be of the same type as the array, Otherwise you will get a "Wrong Super
Array Type" error, If you wanted to dispose of a super array to free up some memory, you would
use the undimension array call,

140 CALL AY,O,A

That's all there is to it! You can have as many super arrays as you have variables for within
memory constraints (in addition to any Applesoft arrays your program has dimensioned).

So What Software Page 2. 4

Call Box ™ BASIC Commands

CALL CU the CURSOR and ICON commands

There are 6 commands that control cursors, and 2 commands the control icons. There are 2 system
cursors, the primary cursor is the arrow cursor and the second is the wait cursor (wrist
watch). You can load up to 16 more cursors making a total of 18 possible cursors in any given
application. You can have 64 icons as well.

Cursor #0 is the arrow cursor and Cursor #1 is the wait cursor. Cursors 0 thru 15 are available for
loading. There are no standard icons so icons 0-63 are available for loading.

Cursors and icons can be created and edited using the CALL BOX Image Editor.

CALL CU,O

CALL CU,1

CALL CU,2

CALL CU,3

CALL CU,4,N

CALL CU,5,N,"pathname"

CALL CU,6,N,M,X,Y

CALL CU, 7, N, "pathname"

N

CURSOR OFF: this makes the current cursor
invisible.
CURSOR ON: this makes the current cursor
visible.
ARROW: this makes the current cursor the system
arrow cursor.
WAIT: this makes the current cursor the system
wait cursor.
SET CURSOR: this sets the current cursor to the
user defined cursor (0-15).
LOAD CURSOR: this will load a cursor from disk
as cursor 1.0.0-15.
PLOT ICON: this plots an icon (0-63) at
coordinates X and Y in mode M.
LOAD ICON: this loads an icon from disk as icon
1.0.0-63.

User cursor or icon 1.0. number. There are 16 possible I.D. numbers for cursors (0-15) and 64 for
icons (0-63).

"pathname"
ProOOS pathname for the cursor or icon file to load.

X
Horizontal icon plotting position.

y
Vertical icon plotting position.

M
Icon plotting mode.(see Figure 2.2)

So What Software Page 2. 5

Call Box ™ BASIC Commands
CALL CU the CURSOR and ICON commands (continued)

Icon mode flags

Bits 3 thru 7 must be set to zero.

1 = AND light gray pattern to image. ---------"

1 = Copy light gray pattern instead of image. -----------"

1 = Invert image. --------------"

Figure 2.2 Icon mode flags

Cursors and Icons have similar structures (see Figure 2.3) but are handled by the IIgs toolbox
differently. Cursors have several "speciar' considerations that need to be taken care of for them to
work properly. The Image Editor chapter in the Call Box Editors manual outlines these
peculiarities.

ICON

Color! B&W flag
Length of Image (bytes)
Height of Image (pixels)
Width of Image (pixels)

Image

Mask

CURSOR

Height of Image (slices)
Width of Image (words)

Image

Mask

Y Hot spot (pixels)
X Hot spot (pixels)

Figure 2.3 Icon and Cursor structures

So What Software Page 2. 6

Call Box ™ BASIC Commands

I CALL DI the DIALOG commands

Dialogs are high level tool functions which are dependent on other toolbox functions as well as
as/os (ProDOS16) commands. The Dialog functions need to be initialized by using the "high
level" startup command CALL TL,2," Desk" (see CAU TL in this manuaLfor a compLete
description). This call will startup all tools needed for desktop applications ... the Dialog Manager is
one of them.

Dialogs are designated as "entities" in the Call Box BASIC driver and these entities are created using
the Call Box TPS Dialog Editor. The output type "object" must be used for dialogs that are to be
used by the BASIC driver.

[a_.-.... --. This is a Dialog bOI created by using the
Call Box IPS Dialog Editor.

[8] Check Box 11 0 Radio But ton 11
[8] Check Box 12 0 Radio But ton 12
D Check Box 13 @ Radio Button 13

Text in Bold, Italic, ffimGMIil@ and W~m~am.

I Simple Button I (Simple Button) «Simple Button)

Figure 2.4 A Dialog entity

Operating a Dialog is semi-automatic. You must load it, open it and operate it. At this point the
Dialog Manager has control of program execution and keeps it until you select something by
clicking it or pressing the return key. Once a selection is made control is passed back to your
application as well as the J.D. number for the item selected. Your application can take action based
on this J.D. number and either close the Dialog or go back to it for further actions. This is a
"Modal" type of access and is the most common type used with Dialogs. There is also a
"Modeless" type of dialog (not supported directLy) which allows you to choose items such as
menu bar selections or other open modeless dialogs at the same time your Dialog is open. Open
modal Dialogs must be closed before other desktop actions can take place.

The dialog can contain several types of controls (see Figure 2.4), each of which serve different
purposes and are outlined as follows:

So What Software Page 2.7

Call Box 1M BASIC Commands
. CALL DI the DIALOG conunands (continued)

Simple button: This type of control is used to select an action. Simple buttons contain the text
of the action to take such as "Continue", "OK", "Load", Save" etc. A simple button with a
double outline is the default button and aside from responding to a mouse click it will also respond
to pressing the return key. The I.D. number of this type of button is always 1.

Check box: This type of control is used to select an "ON·OFF" type of status such as which
items out of a group of items should be enabled. Each check box has some text associated with it
which describes the significance of the check box.

Radio button: This type of control is used like a check box except that only one item out of a
group of items can be selected at anyone time (like the buttons on a car radio). A group of buttons
is called a "family" and a dialog can contain several families of radio buttons where only one
button in each family can be set at any given time.

Li ne Ed it: This type of control is used to enter text. This control obeys the standard Apple rules
for text entry like click to position the typing cursor, double clicking to select a word or triple
clicking to select a complete sentence. The delete key will remove all selected text and text is entered
directly from the keyboard in insert mode.

Icon: This type of control is not really a control but a picture instead. Its purpose is purely
decorative or used as a symbolic title such as a "stop sign" or "caution sign" to alert the user of
possibly destructive actions.

Static Text: This is not a control either, but is a word or phrase used to identify the dialogs
purpose. This would probably be the title of the dialog box.

Note: Functions such as Hi.liting or dimming controls is accomplished by using direct
Control Manager commands via the CALL LC command. The use of "hook" procedures is
possible as well by using the CALL LC command. The vast majority of applications will need to
use the CALL DI commands for all of their functions, the more exotic control procedures however
are possible but this manual will not describe them. Use the Apple IIgs Toolbox reference
manuals (vol. 1;2 and 3) which outline all of the toolbox commands for more sophisticated
programming procedures. These manuals are essential for a complete understanding of the vast
number of toolbox calls available.

Dialog Controls (Items) and Item I.D. 's
The Call Box TPS Dialog Editor allows you to create dialogs by arranging dialog controls (items) in
a dialog window. These items each have a unique I.D. number automatically assigned by the editor.
It's important that you know what these item I.D.'s are because after you select something in a
dialog the I.D. number of what you selected is returned to you and you will need to take some
action based on which item I.D. is returned.

So What Software Page 2. 8

Call .Box™ BASIC Commands
CALL DI the DIALOG commands (continued)

. The I.D. nwnbers assigned by the Dialog Editor are shown
in Figure 2.5.

Check boxes and Radio buttons do not hilite and un
hilite automatically. Each time one of them is selected
control passes back to you and you must check or un-check
etc ... by setting (1) or un-setting (0) the items value by
using theSetValue andGetValue commands. Once you
have handled one of these items you loop back to the
OperateDialog command and wait for another event.

Type
Simple Button
Radio Button
Check Box
Icon
Line Edit
Static Text

1.0.
1 - 16
17 - 32
33 - 48
49,50
51 - 66
67 - 82

Figure 2.5 Dialog I.D.s

Line Edit items will operate automatically but you must fetch their contents (strings) before you
close the dialog box (this applies to any item value you are interested in as well) with the GetText
command. Simple buttons also operate automatically which leaves us with Icons and Static
Text which are not controls.

Load Dialog

Open Dialog

Operate
Dialog

This needs to be done only once ... usually at the beginning
of your program.

This is where you would re-startup the dialog box if it was
already loaded.

This is the "event" getting califor this dialog and is positioned
in an "event loop" structure.

Yes Get values
and text

Set/Un-set
value

Yes Set
value

1---11 Close Dialog
Exit!

Figure 2.6 Typical Dialog operation logic diagram

So What Software Page 2. 9

Call Box™ BASIC Commands
I CALL DI the DIALOG commands (continued)

Dialog Operation
The logic diagram in Figure 2.6 shows the nonnal operation of a dialog box. Sometime before
you need it you load a dialog entity created by the Call Box TPS Dialog editor.

100 CALL OI,O,N,"MyOlalog"

Note: At this point you could preset some values and text in the dialog box. Use the SetValue
and SetText commands to preset item data before using your dialog box.

Some action in your program such as a menu selection occurs which calls for your dialog box to
come up and you open the dialog (which makes it visible on the screen). N is the dialog boxes
"Entity" or port number, for our purposes make N = 1.

110 CALL 01,1,N

The next step is to set up an "event loop" type of programming structure to operate the dialog from.
This loop centers around the command OperateDialog (CALL DI,2 ...).

120 CALL 01,2,N,1

This call works like CALL EV (Event) command except that it maintains control of program
execution until you select an item in the dialog box. Once you have selected something the LD.
number of that item is returned to you in the variable I. You must "test" this number to see which
item you have selected by comparing it to known values. If your I value is greater than 0 and it's
less than 17 then the item selected was a button, if this value is greater than 16 but less than 33 then
a radio button was selected, if it's greater than 32 but less than 49 then it was a check box. (See
Figure 2.5). If none of the above is true then loop back to the OperateDialog command.

130 IF I > 0 AND I < 17 THEN 200
140 IF I >16 AND I < 33 THEN 300
150 IF I >32 AND I < 49 THEN 400
160 GOTO 120

If line 150 is "true" (A check box was selected) then you need to toggle the state of the check box
that was clicked. First get the items value with GetValue (CALL DI,4 ...) and then check ifit is
o or not. If it's 0 then set it to 1 by using the SetValue (CALL DI,5 ...) command. If it's 1 then
set it to 0 using the SetValue command as well.

400 CALL DI,4,N,I,V : CALL 01,5,N,I,1-V : GOTO 120

So What Software Page 2.10

Call Box ™ BASIC Commands
I CALL DI the DIALOG commands (continued)

If line 140 is true (A radio button was selected) then you need only set the items value to 1 (the
Control Manager will unset the currently set button in the radio family automatically).

300 CAll DI,5,N,I,1 : GOTO 120

If line 130 is true (A simple button was selected) you will probably be exiting the dialog box such as
if the OK or Continue button was clicked. Before you do this remember to save all the current
values of the items in the dialog box, including the text strings in any line edit items by using the
Get Value and GetText commands for each item of interest. After you have retrieved your data
you must close the dialog box.

200 REM Get all the returned values here ...
210 CAll DI,3,N : END

The dialog will stay in memory until you shut down your program and is restartable by simply
opening it again. The settings made to radio buttons and check boxes as well as the text in line edit
items is preserved from usage to usage. Your dialogs will remember their previous settings.

Dialog Commands
There are 9 commands that control dialogs. Dialogs must be used only when thedesktop is active.
(See CALL WN in this manual for a complete description)

CAll DI,O,N,"pathname"

CAll DI,1,N

CAll DI,2,N,1

CAll DI,3,N

CAll DI,4,N,I,V

CAll DI,5,N,I,V

CAll DI,6,N,I,A$

CAll DI,7,N,I,A$

CAll DI,8,N,P

So What Software

LOAD DIALOG: this will load a dialog from disk
as entity (N = 1-31).
OPEN DIALOG: this makes the current dialog
visible.
OPERATE DIALOG: this routine returns the item
1.0. (I) of the item clicked in the dialog.
CLOSE DIALOG: this removes the .(N) dialog
from the screen.
GET VALUE: this gets the value of item (I)
returned in variable (V).
SET VALUE: this sets the value of item (I)
specified by variable (V).
GET TEXT: this gets the text contained in line edit
item (I) and puts it in variable (A$).
SET TEXT: this sets the text in line edit item (I) to
the variable or string (A$).
GET POINTER: this returns the pointer to the
current dialog.

Page 2.11

Call Box™ BASIC. Commands

I CALL DI the DIAWG commands (continued)

N
Entity number for this dialog (J -31)

I
Item number of an item in the current dialog box. (See Figure 2.5)

V
The value of an item ... 1 = checked (check box), hili ted (radio button) and 0 = unchecked (check
box),unhilited (radio button).

"pathneme"
This is the ProDOS pathname of a dialog (jiletype $B1 ... OBl) created with the Call Box TPS
Dialog Editor.

P
This is the pointer to the current Dialog Box. This pointer is needed by various toolbox calls
accessable thru the Long Call (CALL LC) command.

So What Software Page 2.12

Call Box ™ BASIC Commands

CALL EV the EVENr MANAGER commands

There are 2 commands that control the Event Manager. These calls are used to get information on
the system such as if a key was pressed and what it was, or what were the mouse coordinates when
the button was pressed. This first call is used when the desktop in not active.

GetNextEvent

CALL EV,X,Y,B,M,K,T

X

GET NEXT EVENT: returns the mouse
coordinates, button status, modifier key code,
standard key code and tick count.

Horizontal mouse position in GLOBAL coordinates.

y
Vertical mouse position in GLOBAL coordinates.

B
Button status. 2 = down 0 = up

M
Modifier key code.(see Figure 2.7)

K
Keypress code equals an ASCII character value less than 128. Values greater than 128 represents a
repeat key event.

T
Tick count.

To determine if a double click of the mouse has occured use CALL EV three times as follows.

10 CALL EV,X,Y,B,M,K,T : IF B <> 2 THEN GOTO 10 :REM Wait for click
20 CALL EV,X,Y,B,M,K,T1: IF B <> 0 THEN GOTO 20: REM Wait for up
30 CALL EV,X,Y,B,M,K,T1: IF B <> 2 THEN GOTO 20: REM Wait for down

Now that the time value between mouse up and mouse down is in the variables T and Tl
respectively, use the longcall command CALL LC to execute the Event Manager Function
GetDblTime. GetDblTime returns the maximum difference in ticks between mouse down and
mouse up events allowed for a double click.

40 CALL LC,_0\$1106_MT: REM MT = maximum tick value.
50 IF MT > T1 • T THEN PRINT "Valid Double Click": REM double click

The value Tl - T holds the time between mouse up and mouse down events obtained in lines 10,20
and 30 above. The longcall command returns the maximum allowable tick time in the variable MT.
(For nwre information on CALL LC refer to that section in this manual.) If MT is greater then Tl
T, a valid double click has occured.

So What Software Page 2.13

Call Box™ BASIC ,Commands

CALL EV the EVEN!' MANAGER conunands (continued)

TaskMaster
The second Event call is a call to TaskMaster which m.u.s1 be used whenever the desktop is
active ... such as when you are using windows, menus and dialogs. The TaskMaster call returns all
the information that the Get Event call does but it also supplies 2 more values which return desktop
region information. The double click technique works with this call as well.

CALL EV,@,X,Y,B,M,K,T,C,D TASKMASTER: returns the mouse coordinates,
button status, modifier key code, standard key code,
tick count, TaskMaster code and data.

Modifier flags I 7 I 6 I 5 I 4 I 3 I

Keyp
controlK

optionK

capsLoc

shiftK

appleK y

ad
ey

ey

k

ey

e

I

KeyPad: 1 = keypress on keypad 0 = keypress on keyboard
controlKey: 1 = control key is down 0 = control key is not down
optionKey: 1 = option key is down 0 = option key is not down
capsLock: 1 = caps lock key is down 0 = caps lock key is not down
shiftKey: 1= shift key is down 0 = shift key is not down
appleKey: 1 = apple key is down 0 = apple key is not down

Figure 2.7 Modifier key flags

In desktop In info bar

2 I 1 I

16
17
18
19
20
21
22
23

In system menu bar
System click called
In content region

24
25
26
27
28
29
30

Item ID selected was 250-255
Item ID selected was 1-249
In window frame

In drag region
In grow region
In go-away region
In zoom region

Inactive menu item selected
Desk accessory closed
Inactive menu item selected

Figure 2.8 TaskMaster codes

o I

So What Software Page 2.14

Call Box ™ BASIC . Commands

CALL EV the EVENT MANAGER commands (continued)

X
Horizontal mouse position in GLOBAL coordinates.

y
Vertical mouse position in GLOBAL coordinates.

B
Button status. 2 = down 0 = up

M
Modifier key code.(see Figure 2.7)

K
Keypress code equals an ASCII character value less than 128. Values greater than 128 represents a
repeat key event.

T
Tick count.

C
TaskMaster code.(see Figure 2.8)

D
Data, if the TaskMaster code is in the system menu bar then this value would be two words the first
of which is the menu bar item number and the second is the menu item number selected. Parsing
these numbers goes like this:
(menu item number) = 0 • INT(O/65536)*65536
(menu bar item number) = INT(O/65536)

If the TaskMaster code shows that a window item was selected then D is a pointer to the window.
You can derive the entity number of the window by using this value in the Get Window Pointer/
Entity Number command in the window commands.

So What Software Page 2.15

Call Box ™ BASIC . Commands
CALL EV the EVENT MANAGER commands (continued)

So What Software Page 2.16

Call Box ™ BASIC Commands

CALL LC the LONG CALL conunand

There is only 1 command associated with the LONG CALL. It allows you to directly access any
tool you want. You must know the specific requirements of the tool being called in order to avoid
problems, such as a system CRASH!

The basic format of the call is to pass any necessary parameters, pass the function number and tool
set number, and to provide variables for any returned values.

CALL LC,(parl),par2), ... ,(parN)\$TFTN\(varl),(var2), ... ,(yarN)

(par)
A parameter that is to be passed to the tool. The call will pass values until it encounters the "\"
delimiting character.

$TFTN
The function (TF) and the toolset number (TN) that is to be called. It is best to specify this value in
hex.

(var)
The variables that will contain any returned values from the call to the toolset.

This is perhaps the most powerful call provided. However, you must know exactly what .
parameters the tool needs passed to it and what values it will pass back in order to use this call
correctly. Otherwise unpredictable results may occur, one of which may be a system crash. (This
information can be obtainedfrom the Toolbox Reference Manuals published by Addison-Wesely).

Each parameter passed, through CALL LC is one word in length (or 2 bytes) unless otherwise
specified. To specify a longword value (4 bytes) or variable, use the underline character" "before
the value or variable. In other words, a long value of zero would be denoted as "_0 It and a-long
variable could be denoted as" A".

Example:
Suppose you wanted to display in hex the total memory in your system on the super hi-res screen.
You need to access three different tools to accomplish this. These tools are:

Memory Manager (always active)
TotalMem ($TFTN = $1D02)

IntegerMath (always active)
Long2Hex ($TFTN = $230B)

Quickdraw II (always active)
DrawText ($TFTN = $A 704)

You will also need to use a few Call Box calls to set the background and foreground colors, as well
as the vertical and horizontal position for the text plot.

So What Software Page 2.17

Call Box ™ BASIC Commands

CALL LC the WNG CALL command (continued)

TotalMem
Find the total memory in your system using the Memory Manager function TotalMem ($ 1 D02).

The toolbox reference manual specifies making this call in this manner:

Stack before call
previous contents

- longspace - -- Longword value La) for result

-- Stack pointer
Stack after call

previous contents

I- totalsize - - Long - Total size in bytes of memory, including the
special 256K. (Banks 0,1 ,EO and E1)

--Stack pointer

If you don't know what the stack is or what it does, don't worry about it. All you need to know is
the order of the parameters which is specified by the stack diagram. Therefore, to pass the
parameter through the LONG CALL and return the memory size to your BASIC program you
would do the following:

The tt_Ott is a long ttresult space,tt which makes room for the result being returned. The tt_S" is a
long variable. The underline is just a convention that is used to denote that you expect a long value
returned from the call. The variable name is actually ttStt and you would use it just as you would
any other variable.

At this point, you could actually convert the variable into an Applesoft string if you wanted to print
out the value in decimal rather than hex. To do this, you would use the following statements:

100 S$= STR$(S) : REM Convert the variable to a string
110 CALL TX,1,0,15 : REM Set black text, white bkgnd.
120 CALL PN,2,40,20 : REM Set position to H=40, V=20.
130 CALL TX,O,O,S$: REM Plot the string using def. font

To print out the string in hex you would ignore the previous Applesoft program lines and continue
as shown below.

So What Software Page 2.18

Call Box ™ BASIC Commands
CALL LC the LONG CALL command (continued)

Long2Hex
This tool converts a Long Integer value into an Integer Math hex string. The toolbox reference
manual specifies the call in this fashion:

Stack before call
prevlous contents

- longvalue - --Unsigned long integer value

- strptr - --Pointer to space for integer math string

strlength --Length of string
- Stack pointer

Stack after call
I previous contents I

-- Stack pointer

No value is returned from this call. The value is instead put in a buffer, assigned by you. For our
purposes, since no DOS operation will take place durring the plotting, we will use the User DOS
Buffer as a temporary string storage area. To do this, we need to know where the buffer is located.
The variable "V A" points to the memory location that holds the starting address of the buffer. We
can use a long peek command to get the address into the variable "BF".

The calls look like this:

150 CALL PE,2,UA,BF : REM Get address of user buffer
160 CALL LC,_S,_BF,8\$230B\ : REM Make a Hex String

The long peek call "CALL PElf gets the two byte value (denoted by the number two following the
call statement) which is stored at the memory location held by the variable VA. The two byte
value that is returned from the call is placed in the variable BF.

The "CALL LC" takes the long word value of the variable "S", makes an Integer Math Hex string
out of it, and places the string at the location held by the value of the variable "BF". The "_ S"
holds the Total Memory in your system. It is the long size variable returned from the TotalMem call
above. The "_BF" holds the user buffer address which serves as our temporary string buffer.
The "8 II is the length of the string in characters (hex digits are two characters each).

So What Software Page 2.19

Call Box ™ BASIC' Commands
CALL LC the WNG CALL command (continued)

At this point, you need to set the current pen location as well as the foreground and background
colors. To do this, you would use the following statements:

210 CALL TX,1,0,15 : REM Set black text, white bkgnd.
220 CALL PN,2,40,20 : REM Set position to H=40, V=20.

Note: You don't need to set colors each you draw with the
pen. They will retain the same values that they had the last time that you used them. This goes for
the as well.

DrawText
This tool function will draw specified text at the current pen location and updates the pen location.

Stack before call
previous contents

- textptr - --Pointer to text to be drawn

textlength -- Length of the text
1-----.,;,..---1

-- Stack pointer

Stack after call
I previous contents I

--Stack pointer

This call will finish up by placing the string in the user buffer onto the Super Hi-Res Screen. The
call looks like this:

300 CALL LC,_BF,8\$A704\

You now should have the size of your systems memory on the super hi- res screen in hex (and/or
decimal if you used the first example)!

You can follow this format to make similar calls to any toolbox function provided you know the
parameters expected by the tool. The best way to get this information is to use the Apple IIgs
Toolbox Reference Manuals published by Addison-Wesely and available from A.P.D.A. (Apple
Programers and Developers Association).

So What Software Page 2.20

Call Box ™ BASIC Commands
CALL LN the LINE command

There is I command that draws lines ... this command will also draw points if you make the two
. sets of coordinates the same. The Line is drawn with the pen in the current port.

ote:Any to a graphics port. You must make sure that the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates ... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will the GLOBAL coordinates.

CALL LN,H1 ,V1 ,H2,V2

VI
Vertical starting position

HI
Horizontal starting position

V2
Vertical ending position

H2
Horizontal ending position

So What Software

DRAW LINE: draws a line from Hl,Vl to
H2, V2 in the current pen mode and pattern.

Page 2.21

Call Box ™ BASIC .'. Commands

I CALL LN the LINE command (continued)

So What Software Page 2.22

Call Box™ BASIC Commands

I CALL ME the MENU commands

Menus are high level tool functions which are dependent on other toolbox functions as well as
as/os (ProDOS16) commands. The menu functions need to be initialized by using the "high level"
startup command CALL TL,2," Desk" (see CALL TL in this manual for a complete description).
This call will startup all tools needed for desktop applications ... the Menu Manager is one of them.

Menus are designated as "entities" in the Call Box BASIC driver and these entities are created using
the Call Box TPS Menu Editor. The output type "object" must be used for menus that are to be
used by the BASIC driver.

II File Goodies
Undo aZ
Cut aX
COpy aC

Figure 2.9 A Menu entity

There are different kinds of menus, some of which appear in windows, behind buttons (pop-ups) or
in most any other location. The BASIC driver directly supports the "System Menu" which is the
menu that appears across the top of the screen when you have a desktop application active. The first
item in a system menu bar is the "Apple" selection. This menu bar selection is where NDA's can
be selected from ... simply have this selection avaliable and the BASIC driver (and GS/OS) will put
all of the NDAs in your system/desk. aces folder in this menu.

Operating a Menu is automatic, you must load it and open it. The window manager actually
operates the menu and the menu item numbers are returned with TaskMaster (see CAUEV) calls
in the main loop of your program.

So What Software Page 2.23

.. TM

Call Box BASIC Commands , , .

I CALL ME the MENU commands (continued)

Menu Items and Item I.D.'s
1.0. numbers are automatically assigned by the Call Box Menu Editor when you create a menu.
There are 3 ranges of 1.0. numbers, each one handles a different group of menu items.

I.D.'s 1 thru 249 are reserved for menu bar items.

I.D.'s 250 thru 255 are for the Standard EDIT menu which supports NOA's with the
functions UNDO, CUT, COPY, PASTE, CLEAR and CLOSE.

I.D.'s 256 and upareformenuitems

If you create a menu bar which has (from left to right) colored Apple, File, Alter, Special, and
Goodies then the File would be 1.0. #1, Alter would be 1.0. #2, Special would be 1.0. #3 and
Goodies would be 1.0. #4. The menus that these menu bar titles select follow the same rules but the
numbering starts at 256 instead of 1. Suppose that this menu had an About ... item under the colored
Apple, a Load ... a Save ... and a Quit under the File, Create and Destroy under the Alter and
Midnight under Special. The 1.0. for About... would be 256, Load ... would be 257, Save ... would
be 258, Quit would be 259, Create would be 260, etc. etc.

Standard Edit Menu
This menu is avaliable to accomodate special functions reserved by Apple for the Human Interface
of the toolbox. The functions UNDO, CUT, COPY, PASTE, CLEAR and CLOSE have
been given special 1.0. numbers (250 thru 255) which never change. Whenever a system window
is up (like NDA's) these menu items should become selectable ... when there is no system window
active then they should be un-selectable (dimmed). Check Menu (CALL ME,2, ..) will activate or
de-activate these menu items depending on whether there is a system window active at the time.
Place this call in your programs event loop if you are using a Standard Edit Menu.

The Un-Hilite Consideration
When a menu is "pulled-down" the menu bar item is hi-lited (white on black or inverted) and if you
select a menu item the item blinks and then the menu closes. At this point you would do the task
specified by the menu item. All this time however the menu bar item remains hi-Iited and never un
hilites. This works that way so that you can see by looking at the menu bar that a process is still
going on. When your task is complete you must un-hilite this menu bar item yourself ...
(using the D value from the TaskMaster call)

V = INT(D/65536) : CALL ME,7,N,V,O

Failure to do this will result in items randomly being hilited or un-hilited ... a real mess, just
remember to handle this little detail and everything will look good.

So What Software Page 2.24

Call Box ™ BASIC Commands
I CALL ME the MENU conunands (continued)

Menu Operation
After starting-up and initializing Call Box BASIC load a Menu entity created by the Call Box Menu
Editor.

10 CALL ME,O,N,"MyMenu"

Next you need to build and display the menu, adding in any NDA's in the colored Apple menu bar
selection.

12 CALL ME,1,N

Menus are actually operated by the Window Manager, all you do is check TaskMaster and see if a
mouse click or event happened in the system menu bar (Task Code = 17) and take some action
based on the menu item I.D. returned in the data variable of the TaskMaster call. If the Task Code
indicates a 17 then derive the menu item I.D. and the menu bar item I.D. from the TaskMaster data
value.:

(Menu Bar itemID.) = INT{O/65536)
(Menu item I.D.) = 0 • INT{O/65536)*65536

Menu Commands
There are 10 commands that control menus. Menus must be used only when the desktop is
active. (see CALL WN in this manual/or a complete description)

CALL ME,O,N,"pathname"

CALL ME,1,N

CALL ME,2,N

CALL ME,3,N

CALL ME,4,N, V

CALL ME,5,N,I, V

CALL ME,6,N,I,V

CALL ME,7,N,I,V

CALL ME,8,N,I, V

CALL ME,9,N,P

So What Software

LOAD MENU: this will load a menu from disk as
entity (N = 1-31).
OPEN MENU: this builds and displays the system
menu.
CHECK MENU: this hilites or un-hilites the
standard Edit menu functions.
CLOSE MENU: this removes the menu from the
screen.
VISIBLE MENU: this will show (V = 1) or hide
(V = 0) the menu.
ENABLE/DISABLE ITEM:this will enable (V =
I) or disable (V = 0) the menu item specified by (1).
SYMBOL ITEM: this puts no symbol (V = 0) or a
check mark (V = I) or an ASCII symbol (V = 2-255)
to the left of menu item specified by (1).
HILITE/UNHILITE ITEM: this hilites (V = 1)
or unhilites (V = 0) the menu item specified by (1) .
STYLE ITEM: this sets the text style (V) (see
CALL TX) of the menu item specified by (1).
GET POINTER: this returns the pointer to the
menu manager port.

Page 2.25

Call Box ™ BASIC ~<. Commands

I CALL ME the MENU conunands (continued)

N
Entity number for this menu (1-31)

I
Item number of an item in the current menu.

V
The value to fetch or put for an item, or action to take.

p
The pointer of the menu manager port.

"pathname"
This is the ProDOS patbname of a menu (jiletype $B1 ... OBl) created with the Call Box TPS Menu
Editor.

So What Software Page 2.26

Call Box ™ BASIC Commands

CALL OV the OVAL commands

There are 5 commands that draw ovals. The ovals are drawn with the pen in the current port.

ote:Any command that draws draws to a graphics port. You must sure the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates ... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will the GLOBAL coordinates.

CALL QV,O,X,Y,W,H

CALL QV,1,X,Y,W,H

CALL QV,2,X,Y,W,H

CALL QV,3,X,Y,W,H

CALL QV,4,X,Y,W,H,P

X

FRAME OVAL: draws an oval outline in the
current pen color.
PAINT OVAL: draws an oval and fills it with the
current pen color.
ERASE OVAL: draws an oval and fills it with
color O.
INVERT OVAL: draws an oval and inverts the
pixels colors.
FILL OVAL: draws an oval and fills it with the
current pen pattern.

Left edge of the enclosing rectangle for the oval in LOCAL coordinates.

y
Top edge of the enclosing rectangle for the oval in LOCAL coordinates.

W
Width of the enclosing rectangle for the oval in pixels.

H
Height of the enclosing rectangle for the oval in pixels.

P
Pattern used to fill the oval (0-15)

So What Software Page 2.27

Call Box ™ BASIC Commands
CALL OV the OVAL commands (continued)

(X) Left edge
I

(Y) Top edge --.. --'"""""!i_-_--_

(H) Height

L(w) Wldth-J

-----Oval

---Enclosing
rectangle

Figure 2.10 Oval construction

Ovals are constructed inside of an imaginary rectangle (Enclosing rectangle) specified by X,Y,W
and H. (refer toFigure 2.10) Ovals made in 320 mode will follow a circular path if the width and
height are the same, however ovals created in 640 mode will have to have the width twice the height
for the same effect.

So What Software Page 2.28

Call Box ™ BASIC Commands

CALL FE the BIG PEEK command

This command allows you to peek values greater than 256. You can peek 1 ,2,3 or 4 byte values
(values up to 4.29E +09). This value can be peeked from any address in the I1gs ... (16,777,214).
The number of bytes and address can be specified as decimal, hex, binary, integer or floating point
constants and/or variables. The returned value must be an FP variable.

This commands primary use is for getting Handles, pointers and words. Handles and pointers have
4 bytes and words have 2.

CALL PE,D,A,V

D
Number of bytes used (1-4) to represent the value.

A
A IIgs memory location (0-16,777,214).

V
The returned value.

So What Software Page 2.29

Call Box ™ BASIC Commands
CALL PO the BIG POKE command

This command allows you to poke values greater than 256. You can poke 1 ,2,3 or 4 byte values
(values up to 4.29E +09). This value can be poked into any address in the IIgs ... (16,777,214).
Thevalue and address can be specified as decimal, hex, binary, integer or floating point constants
and/or variables.

This commands primary use is for setting Handles, pointers and words. Handles and pointers have
4 bytes and words have 2.

CALL PO,D,A,V

D
Number of bytes used (1-4) to represent the value.

A
A IIgs memory location (0-16,777,214).

V
The value you want to poke into the memory location.

So What Software Page 2.30

Call Box ™ BASIC Commands
CALL PL the PALETTE commands

There are 4 commands that control color palettes. A color palette is 16 color values in a table. Each
value in this table represents a color composed of different intensities of RED, GREEN and BLUE.
You can have up to 16 of these tables accessable at one time depending on how the SCB's are set.

To set table number 3, entry number 6 to pure RED:

CALL PL,0,3,6,15,0,0

To set table number 3, entry number 6 to pure GREEN:

CALL PL,0,3,6,0,15,0

To set table number 3, entry number 6 to pure BLUE:

CALL PL,0,3,6,0,0,15

CALL PL,O,(tbl),(ent),R,G,S

CALL PL,1 ,(tbl),(ent), R,G,S

SET COLOR: Set the color specified by R,G,B in
the table entry.

CALL PL,2,(tbl)

CALL PL,3, (tbl),"pathname"

(tbl)

GET COLOR: Gets the color specified by the table
entry in R,G,B.
SET STANDARD PALETTE: Sets the table
specified to the standard palette for this screen. mode.
LO AD PALETTE: loads a palette specified by
pathname.

A value 0 - 15 that represents the table number.

(ent)
A value 0 - 15 that represents the entry number.

R
A value 0 - 15 that represents the intensity of RED.

G
A value 0 - 15 that represents the intensity of GREEN.

B
A value 0 - 15 that represents the intensity of BLUE.

"path name "
A ProDOS patbname for the palette to load.

So What Software Page 2.31

Call Box ™ BASIC . . Commands

I CALL PL the PALETrE commands (continued)

So What Software Page 2.32

Call Box ™ BASIC Commands
CALL PN the PEN commands

There are 9 commands that control pens. Each graphics port has its own pen. This pen has several
. attributes that detennine how it will behave. Any drawing, be it a line, rectangle, oval, text or
whatever is done with a pen. For example let's say that you want to draw a framed rectangle using
pattern number 7 and have the vertical lines of the rectangle 2 pixels wide and the horizontal 1 pixel
high:

First set the pen size to 1 x 2:

CALL PN,2,1,2

Now make the pen visible ... (able to draw)

CALL PN,4,7

And draw the framed rectangle:

CALL RE,O,X,Y,W,H

This pen will keep these attributes until you change them to something else. If you draw to another
graphics port then the attributes of that ports pen will be active which mayor may not have the same
attributes as the previous ports pen.

All pens start up with defaults of pen size = 1 x 1 and pen mode = copy.

Note: Do not confuse a pen with a cursor, even if it looks like a little pen! Pens do not have a
graphically visible counterpart like a cursor but are conceptual in nature. You only see the trail left
by a pen and not the pen itself.

Pens have so many commands because they are at the heart of all graphic goings on in the toolbox
and many variations are needed to create the effects seen in a IIgs application. The pen can draw in
anyone of 8 different modes as shown in Figure 2.11. It is best to experiment with the different
modes to get a feel for how they work.

CALL PN,O

CALL PN,1

CALL PN,2,H, V

CALL PN,3,(color#)

CALL PN,4,(pattern#)

CALL PN,5,WI,HT

So What Software

HIDE PEN: makes the pen invisible.

SHOW PEN: makes the pen visible.

MOVE PEN: moves the pen to the coordinates
specified by V and H.
SET PEN TO COLOR: sets a color from 0-15 of
the current palette.
SET PEN TO PATTERN: sets a pattern from 0-
15 of the ctirrent pattern.
SET PEN SIZE: sets the pens width and height.

Page 2.33

Call Box ™ BASIC Commands
CALL PN the PEN commands

CALL PN,6,(nwde)

CALL PN,7

CALL PN,8,lpathname"

H
Horizontal pen position in global coordinates.

V
Vertical pen position in global coordinates.

(color#)

(continued)

SET PEN MODE: sets the pen to any of the
modes described in Figure 2.11.
RESET PEN: sets the pen to default attributes.

LOAD PATTERN: loads a set of 16 patterns.

A number 0-15 that selects the solid color to use.

(pattern#)
A number 0-15 that selects the pattern to use.

WI
Width of pen in pixels.

HI
Height of pen in pixels.

(nwde)
a number 0-7 that selects the pen mode (see Figure 2.11).

(pathname)
a ProDOS patbname of the pattern to load.

So What Software Page 2.34

Call Box ™ BASIC Commands
CALL PN the PEN commands (continued)

o = COpy 1 = notCOPY This is the typical drawing mode.

COpy Pen notCOPY Pen
0 1 . 0 1

Destination 0 0 1 Destination 0 1 0
1 0 1 1 1 0

2=OR 3 = notOR This mode is used for non-destructive overlays.

OR Pen notOR Pen
0 1 0 1

Destination 0 0 1 Destination 0 1 0
1 1 1 1 1 1

4=XOR 5 = notXOR This mode is used for cursor drawing and rubberbanding.

XOR Pen notXOR Pen
0 1 0 1

Destination 0 0 1 Destination 0 1 0
1 1 0 1 0 1

6=BIC 7 = notBIC This mode is used to erase (turn off) pixels.

BIC Pen notBIC Pen
0 0 1 0 0 1

Destination 0 0 1 Destination 0 0 0
1 1 0 1 0 1

. Figure 2.11 Pen modes

So What Software Page 2.35

Call Box™ BASIC Commands

I CALL PN the PEN commands (continued)

So What Software Page 2.36

Call Box ™ BASIC Commands

CALL PT the PORT commands

There are 5 commands that control ports. A port is analogous to a super hi-res screen, it differs
from a Quickdraw II port in that it has 16 palettes and 200 SCB's in it. Remember that everything
goes on in ports, you need to create them before you use them and you need to point to them before
drawing in them. Port 0 is always the super hi-res display screen at $EI!2000 and is initialized
when the Call Box BASIC interface is started-up. Simple applications may only need this port for
all of their graphics.

CALL PT,O,N

CALL PT,1,N

CALL PT 2 N "pathname" , , ,

CALL PT 3 *** ,

CALL PT,4,N1 ,X1, Y1 ,N2,X2, Y2,
W,H

CALL PT,5,N

CALL PT,6,N,X,Y

CALL PT,7,N,X,Y

N

SET PORT: set all the Quickdraw II action to the
port specified by N. (0-31)
CREATE PORT: creates a port in the current
screen mode. You assign the I.D. number N. (1-31)
LOAD PORT: load or createlload a port filling it
with a super hi-res picture from disk specified by
pathname. (0-31)
Unused... Reserved

PORT TO PORT: copy a specified rectangle of
pixels from one port to a specified location in another
port.
DISPLAY PORT: copy the picture in the specified
port to the viewable super hi-res screen port at
$E l/2000. (1-31)
GOLBAL TO LOCAL: converts global
coordinates (X, Y) to local coordinates in port (N).
LOCAL TO GLOBAL: converts local coordinates
of port (N) to global coordinates.

Port I.D. number 0-31. Port 0 is always the super hi-res screen display at $EI!2000 ..

"pathname"
A ProD OS 8 pathname of the picture you wish to load. This picture must be filetype $CI (unpacked
super hi-res picture format).

NI
The source port I.D. number.

N2
The destination port I.D. number.

Xl
The left edge of the source rectangle.

So What Software Page 2.37

Call Box™ BASIC Commands

CALL PT the PORT commands (continued) .

YI
The top edge of the source rectangle.

X2
The left edge of the destination rectangle.

Y2
The top edge of the destination rectangle.

W
Width in pixels of the rectangle.

H
Height in pixels of the rectangle.

So What Software Page 2.38

Call Box ™ BASIC Commands
CALL QF Shutdown the Call Box BASIC interface

A ·CB starts up the Call Box BASIC driver and CALL TL,xx starts up special tools but
when your done playing with your toys you need to put them away! CALL QF does this in one
stroke. This call shuts down the Call Box BASIC driver, all the tools, and any memory blocks
that have been allocated for your program.

CAll QF

Your program would usually end after CALLing QF by exiting to BASIC, running another
program, or issueing a "BYE" to a P16 application (like HyperLaunch or the Finder) if that's who
launched you.

So What Software Page 2.39

Call Box ™ BASIC . Commands

CALL QF Shutdown the Call Box BASIC interface (continued)

So What Software Page 2.40

Call Box: ™ BASIC Commands
CALL RE the RECTANGLE commands

There are 5 commands that draw rectangles. The rectangles are drawn with the pen in the current
port.

Note:Any draws to a port. You must make sure that the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates ... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will the GLOBAL coordinates.

CALL RE,O,X,Y,W,H

CALL RE,1,X,Y,W,H

CALL RE,2,X,Y,W,H

CALL RE,3,X,Y,W,H

CALL RE,4,X,Y,W,H,P

X

FRAME RECTANGLE: draws a rectangle
outline in the current pen color.
PAINT RECT ANG LE: draws a rectangle and
fills it with the current pen color.
ERASE RECTANGLE: draws a rectangle and
fills it with color O.
INVERT RECTANGLE: draws a rectangle and
inverts the pixels colors.
FILL RECTANGLE: draws a rectangle and fills
it with the current pen pattern.

Left edge of the rectangle in LOCAL coordinates.

y
Top edge of the rectangle in LOCAL coordinates.

W
Width of the rectangle in pixels.

H
Height of the rectangle in pixels.

P
Pattern used to fill rectangle (0-15)

So What Software Page 2.41

Call Box™ BASIC Commands

CALL RE the RECTANGLE commands (continued)

(X) Left edge

(Y) Top edge--........ -------...

(H) Height

V.---Rectangle

L (W) Wldth-J

Figure 2.12 Rectangle construction

So What Software Page 2.42

Call Box ™ BASIC Commands
CALL RR the ROUNDED RECTANGLE commands

There are 5 commands that draw Rounded Rectangles. The Rounded Rectangles are drawn with
the pen in the current port.

Note:Any command that draws something, draws to a graphics port. You must make sure that the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates ... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will the GLOBAL coordinates.

CALL RR,O,X,Y,W,H,OW,OH

CALL RR,1,X,Y,W,H,OW,OH

CALL RR,2,X,Y,W,H,OW,OH

CALL RR,3,X,Y,W,H,OW,OH

CALL RR,4,X,Y,W,H,OW,OH,P

X

FRAME RRECTANGLE: draws a rrectangle
outline in the current pen color.
PAINT RRECT ANG LE: draws a rrectangle and
fills it with the current pen color.
ERASE RRECTANG LE: draws a rrectangle and
fills it with color O.
INVERT RRECTANGLE: draws a rrectangle
and inverts the pixels colors.
FILL RRECTANGLE: draws a rrectangle and
fills it with the current pen pattern.

Left edge of the rrectangle in LOCAL coordinates.

y
Top edge of the rrectangle in LOCAL coordinates.

W
Width of the rrectangle in pixels.

H
Height of the rrectangle in pixels.

OW
Corner oval width in pixels

OH
Corner oval height in pixels

P
Pattern used to fill rrectangle (0-15)

So What Software Page 2.43

Call Box™ BASIC . Commands

CALL RR the ROUNDED RECfANGLE commands (continued)

o

(Y) Top edge

(X) Left edge Wl"
I

OH

(H) Height

V

L(w) Wldth-J

Figure 2.13 Rounded Rectangle construction

So What Software

Corner oval

Rounded
Rectangle

Page 2.44

Call Box ™ BASIC . Commands

CALL SB the SCAN LINE CONfROL BYTE commands

There are 2 commands that control the Scan line Control Bytes (SeE 's). A Scan line Control Byte
. describes the behavior of the pixels for each row of the screen. The screen has 200 rows of pixels
that can be either 320 or 640 pixels wide depending on the mode setting.

Scan Line Control B yte I 7 I 6 I 5 I 4 3 I 2 I 1 I °
1 = 640 0 = 320
1 = Generate Interru

1 = Color fill mode

pt

I Palette number

Figure 2.14 Scan Line Control Byte

Binary is a convienient method to specify scan line control bytes. To set all 200 SCB's to 640 mode
graphics use the following program line:

CALL 58,0,!10000000,0,200

You will usually use palette 0 for all of your needs even though there are 16 palette spots avaliable.
It should be noted that specifying a palette that has not been filled by a CALL PL will produce
unpredictable results.

CALL S8,O,(scb),(start),(end)

CALL S8,1 ,(line), R

(scb)
A value as described in Figure 2.14.

(start)
Top row of the range of SCB's to be set.

(end)
Bottom row of the range of SCB's to be set.

(line)
Line number of SCB to read.

R

SET RANGE OF SCB's: Sets any or all of the 200
scan line control bytes associated with the screen.
GET ONE SCB VALUE: Returns the value of a
specified SCB.

Returned value ... must be an Applesoft FP (real) variable ..

So What Software Page 2.45

Call Box ™ BASIC ~; , Commands

CALL SC the SCREEN commands

There are 4 commands that control the super hi-res screen. This screen is graphics port #0 at
$El/2000. You can either enable or disable the screen, change it to a specified color or set its mode.

CALL SC works closely with CALL SB .. for example: If you want to set the screen to 640
mode graphics you must set the mode and set the scan line control bytes ...

CALL SC,2,640 : CALL S8,0,110000000,0,200

or to set the screen for 320 mode ...

CALL SC,2,320 : CALL S8,0,IOOOOOOOO,0,200

Note: SCB's are represented in binary, this is not necessary ... only convienient. SCB's are
actually bit flags wd binary representation makes the bits easier to see.

CALL SC,O

CALL SC,1

CALL SC,2,(nwde)

CALL SC,3,(colorword)

(mode)

SCREEN OFF: Changes the screen from super hi
res to text.
SCREEN ON: Changes the screen from text to
super hi-res.
SCREEN MODE: Sets the screen mode to either
320 or 640.
SCREEN COLOR: Clears the screen to the color
specified in the colorword.

Must be 320 or 640 only. All other values are invalid and will return an error.

(colorword)
A colorword is a value anywhere from 0 to 65535. There are only 16 solid colors in that range ... all
the rest are dithers. Specifying a colorword in hex is the easiest because the 16 values are in straight
numeric order:

$0000 solid #0 $4444 solid #4 $8888 solid #8 $CCCC solid #12
$1111 solid #1 $5555 solid #5 $9999 solid #9 $DDDD solid #13
$2222 solid #3 $6666 solid #6 $AAAA solid #10 $EEEE solid #14
$3333 solid #4 $7777 solid #7 $BBBB solid #11 $FFFF solid #15

Figure 2.15 Solid colorwords

So What Software Page 2.46

Call Box ™ BASIC Commands
CALL TL the TOOL commands

There are 2 commands that control the starting up of supported tool sets. A tool set must be
started up before it can be used. The TOOL command "CALL TL" provides an easy method for the
BASIC programmer to startup required tool sets.

There are two options available with both the startup and shutdown calls: a) Startup a specific tool
set, or b) Startup dependent tool sets in order (the HighOrder call).

Example: The HighOrder Startup call will startup all tool sets required by the one you specify. So
if you wanted to use Dialog in your program, all tools needed by the Dialog Manager would be
started up for you automatically; you don't need to make a call for each individual tool.

Note: It is necessary to make the CALL QF before exiting BASIC to any other system. (CALL QF
takes care offreeing up and disposing of all memory reservedfor the BASIC Interface as well).

CALL TL,O, "toolname"

CALL TL,1, ***
CALL TL,2,"toolname"

"toolname"

STARTUP ONE TOOL: starts up the tool
specified by toolname.
Unuse d ... (reserved)

HIGH ORDER STARTUP: starts up all tools
required by, up to and including, the toolset

One of the following strings describing which tool(s) to use in the call. The strings are case
insensitive: they can be any combination of cases and still function right. However, if not spelled as
shown below, you will receive a "Tool Not Supported" error. More tools will become available
in a later release.

WINDOW
CONTROL
MENU
L1NEEDIT

DIALOG
SCRAP
LIST
DESK

The toolname "DESK" will startup all currently supported tools and is the recommended command
for desktop applications. Starting up fewer tools does not free up any memory. All tools remain
memory resident throughout all CB BASIC operations.

So What Software Page 2.41

CALL SC the SCREEN commands

There are 4 commands that control the super hi-res screen. This screen is graphics port #0 at
$El/2000. You can either enable or disable the screen, change it to a specified color or set its mode.

CALL SC works closely with CALL SB .. for example: If you want to set the screen to 640
mode graphics you must set the mode and set the scan line control bytes ...

CALL SC,2,640 : CALL S8,0,!10000000,0,200

or to set the screen for 320 mode ...

CALL SC,2,320 : CALL S8,0,!00000000,0,200
~'.

Note: SCB's are represented in binary, this is not necessary ... only convienient. SCB's are
actually bit flags and binary representation makes the bits easier to see.

CALL SC,O

CALL SC,1

CALL SC,2,(nwde)

CALL SC,3,(colorword)

(mode)

SCREEN OFF: Changes the screen from super hi
res to text.
SCREEN ON: Changes the screen from text to
super hi-res.
SCREEN MODE: Sets the screen mode to either
320 or 640.
SCREEN COLOR: Clears the screen to the color
specified in the colorword.

Must be 320 or 640 only. All other values are invalid and will return an error.

(colorword)
A colorword is a value anywhere from 0 to 65535. There are only 16 solid colors in"that range ... all
the rest are dithers. Specifying a colorword in hex is the easiest because the 16 values are in straight
numeric order:

$0000 solid #0 $4444 solid #4 $8888 solid #8 $CCCC solid #12
$1111 solid #1 $5555 solid #5 $9999 solid #9 $DDDD solid #13
$2222 solid #3 $6666 solid #6 $AAAA solid #10 $EEEE solid #14
$3333 solid #4 $7777 solid #7 $BBBB solid #11 $FFFF solid #15

Figure 2.15 Solid colorwords

So What Software Page 2.46

.>

Call B'ox ™ BASIC',' , Commands
\ l _ -

CALL SF the STANDARD FILE commands

Standard Files are high level tool functions which are dependent on other toolbox functions as well
as as/os (ProDOS16) commands. These functions need to be initialized by using the "high level"
startup command CALL TL,2,"Desk" (see CALLTL in this manualfor a complete description).
This call will startup all tools needed for desktop applications ... the Standard File tools use most of
them.

The Standard File tools are located in the file SF which must be in the SYSTEM/SETUP directory
along with CB.INITb 1. The file CB must be version 2.1b3 or greater.

8:HRRD1:CRlL.BOX:
5530 free of 32767 k. (Disk)

<~::, !:~L
(New Folder)

<~::, !:O.PREt~UNCH (Open)
D DIAlOG.EX

load Rpplesoft ... D EDITORS (Close)
(~::, f orlllot

8:HRRD1:CAll.BOX: ext as ... (Save)
I Untitled DD EX I (Cancel)

D EDITORS
D IMAGE.EX « Open) D MENU.EX
D SCRIPTS () Close
c) Templates
D WINDOW.EX (Cancel)

Figure 2.14.1 Standard File dialogs

Standard File dialogs are used to concatenate ProD OS pathnames using the point and click desktop
method. The dialog has buttons with which you can OPEN or CLOSE files, Switch Volumes and
Create folders. The buttons will change the contents of the list window within which you can select
or double click individual filenames. When your selection process is finished Standard File returns
you the Filename and Full Pathname selected. You then use this information to actually load and
save the data using ProDOS or as/os commands.

The Standard File commands require you to supply the upper left hand coordinates for the box and a
prompt string (Plus a default filename for save boxes). When you are done with the box then the
Standard File commands retum a good flag, filename and full pathname using slashes as delimiters.
The good flag will be 0 if you make a selection and will contain 1 if you have selected cancel.

So What Software Page 2.46.1

CALL SF the STANDARD FILE commands

There are 2 commands that control Standard File boxes. You can either bring up a load or save
Standard File Box.

This toolset is proprietary to Call Box BASIC and emulates the functions of the Apple llgs Standard
File Tools. This tool is installed at system initialization time and is not physically part of the file CB.
If the files SF and CB.INITb 1 are not in the SYSTEM/SYSTEM.SETUP subdirectory and/or the
file CB (version 2.1 b3 min.) is not being used then issueing these calls will cause the system to
crash or hang. The New Folder function of the save standard file box is not functional in this beta
release.

CALL SF ,0, Y ,X, "prompt" ,F ,F$,P$
GetStdFile: This is the standard "LOAD" dialog box.

CALL SF,1, Y ,X, "prompt" ,"DejName" ,F ,F$,P$
PutStdFile: This is the standard "SAVE" dialog box.

X
Horizontal position or left side.

y
Vertical position or the top side.

"prompt"
A load or save message like ... Load File .. or Save File as ...

"DejName"
Default filename for the edit box in SAVE boxes.

F
Good Flag, 0 = F$ and P$ are valid, 1 = F$ and P$ are invalid

F$
Filename selected

P$
Full pathname selected (delimited with slashes instead of colons)

So What Software Page 2.46.2

Call Box: 1M BASIC Commands
"

CALL TL the TOOL commands

There are 2 commands that control the starting up of supported tool sets. A tool set must be
started up before it can be used. The TOOL command "CALL TL" provides an easy method for the
BASIC programmer to startup required tool sets.

There are two options available with both the startup and shutdown calls: a) Startup a specific tool
set, or b) Startup dependent tool sets in order (the HighOrder call).

Example: The HighOrder Startup call will startup all tool sets required by the one you specify. So
if you wanted to use Dialog in your program, all tools needed by the Dialog Manager would be
started up for you automatically; you don't need to make a call for each individual tool.

Note: It is nece.ssary to make the CALL QF before exiting BASIC to any other system. (CALL QF
takes care offreeing up and disposing of all memory reserved for the BASIC Interface as well).

CALL TL,O,"too!name"

CALL TL,1, ***
CALL TL,2,"too!name"

"too!name"

STARTUP ONE TOOL: starts up the tool
specified by toolname.
Un use d .•. (reserved)

HIGH ORDER STARTUP: starts up all tools
required by, up to and including, the toolset

One of the following strings describing which tool(s) to use in the call. The strings are case
insensitive: they can be any combination of cases and still function right. However, if not spelled as
shown below, you will receive a "Tool Not Supported" error. More tools will become available
in a later release.

WINDOW
CONTROL
MENU
LlNEEDIT

DIALOG'

SCRAP
LIST
DESK

The toolname "DESK" will startup all currently supported tools and is the recommended command
for desktop applications. Starting up fewer tools does not free up any memory. All tools remain
memory resident throughout all CB BASIC operations.

So What Software Page 2.47

Call.'Box™ BASIC . Commands

I CALL TL the TOOL commands (continued)

So What Software Page 2.48

Call Box: ™ BASIC ' Commands

CALL TX the TEXT commands

There are 6 commands that control text. Font I.D. #0 is reserved for the system font (Shaston 8).
Fonts #1-15 can be loaded in from disk and are the IIgs modified Mac font file type $C8. You can
set the color for foreground and background plus set the font face fornormal, bold, underline,
outline, shadow and italics. The mode can be set the same as in the CALL PN commands.

The font is plotted at the current ports pen position ... after a string is ploltted the horizontal pen
position is advanced to the end of the plotted string.

CALL TX,O,F, "string"

CALL TX,1 ,FO,BK

CALL TX,2,TF

CALL TX,3,MO

CALL TX,4,F,"pathname"

CALL TX,5,F,"string",A

F
Font number 0-15 (font #0 is Shaston 8).

FO
Foreground color of text (actual text color).

BK

DRAW TEXT: this will plot the string using font
F.
SET COLORS: stes the foreground and
background colors 0-15.
SET TEXT FACE: sets the style that the font will
appear in (see Figure 2.14).
SET FONT MODE: sets the mode that the font
will be plotted in (see Figure 2.11).
LOAD FONT: loads a type $C8 font from disk as
I.D. F.
GET TEXT LENGTH: returns the width of the
string in pixels using font F. A has the width.

Background color of a rectangle that encloses the text.

TF
Text face ... this is a bit flag byte that enables the various text styles (see Fig ure 2.14).

MO
A number 0-7 that selects the drawing mode for the text (see Figure 2.11).

"string"
A text string of ASCII characters not to exceed 255 characters in length.

"pathname"
A ProDOS 8 pathname of the font you want to load. This font must be a filetype $C8. FO{lts
specified by filename only must be in the boot volumes SYSTEM/FONTS subdirectory.

So What Software Page 2.49

Call' Box ™ BASIC Commands
I CALL TX the TEXT commands (continued)

Text face flags

1 = Shadow

1 = Outline

1 = Underline

1 = Italic

1 = Bold

17161514131211
Bits 5-7 must be set to zero. I 1 0 I

Bold Italic Underline O~~~~~~ ~~~©I©~J

Figure 2.14 Text face flags

So What Software Page 2.50

Call Box ™ BASIC Commands

I CALL WN the WINDOW commands

Windows are high level tool functions which are dependent on other toolbox functions as well as
as/os (ProDOS16) commands. The menu functions need to be initialized by using the "high level"
startup command CALL TL,2," Desk" (see CALL TL in this manual for a complete description).
This call will startup all tools needed for desktop applications ... the Window Manager is one of
them.

Windows are designated as "entities" in the Call Box BASIC driver and these entities are created
using the Call Box TPSWindow Editor. The output type "object" must be used for windows that
are to be used by the BASIC driver.

o

Figure 2.15 A Window entity

Operating a Window is automatic, you must load it and open it. Once a window is open you would
probably draw something in it to display. To draw to a window you simply point to the windows
port by using the port command CALL PT ,0, (entity number) and then use drawing and text
commands to create the windows contents. The TaskMaster call in your programs event loop is at
the heart of window operations. TaskMaster will return task codes (see Figure 2.8) which will
infonn you if a particular part of a window was clicked in as well as other status infonnation. If you
want the "system" to handle the operation of the windows then you would take no action on the
window type task codes and loop back to your TaskMaster call. Moving, growing-shrinking,
Scrolling and Zooming the window will happen without any program lines on your part, and you
usually only need to handle the go-away region task code (#22) in order to close the window.

So What Software Page 2.51

Call Box ™ BASIC . . Commands'!

CALL WN the WINDOW commands (continued)

Drawing to a Window
Each window has a contents region which displays the infonnation contained in the window. This
infonnation is "drawn" to the window using any of the drawing commands included in the Call
Box BASIC driver. Infonnation can also be put in a window by using the "port to port"
command (such as super hi-res pictures). When something is drawn to a window it will be drawn in
"local" coordinates ... the mouse position is in "global" coordinates, if you wish to draw into the
window using the mouse/cursor like a pen then you must convert the mouse X and Y positions to
local coordinates using the "Global to Local" command in the port commands.

Before drawing to a window you must direct all drawing action to the window using the command
"Set Port" in the port commands. When you first create a window the port is set to the window
just created so the Set Port command will not be necessary. Windows can be drawn to even when
they are not visible, a subsequent use of the command "Show window" will display the window
with the contents already drawn. These few simple rules cover the handleing of the windows
contents ... most other window functions are handled automatically by the system and need little or
no attention.

Window Operation
After starting up and initializing Call Box BASIC load a Window entity created by the Call Box
Window Editor.

10 CALL WN,O,N,"MyWindow"

Next you need to build the window which sets up the memory required by the window, this
operation will not make the window visible.

12 CALL WN,1,N

Note: At this point you need to draw the initial window contents as described above. Pre-df:.lwing
the contents makes the windows contents appear quicker when the window is displayed.

Once your window is all set-up you display it by using the Show Window command:

14 CALL WN,4,N,1

The window will now be visible on the screen and will operate automatically. Several windows can
be up on the screen at one time and may overlap each other. When TaskMaster in your pro&,rrams
Event loop shows that a window region (refer to Figure 2.8) has had the mouse clicked in it you
can run routines based on which item is clicked in or simply ignore the indication and have the
system handle the operation itself by looping back to the TaskMaster command. One value returned
by TaskMaster must be handled by your program and this is the close box (go away region) #22.
To close your window issue a Hide Window or if you want to dispose of the window the Close
window command.

16 CALL WN,4,N,0 or CALL WN,2,N

So What Software Page 2.52

Call Box ™ BASIC Commands
CALL WN the WINDOW commands (continued)

These are the minimum required window commands to operate a window. Other functions such as
Get/Set origin and Set Title, add some custom functions to the repitorie of commands. There
are 3 other commands that should be of value to you the programmer these are: Refresh
Desktop, Duplicate a Window and Get Window Pointer/Entity number. Refresh
Desktop should be issued prior to the use of windows, dialogs or menus ... this command sets up
the desktop environment and redraws the whole desktop. Sometimes during an applications
execution some non desktop commands such as drawing directly to the desktop will "trash" the
looks of the screen. Issueing a Refresh Desktop command will straighten things out. The Duplicate
a Window command will allow you to use the same window template for several window entities,
this will eliminate the need to load a separate window template for each window entity. The Get
Window PointerlEntity Number command will return any of three pointers and indicators necessary
for window manipulation. An example of the use of this command is when the mouse is clicked in
the top-most window out of several windows visible at one time. If you wish to close this window
then you need to know the entity number of this window for the Close Window command.
TaskMaster will return the Windows pointer in the "D" variable. This pointer is converted to the
entity number as follows:

100 CALL WN,8,N,D,2

The windows entity number is returned in the variable liN ".

There are 9 commands that control windows. Windows must be used only when the desktop is
active.

CALL WN 0 N "pathname" , , ,

CALL WN,1,N

CALL WN,2,N

CALL WN,3

CALL WN,4,N,V

CALL WN,5,N,X,Y,V

CALL WN,6,N,A$

CALL WN, 7,N1 ,N2

CALL WN,8,N,WP,V

So What Software

LOAD WINDOW: this loads a window template
from disk as entity number (N).
BUILD WINDOW: this creates the memory
structure for the window (N).
CLOSE WINDOW: this closes the window
specitied by (N) and releases its memory.
REFRESH DESKTOP: this redraws the entire
desktop.
HIDE/SHOW WINDOW: this will hide (V=O) or
show (V=l) the window specified by (N).
GET/SET ORIGIN: this will get (V=O) or set
(V=l) the origin (X, Y) of the windows contents.
SET TITLE: this will change the title (A$) of the
window specified by (N).
DUPLICATE A WINDOW: this will copy the
window entity (Nl) to a new window entity (N2).
GET WINDOW POINTER/ENTITY
NUMBER: This will return the background port
pointer (V=O) or the windows port pointer (V=1) or
the entity number (V=2) of the window specified by
(WP) in the variable (N).

Page 2.53

CALL WN the WINDOW commands (continued)

"pathname"
A ProDOS 8 pathname of the wipdow template to load.

N
Entity number for this window (1-31).

V
Code number for the type of operation requested.

X
The input and output horizontal positions

y
The input and output vertical positions

A$
The string used to set the windows title.

Nt
The source window entity number.

N2
The destination window entity number.

WP
The window ports pointer.

So What Software Page 2.54

Call Box ™ BASIC Appendix A

Apple IIgs System and Toolbox calls

This listing is a reference for all the system and toolbox calls that can be made by using the Call Box
BASIC driver call CALL LC (LongCall). Only the call code numbers and the name are given in
this appendix. Complete call descriptions can be found in the Apple IIgs Toolbox Reference Vols.
1,2 and 3 avaliable from A.P.D.A. (Apple Programmers and Developers Association) or Addison
Wesley publishing Co.

ProPOS 16 / GS/os
0010 PI6:0PEN
0012 PI6:REAO
0014 PI6:CLOSE
0016 PI6:SET_MARK
0017 PI6:GET_MARK
0019 PI6:GET_EOF
200E GS/OS:ExpandPath
200F GS/OS:GetSysPrefs
2010 GS/OS:Open
2012 GS/OS:Read
2014 GS/OS:Close
2016 GSIOS:SetMark
2017 GS/OS:GetMark
2019 GSIOS:GetEOF
201A GSIOS:SetLevel
201 B GSIOS:GetLevel

Tool Locator
0101 TLBootlnit
0201 TLStartUp
0301 TLShutOown
0401 TLVersion
0501 TLReset
0601 TLStatus
0901 GetTSPtr
OAOI SetTSPtr
OBOI GetFuncPtr
OCOI GetWAP
0001 SetWAP
1101 TLMountVolume
1201 TLTextMountVolume
1301 SaveTextState
1401 RestoreTextState
1501 MessageCenter
1701 MessageByName

Memory Manager
0102 MMBootlnit
0202 MMStartUp
0302 MMShutOown
0402 MMVersion
0502 MMReset
0602 MMStatus
0902 NewHandle
OA02 ReAllocHandle
OB02 RestoreHandle
1002 OisposeHandle
1102 OisposeAII

So What Software

1202 PurgeHandle
1302 PurgeAII
1802 GetHandleSize
1902 SetHandleSize
IA02 FindHandle
IB02 FreeMem
lC02 Max Block
1002 TotalMem
lE02 CheckHandle
IF02 CompactMcm
2002 HLock
2102 HLockA11
2202 HUnlock
2302 HUnlockAl1
2402 SetPurge
2502 SetPurgeAl1
2802 PtrToHand
2902 HandToPtr
2A02 HandToHand
2B02 BlockMove
2F02 RealFreeMem

Mllc. Tools
0103 MTBootlnit
0203 MTStartUp
0303 MTShutOown
0403 MTVersion
0503 MTReset
0603 MTStatus
0903 WriteBRam
OA03 ReadBRam
OB03 WriteBParam
OC03 ReadBParam
0003 ReadTimeHex
OE03 WriteTimeHex
OF03 ReadAsciiTime
1003 SetVector
1103 GetVector
1503 SysFailMg
1603 GetAddr
1703 ReadMouse
1803 InitMouse
1903 SetMouse
lA03 HomeMousc
IB03 ClearMouse
lC03 Clamp Mouse
1003 GetMouscClamp
IE03 PosMouse
IF03 ServeMouse
2003 GetNewlD
2103 OeletelD
2203 StatuslD
2303 IntSource

2403 FWEntry
2503 GetTick
2603 PackBytes
2703 UnPackBytes
2803 Munge
2903 GetIRQEnable
2A03 SetAbsClamp
2B03 GetAbsClamp
2C03 SysBeep
3003 SetlnterruptStatc
3103 GetlnterruptState
3203 GetlntStateRecSize
3303 ReadMouse2
3403 GetCodeResConverter

QulckPraw II
0104 QOBootlnit
0204 QOStartUp
0304 QOShutOown
0404 QOVersion
0504 QOReset
0604 QOStatus
0904 GetAddress
OA04 GrafOn
OB04 GrafOff
OC04 GetStandardSCB
0004 InitColorTable
OE04 SetColorTable
OF04 GetColorTable
1004 SetColorEntry
1104 GetColorEntry
1204 SetSCB
1304 GetSCB
1404 SetAIISCBs
1504 ClearScreen
1604 SetMasterSCB
1704 GetMasterSCB
1804 OpenPort
1904 InitPort
lA04 ClosePort
1 B04 SetPort
1 C04 G e tPort
1004 SetPortLoc
lE04 GetPortLoc
IF04 SetPortRect
2004 GetPortRect
2104 SetPortSize
2204 MovePortTo
2304 SetOrigin
2404 SetClip
2504 GetClip
2604 ClipRect
2704 HidePen

Page a

Call Box ™ BASIC -' .' Appendix rA;'

2804 ShowPen 6704 NewRgn A604 DrawCString
2904 GetPen 6804 DisposeRgn A704 DrawText
2A04 SetPenState 6904 CopyRgn A804 CharWidth
2B04 GetPenState 6A04 SetEmptyRgn A904 StringWidth
2C04 SetPenSize 6B04 SetRectRgn AA04 CStringWidth
2D04 GetPenSize 6C04 RectRgn AB04 TextWidth
2E04 SetPenMode 6D04 OpenRgn AC04 CharBounds
2F04 GetPenMode 6E04 CloseRgn AD04 StringBounds
3004 SetPenPat 6F04 OffsetRgn AE04 CStringBounds
3104 GetPenPat 7004 InsetRgn AF04 TextBounds
3204 SetPenMask 7104 SectRgn B004 SetArcRot
3304 GetPenM ask 7204 UnionRgn BI04 GetArcRot
3404 SetBackPat 7304 DiffRgn B204 SetSysFont
3504 GetBackPat 7404 XorRgn B304 GetSysFont
3604 PenNormal 7504 PtlnRgn B404 SetVisRgn
3704 SetSolidPenPat 7604 RectlnRgn B504 GetVisRgn
3804 SetSolidBackPat 7704 EqualRgn B604 SetlntUse
3904 SolidPattern 7804 EmptyRgn B704 OpenPicturc
3A04 MoveTo 7904 FrameRgn B 804 PicComment
3B04 Move 7 A04 PaintRgn B904 ClosePicture
3C04 LineTo 7B04 EraseRgn BA04 DrawPicturc
3D04 Line 7C04 InvertRgn BB04 KillPicture
3E04 SetPicSave 7D04 FillRgn BC04 FramePoly
3F04 GetPicSave 7E04 ScrollRect BD04 PaintPoly
4004 SetRgnSave 7F04 PaintPixels BE04 ErasePo Iy
4104 GetRgnSave 8004 AddPt BF04 InvertPoly
4204 SetPolySave 8104 SubPt C004 FillPoly
4304 GetPolySave 8204 SetPt CI04 OpenPoly
4404 SetGrafProcs 8304 EqualPt C204 ClosePoly
4504 Get G r a fP roc s 8404 LocalToG lobal C304 KillPoly
4604 SetUserField 8504 GlobalToLocal C404 OffsetPoly
4704 GetUserField 8604 Random C504 MapPoly
4804 SetSysField 8704 S etR andS eed C604 SetClipHandlc
4904 GetSysField 8804 GetPixel C704 GetClipHandlc
4A04 SetRect 8904 ScalePt C804 SetVisHandlc
4 B04 OffsetRect 8A04 MapPt C904 GetVisHandlc
4C04 InsetRect 8B04 MapRect CA04 InitCursor
4D04 SectRect 8C04 MapRgn CB04 SetBufDims
4E04 UnionRect 8D04 SetStdProcs CC04 ForceBufDims
4F04 PtlnRect 8E04 SetCursor CD04 SaveBufDims
5004 Pt2Rect 8F04 GetCursorAdr CE04 RestoreBufDims
5104 EqualRect 9004 HideCursor CF04 GetFGSizc
5204 NotEmptyRect 9104 ShowCursor D004 SetFontJD
5304 FrameRect 9204 ObscureCursor DJ 04 GetFontID
5404 PaintRect 9304 SetMouseLoc D204 SetTextSize
5504 EraseRect 9404 SetFont D304 GctTextSize
5604 InvertRect 9504 GctFont D404 SetCharEx tra
5704 FillRect 9604 GetFontlnfo D504 GetCharExtra
5804 FrameOval 9704 GetFontGlobals D604 PPToPort
5904 PaintOval 9804 SetFontFlags D704 InflateTcxtBuffcr
5A04 EraseOval 9904 GetFontFlags D804 GetRomFont
5B04 InvertOval 9A04 SetTex tFace D904 GetFontLorc
5C04 FillOval 9B04 GctTextFace
5D04 FrameRRect 9C04 SetTextMode
5E04 PaintRRect 9D04 GetTcxtModc
5F04 EraseRRect 9E04 SetSpaceExtra
6004 InvcrtRRect 9F04 GetSpaceExtra
6104 FillRRect A004 SetForeCo lor
6204 FramcArc AI04 GctForcColor
6304 PaintArc A204 SctBackColor
6404 EraseArc A 304 GctBackColor
6504 InvertArc A404 DrawChar
6604 FillArc A504 DrawString

So What Software Page b

Call Box ™ BASIC Appendix A

I2uk Manager Sound Manager 090B MUltiply
0105 DeskBootlnit 0108 SoundBootlnit OAOB SDivide
0205 DeskStartUp 0208 SoundStartUp OBOB UDivide
0305 DeskShutDown 0308 SoundShutDown OCOB LongMul
.0405 DeskVersion 0408 SoundVersion ODOB LongDivide
0505 DeskReset 0508 Sound Reset OEOB FixRatio
0605 DeskStatus 0608 SoundStatus OFOB FixMul
0905 SaveScrn 0908 WriteRamBlock 100B FracMul
OA05 RestScrn OA08 ReadRamBlock IIOB FixDiv
OB05 SaveAll OB08 GetTableAddress 120B FracDiv
OC05 ReSlAll OC08 GetSoundVolume 130B FixRound
1105 ChooseCDA OD08 SetSoundVolume 140B FracSqr
1305 SetDAStrPtr OE08 FFStartSound 150B FracCos
1405 GetDAStrPtr OF08 FFStopSound 160B FracSin
1505 OpenNDA 1008 FFSoundSutus 170B FixATan2
1605 CloseNDA 1108 FFGen era torS ta tus 180B HiWord
1705 SystemClick 1208 SetSoundMIRQV 190B LoWord
1805 SySlemEdit 1308 S etU s erSou nd IR Q V 1AOB Long2Fix
1905 SystemTask 1408 FFS oun dDoneS ta tu s IBOB Fix2Long
lAOS SystemEvent 1508 FFSctUpSound ICOB Fi x 2Frac
IBOS GetNumNDAs 1608 FFStartPlaying IDOB Frac2Fix
ICOS Clos eNDA ByWinPtr 1708 SetDocReg IEOB Fix2X
1 DOS CloseAllNDAs 1808 ReadDocReg IFOB Frac2X
IEOS FixAppleMenu 200B X2Fix
2105 RemoveCDA Desktop Bus 210B X2Frac
2205 RemoveNDA 0109 ADBBootlnit 220B Int2Hex

0209 ADBStartUp 230B Long2Hex
~v~Dt Manau[0309 ADBShutDown 240B Hex2Int
0106 EMBootlnit 0409 ADBVersion 2S0B Hex2Long
0206 EMStartUp 0509 ADBReset 260B Int2Dec
0306 EMShutDown 0609 ADBStatus 270B Long2Dec
0406 EMVersion 0909 SendInfo 280B Dec21nt
0506 EMReset OA09 ReadKey M i croDa t a 290B Dec2Long
0606 EMStatus OB09 ReadK ey Micro Memory 2AOB HexIt
0906 DoWindows OD09 AsyncADBReceive
OA06 GetNextEvent OE09 SyncADBReceive Text Tools
OB06 EventAvail OF09 AbsOn OIOC TextBootlnit
OC06 GetMouse 1009 AbsOf 020C TextStartUp
OD06 BUllon 1109 RdAbs 030C TextShutDown
OE06 StillDown 1209 SetAbsScale 040C TextVersion
OF06 WaitMouseUp 1309 GetAbsScale 050C TextReset
1006 TickCount 1409 SRQPoll 060C TextStatus
1106 GetDblTime 1509 SRQRemove 090C SetlnGlobals
1206 GetCaretTime 1609 ClearSRQTable OAOC SetOutGlobals
1306 SetS witch OBOC SetErrGlobals
1406 PostEvent §.A.ll OCOC GetlnGlobals
1506 FlushEvents 010A SANEBootlnit ODOC GetOutGlobals
1806 SetEventMask 020A SANEStartUp OEOC GetErrGlobals
1906 FakeMouse 030A SANEShutDown OFOC SetlnputDev ice
IA06 SetAutoKeyLimit 040A SANEYersion 100C SetOutputDevicc
IB06 G etK eyTranslat ion 050A SANEReset 110C SetErrorDevice
lC06 Set Ke yTra ns 1a tion 060A SANEStatus 120C GetlnputDevice

090A FPNum 130C GetOutputDevice
Scheduler OAOA DecStrNum 140C GetErrorDevice
0107 SchBootlnit OBOA ElemNum 1S0C InitTextDev
0207 SchStartUp 160C CtlTextDev
0307 SchShutDown Integer Math 170C StatusTextDev
0407 SchVersion 010B IMBootlnit 180C WriteChar
0507 SchReset 020B IMStartUp 190C ErrW ri teCh ar
0607 SchStatus 030B IMShutDown IAOC WriteLine
0907 SchAddTask 040B IMVersion IBOC ErrWriteLinc
OA07 SchFlush 050B IMReset ICOC WriteString

060B IMStatus IDOC ErrWriteString

So What Software Page c

Call Box™ BASIC . Appendix'A"

IEOC TextWriteBlock 2AOE GetNextWindow 090F MenuKey
IFOC ErrWriteBlock 2BOE GetWKind OAOF GetMenuBar
200C WriteCString 2COE 'GelWFrame OBOF MenuRefresh
210C ErrWriteCS tring 200E ~etWFrame OCOF FlashMenuBar
220C ReadChar 2EOE GelSlructRgn ODOF InsertMenu
230C TextReadBlock 2FOE GelConlenlRgn OEOF DeleteMenu
240C ReadLine 300E GelUpdaleRgn OFOF InsertMItem

310E GetDeCProc 100F DeleleMItern
320E SetDeCProc IIOF GetSysBar
330E GetWConlrols 120F SetSysBar
340E SetOrgnMask 130F FixMenuBar
350E GetlnfoRefCon 140F CountMlterns
360E SetlnfoRefCon 150F NewMenuBar
370E GelZoomRecl 160F GetMHandle
380E SetZoomRect 170F SetBarColors
390E RefreshDesktop 180F GetBarColors
3AOE InvalRect 190F SetMTitleStar
3BOE InvalRgn IAOF GetMTilleStart
3COE ValidRec IBOF GetMenuMgrPort
3DOE ValidRgn ICOF CalcMenuSizc
3EOE GetContentOrigin IDOF SelMTitleWidth
3FOE SelContenlOrigin lEOF GetTitleWidth
400E GetDataSize IFOF SetMenuFlag

Window Manae:er 410E SetDataSize 200F GetMenuFlag

OIOE WindBootlnit 420E GetMaxGrow 210F SetMenuTitle
020E WindStartUp 430E SetMaxGrow 220F GetMenuTitle

030E WindShutDown 440E GetScrol1 230F MenuGlobal

040E WindVersion 450E SelScroll 240F SelMltern
050E WindReset 460E GetPage 250F GetMltern

060E WindStatus 470E SelPage 260F SetMlternFlag

090E NewWindow 480E GetContentDraw 270F GetMlternFlag

OAOE CheckUpdate 490E SelContentDraw 280F SetMllemBlink

OBOE CloseWindow 4AOE GellnfoDraw 290F MenuNewRes

OCOE Desklop 4BOE SelSysWindow 2AOF DrawMenuBar

ODOE SelWTitle 4COE GelSysWFlag 2BOF MenuSelect

OEOE GetWTitle 4DOE StartDrawing 2COF HilileMenu

OFOE SelFrameColor 4EOE SelWindowlcons 2DOF NewMenu

100E GetFrameColor 4FOE GelRectlnfo 2EOF DisposeMenu

110E SelectWindow 500E SlartlnCoDrawing 2FOF InitPalelle

120E HideWindow SlOE EndlnfoDrawing 300F EnableMltem

DOE ShowWindow 520E GelFirslWindow 310F DisableMIlern

140E SendBehind 530E WindDragRecl 320F CheckMllern

150E FrontWindow 540E GelDragReclPlr 330F SelMllernMark

160E SellnfoDraw 550E DrawlnfoBar 340F GelMlternMark

170E FindWindow 560E WindowGlobal 350F SelMltemSlyle

180E TrackGoAway S80E Gel W indowM grG loba Is 360F GetMlternSlyle

190E MoveWindow 590E AlertWindow 370F SetMenulD

IAOE DragWindow SAOE SlaTlFrarneDrawing 380F SelMllemlD

IBOE GrowWindow SBOE EndFrarneDrawing 390F SelMenuBar

ICOE SizeWindow SCOE ResizeWindow 3AOF SelMlternN arne

!DOE TaskMaster SOOE TaskMaslerConlenl 3BOF GelPopUpDcfProc

IEOE BeginUpdale SEOE TaskMaslcrKey 3COF PopUpMcnuSelcct

IFOE EndUpdale SFOE TaskMaslcrDA 3DOF DrawPopUp

200E GetWMgrPor 600E CornpileTcxl 450F HideMcnuBar

210E PinRect 620E ErrorWindow 460F ShowMenuBar

220E HilileWindow
230E ShowHide Menu Manae:er
240E BringToFronl OIOF MenuBoollnit

2S0E WindNewRes 020F MenUSlaTlUp

260E TrackZoom 030F McnuShulDown

270E ZoomWindow 040F McnuVcrsion

280E SelWRcfCon 050F McnuRcscl

290E GelWRefCon 060F MenuSlatus

So What Software Page d

Call Box: ™ BASIC Appendix: A

~2ot[!~1 MBOBgU Line Edit IF15 GetlTex
0110 CtlBootInit 0114 LEBootInit 2015 SetIText
0210 CtlStartUp 0214 LEStartUp 2115 SeliText
0310 CtlShutDown 0314 LEShutDown 2215 HideDitem
0410 CtlVersion 0414 LEVers ion 2315 ShowDItem
OSlO CtlReset 0514 LEReset 2415 FindDItem
0610 CtlStatus 0614 LEStatus 2515 UpdateDialog
0910 NewControl 0914 LENew 2615 GetDItemType
OAIO DisposeControl OA14 LEDispose 2715 SetDitemType
OBIO KillControls OBI4 LESetText 2815 GetDitemBox
OCIO SetCtlTitle OCI4 LEIdle 2915 SetDItemBox
ODIO GetCtlTitle 0014 LECliek 2AI5 GetFirstDItem
OEIO HideControl OEI4 LESetSeleet 2BI5 GetNextDitem
OFIO ShowControl OFI4 LEAetivate 2EI5 GetDltemValue
1010 DrawControls 1014 LEDeaetivate 2FI5 SetDltemValue
1110 HiliteControl 1114 LEKey 3215 Ge tN e w Mo da ID i a log
1210 CtlNewRes 1214 LECut 3315 GetNewDltem
1310 FindControl 1314 LECopy 3415 GetAlertStage
1410 TestControl 1414 LEPaste 3515 ResetAlertStage
1510 TrackControl 1514 LEDelete 3615 DeCaultFilter
1610 MoveControl 1614 LElnsert 3715 GetDeCButton
1710 DragControl 1714 LEUpdate 3815 SetDefButton
1810 S el Ctlleons 1814 LETextBox 3915 DisableDitem
1910 SetCtlValue 1914 LEFromSerap 3A15 EnableDItem
IAIO GetCtlValue IAI4 LEToSerap
IBIO SetCtlParams IBI4 LEScrapHandle
lCIO GetCtlParams lCI4 LEGetSerapLen
1010 DragReet 1014 LESetScrapLen
IEIO GrowSize IEI4 LESetHilite
IFIO GetCtlDpage IFI4 LESctCaret
2010 SetCtlAetion 2114 LES etJ u s t
2110 GetCtlAetion 2214 LEGetTextHand
2210 SetCtlRefCon 2314 LEGetTextLen
2310 GetCtlRefCon 2414 GetLEDeCProc
2410 EraseControl
2510 DrawOneCtl Dialog Manager
2610 FindTargetCtl 0115 DialogBootlnit
2710 M akeN ex tC tl Target 0215 DialogStartUp
2810 MakeTh is Ctl Target 0315 DialogShutDown
2910 SendEventToCtl 0415 DialogVersion
2AIO GetCtlID 0515 DialogReset
2BIO SetCtlID 0615 DialogStatus
2CIO CallCtlDefProe 0915 ErrorSound
2010 NotifyCtls OAI5 NewModalDialog
2EIO GetCtlMoreFlags OBIS New Model cssD ial 0 g
2FIO SetCtlMoreFlags OCI5 CloseDialog
3010 G etCtlH andleFromID ODI5 NewDItem
3410 SetCtlParamPtr OEI5 RemoveDltem
3510 GetCtlParamPtr OFI5 ModalDialog
3710 InvalCtls lOIS IsDialogEvent

1115 DialogSeJcet
1215 DlgCut

QulcltDraw Au:r 1315 DJgCopy
0112 QDAuxBootInit 1415 DIgPaste
0212 QDAuxStartUp ISIS DlgDelcte
0312 QDAuxShutDown 1615 DrawDialog
0412 QDAuxVersion 1715 Alert
0512 QDAuxReset 1815 StopAlert
0612 QDAuxStatus 1915 N oteA lert
0912 CopyPixels IA IS CautionAlcrt
OAI2 WaitCursor IBIS ParamTex
OBI2 DrawIeon I C IS SetDAFont
OCI2 SpecialRcct I E I 5 GetControlDltcm

So What Software Page e

Call Box ™ BASIC , Appendix ::A

~c[al! Manaie r OAIC SortList 1321 VDKeySetKDiss
0116 ScrapBootlnit OBIC NextMember 1421 VDKeyGetKDiss
0216 ScrapStartUp OCIC DrawMember 1521 VDKeySetNKDiss
0316 ScrapShutDown ODIC SelectMember 1621 VDKeyGetNKDiss
0416 ScrapVersion OEIC GetListDefProc 1721 VDOutSetStd
0516 ScrapReset OFIC ResetMember 1821 VDOutGetStd
0616 ScrapStatus 101C NewList 1921 VDOutControl
0916 UnloadScrap 111 C DrawMember2 lA21 VDOutStatus
OA16 LoadScrap 121C NextMember2 IB2l VDGetFeatures
OB16 ZeroScrap 131 C ResetMember2 lC21 VDlnControl
OC16 PutScrap 141 C SelectMember2 1 D21 VDGGControl
OD16 GetScrap 151C SortList2 lE21 VDGGStatus
OE16 GetScrapHandle 161 C NewList2
OF16 GetScrapSize Text Edit
1016 GetScrapPath A.C.E. 0122 TEBootInit
1116 SetScrapPath 011D ACEBootInit 0222 TEStartUp
1216 GetScrapCount 021D ACEStartUp 0322 TEShutDown
1316 GetScrapState 031 D ACEShutDown 0422 TEVersion

041D ACEVersion 0522 TEReset
Note Synthesizer 051D ACER~set 0622 TEStatus
0119 NSBootlnit 061D ACEStatus 0922 TENew
0219 NSStartUp 071D ACElnfo OA22 TEKill
0319 NSShutDown 091 D ACECompress OB22 TESetText
0419 NSVersion OAID ACEExpand OC22 TEGetTextlD
0519 NSReset OBID ACECompBegin OD22 TEGetTextInfo
0619 NSStatus OClO ACEExpBegin OE22 TEIdle
0919 AllocGen OF22 TEActivate
OA 19 DeallocGen Mllll. 1022 TEDeactivate
OB19 NoteOn 0120 MidiBootlnit 1122 TEClick
OC19 NoteOff 0220 MidiStartUp 1222 TEUpdate
OD19 AllNotesOff 0320 MidiShutDown 1322 TEPaintText
OE19 NSSetUpdateRate 0420 MidiVersion 1422 TEKey
OF19 N S S et U s erU pd ateRtn 0520 MidiReset 1622 TECut

0620 MidiStatus 1722 TECopy
Note Sequencer 0920 MidiControl 1822 TEPaste
011A SeqBootlnit OA20 MidiDevice 1922 TEClear
021A SeqStartUp OB20 MidiClock lA22 TEInsert
031A SeqShutDown OC20 Midilnfo 1 B22 TEReplace
041 A SeqVersion OD20 MidiReadPacket lC22 TEGetSelection
051A SeqReset OE20 MidiWritePacket 1 D22 TESetSelection
061A SeqStatus OF20 MidiRecordSeq lE22 TEGetS elect ionS t y I c
091A SeqSetlncr 1020 MidiStopRccord IF22 TEStyleChangc
OAIA SeqClearincr 1120 MidiPlaySeq 2022 TEOffsetToPoint
OBIA SeqGetTimer 1220 MidiStopPlay 2122 TEPointToOffset
OCIA SeqGetLoc 1320 MidiConvert 2222 TEGetDefProc
ODIA SeqAllNotesOff 2322 TEGetRuler
OEIA SeqSetTrklnfo Video Overlay 2422 TESetRuler
OFIA StartSeq 0121 VDBootlnit 2522 TEScroll
101 A SeqStepSeq 0221 VDStartUp 2622 TEGetInternalProc
lIlA StopSeq 0321 VDShutDown 2722 TEGetLastError
121 A SeqSetlnstTable 0421 VDVersion
131 A SeqStartlnts 0521 VDReset
141 A SeqStoplnts 0621 VDStatus
151 A StartSeqRel 0921 VDlnStatus

OA21 VDlnSetStu
List Manaier OB21 VDInGetStd
OllC ListBootlnit OC21 VDlnConvAdj
021C ListStartUp OD21 VDKeyControl
031C ListShutDown OE21 VDKeyStatus
041 C ListVersion OF21 VDKeySetKCol
051 C Lis IRes et 1021 VDKeyGctKRCol
061 C ListStalus 1121 VDKeyGctKGCol
091C CreateList 1221 VDKcyGetKBCol

So What Software Page f

• _0. ._. ., ... ~ .. <L">-'.' .~ _
•. '1\~~.1.':-\. 'C"J' ••• ,To _ ,..:. _,.,";'T!t'~ ... _. ~- 'T«lE... ;-war.i' .. • ;of.;,;--r ,.,.---' •

• -~ ~"_O'A-~_ ~. • •• _ •• ~. ,_~ _~_.

The Editors

Version 1.0

Aug 15, 1989

NOTICE
So What Software reserves the right to make improvements in the product described in this manual
at any time without notice.

This manual is copyrighted. All Rights are Reserved. No part of this manual may be copied,
reproduced, translated or reduced to any electronic medium or machine readable form without the
prior written consent of

So What Software
10221 Slater Ave.

Suite 103,
Fountain Valley CA.

92708

So What Software makes no warranties, either express or implied, with respect to this product, its
quality, performance, merchantability or fitness for any particular purpose. The programs are
provided "as is."

© Software 1989 William Stephens and Joe Jaworski

© Manual 1989 So What Software and Don Druce

Call BOX™ is a registered trademark of So What Software

APPLE, APPLE figs, APW, as/os, Applesoft and ProD OS are registered trademarks of Apple
Computer Inc.

ORCA is a registered trademark of Byte Works Inc.

This software package was created using the following software and hardware products:
Apple IIgs {W I.5M & GS/OS V5.0, Applied Ingenuity 40M Inner Drive, Apple Laserwriter
IINT, Apple 3.5 drives, Apple LocalTalk: network, Applied Engineering TranswarpGS, Byte
Works Orca/M assemblerninker, Claris AppleworksGS, Milliken Medeley, Baudville 816 Paint.

So What Software Product #M400-000

TABLE OF CONTEN'IS
. "''T .,.-.,,...- L.$".""""

~ .. l'''.~.' .:_~.:' ··~,"""1'T.:·'~ ''C"'-r1":I~~, .. t.

PREFACE

CHAPTER 1 - THE WINDOW EDITOR

OVERVIEW
WINDOWS
EDITOR OPERATION
SA VE WINDOWS
LOAD WINDOWS
SOURCE CODE FILETYPE $BO
OBJECT CODE FILETYPE $Bl
RESOURCE FILETYPE (any)
USING SOURCE CODE
USING OBJECT CODE
USING RESOURCES
BASIC CONSIDERATIONS

CHAPTER 2 - THE DIALOG EDITOR

DIALOGS
EDITOR OPERATION
SAVE DIALOGS
LOAD DIALOGS
SOURCE CODE FILETYPE $BO
OBJECT CODE FILETYPE $Bl
RESOURCE FILETYPE (any)
USING SOURCE CODE
USING OBJECT CODE
USING RESOURCES
BASIC CONSIDERATIONS

1.1

1.1
1.1
1.2
1.6
1.8
1.9
1.10
1.12
1.12
1.13
1.15
1.17

2.1

2.1
2.2
2.8
2.9
2.11
2.13
2.13
2.15
2.16
2.16
2.18

CHAPTER 3 • MENU EDITOR
r C\~~,,· -:.-

OVERVIEW
ABOUT MENUS
EDITOR OPERATION
SAVE 1\ffiNUS
SOURCE CODE FILETYPE $BO
OBJECT CODE FILETYPE $Bl
RESOURCEFILETYPE (any)
USING SOURCE CODE
USING OBJECT CODE
USING RESOURCES
BASIC CONSIDERATIONS

CHAPTER 4 - THE IMAGE EDITOR

ABOUT IMAGES
EDITOR OPERATION
SAVE IMAGES
LOAD IMAGES
SOURCE CODE FILETYPE $BO
BINARY FILE TYPE $06
RESOURCEFILETYPE (any)
USING SOURCE CODE
USING BINARY CODE
USING RESOURCES
BASIC CONSIDERATIONS

CHAPTER 5 ••• ADVANCED TOPICS

APPENDIX A. •• FILE STRUCTURES

GLOSSARY

INDEX

3.1

3.1
3.1
3.2
3.4
3.9
3.9
3.10
3.1
3.12
3.13
3.15

4.1
4.2
4.4
4.5
4.6
4.9
4.9
4.9
4.10
4.11
4.12

l ,\:'-,"T'

The CALL-BOX editors produce "Templates" used with the Apple IIgs
toolbox tools to control how a screen item looks and behaves. The Apple IIgs
toolbox displays three types of information panels [Windows, Dialog boxes
and Menus]. There are more types but only these are supported on this
version of CALL-BOX. A separate editor is provided for each panel
(window) type and are selectable from the Editors menu bar selection in the
CALL-BOX main menu.

The Image Editor handles the creation of Icons, Pixel Images and Cursors.
Images have no absolute address references contained in them. The
filetypes, however, are output as if they did have these references so they
can be linked into a program the same as any other object module.

Data created by these editors needs special "care and feeding" to operate
efficiently from your application program. Sample code for each template is
provided in the section of the manual for that editor to show you how to use
them properly.

The editors can handle three filetypes for input and output so as to support
several languages. Each editor handles ORCAlAPW source code and Apple
standard OMF2 relocatable code modules. These two styles encompass most
popular programming languages currently used. The third file type opens
up these editors to any language present or future by the use of Resources.
Resources were introduced with GS/OS V5.0 and are fully supported by the
CALL-BOX editors .

. More editors are under development and will be made available to
registered owners when they are released. No firm schedule presently
exists but you will be notified when they become available .. Be sure to send
in your warranty card as this is the only method we have to insure that you
are advised of updates.

The following pages describe the operation of the CALL-BOX editors. Each
section will describe the particular editors functions with descriptions of
the various filetypes and programming methods unique to each editors
output ..

Call Box Editors Manual Chapter 1 - Window Editor

CHAP1ER 1 - THE WINDOW EDITOR

OVERVIEW
WINDOWS
EDITOR OPERATION
SAVE WINDOWS
LOAD WINDOWS
SOURCE CODE FILETYPE $BO
OBJECT CODE FILETYPE $Bl
RESOURCE FILETYPE (any)
USING SOURCE CODE
USING OBJECT CODE
USING RESOURCES
BASIC CONSIDERATIONS

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10

Aug 15, 1989

Typical Window
Settings Dialog Box
Colors Dialog Box
Save Dialog Box
Save Resource I.D. Window
Edit Resource I.D. Dialog Box
Load Dialog Box
Load Resource LD. Window
Sample Source Code Listing
Sample Object Code Dump

© So What Software

1.1

1.1
1.1
1.2
1.6
1.8
1.9
1.10
1.12
1.12
1.13
1.15
1.17

1.1
1.3
1.4
1.6
1.7
1.7
1.8
1.9
1.10
1.11

Contents

Call Box Editors Manual Chapter 1 - Window Editor

CHAPTER 1 .. THE WINDOW EDITOR

OVERVIEW

The CALL-BOX Window Editor creates templates for use by the Apple IIgs
Window Manager. This editor can load either OMF2 object code or
resources and can output APW/ORCA sourcecode, OMF2 object code and
resources. The resource filetype is $1002 and uses a converter to get into
memory. The standard programming procedure for resources is presented
at the end of this chapter.

WINDOWS

A window is a presentation feature in which text or graphic information,
can be displayed. Windows can be of any size and can be displayed on the
screen singly or in groups depending on the application.

Windows allow an application to control more information than the screen
can display at one time. The term Window is used because the user sees
through the window into a larger area.

The Window Editor, can produce Document and Alert windows. The alert
window frame is a double rectangle, the same as is used by the Dialog
Manager to create a dialog box. The Document frame is a single outline.
While the Alert frame is just a frame the document windows frame can
have controls as described below.
(See Fig 1.1)

R.Scroll bar

Grow Box

Figure 1.1 Typical Window

Aug 15, 1989 Page 1.1

Call Box Editors Manual Chapter 1 - Window Editor

lID Title bar

• Close box

• Zoom box

Holds the window's title. It may also hold close and
zoom boxes, and can act as a drag region for moving the
window.

Used for closing the window.

Selects the current or alternate sizes for the window.

• R.Scroll bar Used to scroll the data in the window vertically.

• B.Scroll bar Used to scroll the data in the window horizontally.

• Grow box Used to change the size of the window.

• Info bar Provides for an additional display line in the window.

The Window Manager's main function is to keep track of overlapping
windows. You can draw in any window without running over onto the
windows in front of it. You can move windows to different locations on the
screen, change their planes (front to back order), or change their sizes
without concern for how they overlap. The Window Manager keeps track of
newly exposed areas and insures that they are properly re-drawn

EDITOR OPERATION

The Window Editor is a "Desk-top" type P16 application and follows the
standard conventions for desk-top applications. Support for New Desk
Accessories (NDA's) is provided via the apple selection in the menu bar and
an Edit menu which become activated when a "system" window is up.

To best illustrate how to create a window template we will run through an
editing session and create one from scratch.

~

'. Let's use 640 mode ... if you are just starting the editor this
will be the screen mode. If you want to create a window in
320 mode select MODE-320 .

(i) Select EDIT-NEW WINDOW. The SETTINGS dialog box will
appear. (See Fig 1.2)

Aug 15, 1989 Page 1.2

Call Box Editors Manual Chapter 1 - Window Editor

" \1).' i' ":f'll- ".,' ., , .. ,. " r,
wTitle De fa u I t Ti tie

B"

o Title Bar 200 wDotoH
o Info Bar 640 wDoto''''
o Close Box 200 wMoxH
o Zoom Box 320 wMoxW
o 6row-flox 4 wSero II Vet·
OR. Scroll 16 wSerollHor
DB. SCf"oll 40 wPogeVer
DHo~able 160 wPogeHor
o Data flex 0 Info Height
o Alert Ft·ome [Done D

Figure 1.2 Settings Dialog Box

We will create a title bar with the title of "Title" and will
incorporate right and bottom scroll bars, grow box, close box,
and a zoom box. We will also provide the ability to move the
window around the screen by dragging the title bar.

J' \.',

@ Click the following check boxes: Title Bar, Close Box, Zoom Box,
Grow box, R.Scroll, B.Scroll, Moveable.

@ Triple-click the wTitle text "Default Title". and press the DELETE
key. Type two spaces followed by Title followed by two spaces.

@ Either press the RETURN key or click on the DONE button.

Your newly created window will appear on the desktop.

@ Select EDIT-COLORS and the COLORS dialog box will appear.
(See Fig 1.3)

Aug 15, 1989 Page 1.3

Call Box Editors Manual Chapter 1 - Window Editor

w

Set
CoOl or ...

n OK])

Document Frame ...
• Outline

Title Bar ...
• Active Forgnd o I nact. Bkgnd. o Inact. Forgnd.

II

I]
• • • II Grow Box... •

• Se I ected r:"'l o Hot Selected Ei
Title Bar Pattern ...•

• foreground IliI o Background D
o Solid 11m o Dithered D
@lined 0

Figure 1.3 Colors Dialog Box

Let's put some color into the window ... color it to suit your
taste.

@ To set colors click the color you want from the palette at the right
side of the dialog box and then click the check box next to the item
that you want to color. You can select the style for the title bar
with the three radio buttons at the bottom of the dialog box.

® Either press the RETURN key or select and click the OK button.

Your newly colored window will appear on the desktop at this time.

@ Select EDIT-RECTANGLES and your arrow cursor will change to
a cross-hair, the window will be replaced by a rectangle on the
desktop.

Aug 15, 1989 Page 1.4

Call Box Editors Manual Chapter 1 - Window Editor

Q" ' .. ". : , - ; '.- f .. '

'-I:, We will set both tirE! ·-normal and zoomed sizes of our window.
In the right side of the menu bar you will see the word
NORMAL, this indicates that the window you are seeing is the
NORMAL window size. When the cursor is an arrow it can be
used to operate the window just the way it will in your
application, including the ability to select the ZOOMED or
NORMAL sizes.

@ Move the cross-hair cursor to position the windows upper left
comer. Drag the mouse to the lower right comer and then
release the mouse button.

Your window will reappear, re-sized and positioned to fit the rectangle.

@ Click the Zoom box then repeat the process for the zoomed size.

This completes the creation of a window from scratch. As you can see by the
dialog boxes that appeared during this editing session other items could
have been selected. These items need special explanation.

Special Explanation

• Alert Frame If the alert frame is selected then no other selections
should be made. An Alert Frame has no controls.

• Info Bar This selection must be accompanied with a height
specified in Info Height, The height is usually 13. Info
bars are drawn with a special procedure outlined in the
Toolbox reference manual.

• wDataH wDataW Are the height and width (in pixels) for the data
area used with this window. A standard Super
Hi-Res picture in 320 mode is 200 by 320 pixels. A
window that holds this picture would set wDataH
to 200 and wDataW to 320.

• wMaxH wMaxW Set these the same as wDataH and wDataW.

411 wScrollVer wScrollHor I Set the way the scroll bars behave when you
wPageVer wPageHor select the arrows or the thumb.

• Data Flex

Aug 15, 1989

Provides the ability to grow and shrink the windows data
area dynamically.

Page 1.5

Call Box Editors Manual Chapter 1 - Window Editor

SAVE WINDOWS

When you have created a window template you will want to save it to disk so
it can be inserted in your program code.

Select FILE-SAVE AS ... and a save dialog box will appear as below .

..$l:Call.Box
2 K free of 800 (Next Drive)

(New Foldet")

(Open)
(Close 1

I(» Save

Cancel) (
@ Object o Source o Resource.

Figure 1.4 Save Dialog Box

This box has buttons to select the drive, create a new folder, open or close a
folder, cancel this operation and save the file. There is also a box for typing
in a filename and three radio buttons across the bottom of the dialog box.
These three buttons select the type of output you will be saving.

• Object ($Bl) Select this button to save the template as an OMF2 object
file. This filetype can be loaded back in by the editor.

• Source ($BO) Select this button to save the template as an APW/ORCA
source code file. You cannot reload this file back into the
editor

• Resource Select this button to save the template to a
(any filetype) resource fork of an extended ProDOS file.This filetype

can be loaded back in by the editor.

Aug 15, 1989 Page 1.6

Call Box Editors Manual Chapter 1 - Window Editor

Selecting either Object or Source will create or overwrite a file on disk. The
operation is: st:raight forward. SelectingResource~'howeveri will present
some extra windows that control how resources are saved to disk.
Resources are assigned types and LD.'s, the type for a CALL-BOX window
template is $1002 and is set by the editor. You only need set the LD. for your
resource. You can either rewrite an existing resource by double-clicking on
its I.D. number or double-click the ---->New entry to save your resource
with the next avaliable LD. number.

00000003
00000004
00000005
00000006
00000007
----)New

Figure 1.5 Save
Resource ID. Wmdow

You can cancel the resource save
operation by clicking on the close box
in the title bar of the resource LD.
window. You can also edit the
resource LD. (renumber or delete) by
first pressing and holding the
OPTION key while double clicking
the desired LD. (See Fig 1.6). When
renumbering resource LD.' s be sure
to use eight hex digits in the I.D.
number (use leading zeros to pad
small numbers). Failure to do so will
cause unpredictable results and
could ruin the resource fork of the
ProDOS file.

If a resource fork does not exist for a given ProD OS file a dialog box will
appear that gives you the option of creating one.

1002
00000001

~ 00000002

Edi t Resource 1.0. I n.ruuulliliI~ I
« OK ~ (Delete)

----~"ew

PJ

Figure 1.6 Edit Resource ID. Dialog Box

Aug 15, 1989 Page 1.7

Call Box Editors Manual Chapter 1 - Window Editor

LOAD WINDOWS
", ',i,I,, ;"" ,,'.in, ,,', ,:1'1,'" ",,', ,.~ ,,', ., :":' 'r'..:!"":~' '!~r

Once you have created windows and saved them to disk you may want to
load them back into the editor for further editing.

Select FILE-OPEN ... and a load dialog box will appearas shown.

Window load fil eo •..
orSl :Ca 1

CCB
CCB.VARS
CDEMO
CDEMOBOOT
~DIALOG.EDIT

(Heoxt. Drive)

Opeon »
(Closeo)

.... ~=..;;.F.;;.;A.;;;;L..;;;,S.;;;;.E S.;;;;..T.;.;A;.;.;;.;;..T~_--a..;:;..,1 (Can c eo 1)

@ Objeoct. codeo 0 Reosout·ceo

Figure 1.7 Load Dialog Box

This box has buttons to select the drive, open or close a folder, cancel the
operation or open a file. There are two radio buttons at the bottom of the
dialog box. These buttons select the type of input file you will be loading.

• Object ($B1)

• Resource
(any filetype)

Select this button to load an OMF2
window template file.

Select this button to load the template from a
resource fork of an extended ProD OS file.

Selecting Object will load a file from disk. The operation is straight
forward.

Selecting Resource, however, will present some extra windows that control
how resources are loaded into memory.

Resources are assigned by types and LD.'s. The type for a CALL-BOX
window template is $1002 and is set by the editor. The only thing you need to
set is the LD. for your resource. You can load a resource by double-clicking
on the desired resource I.D. number. (See Fig 1.8)

Aug 15, 1989 Page 1.8

~ ..

Call Box Editors Manual Chapter 1 - Window Editor

J.:~J,C,Figure~1~8~ Load- Resource LD.

00000003
00000004
00000005
00000006
00000007

Window

You can cancel the resource load
operation by clicking the close box in
the title bar of the resource LD.
window. You can also edit the
resource LD. (re-number or delete) by
first pressing and holding the
OPTION key while double-clicking the
desired LD. (See Fig 1.6) When re
numbering resource LD.'s be sure to
have 8 hex digits in the I.D. number
window (use leading zeroes to pad
small numbers).

Failure to do so will cause unpredictable results and could ruin the
resource fork of the ProD OS file.If a resource fork does not exist for a given
ProD OS file then no template will be loaded.

SOURCE CODE FILETYPE $80

This code is for appending to APW/ORCA source code listings. A simple
word processor can be used to edit the file, however the APW IORCA
assembler is needed to assemble the code into your application. Source code
listings are easiest to hook-up to special processes, that templates might
include, by allowing you to add symbolic references as required.
(See Fig. 1.9)

Aug 15, 1989 Page 1.9

Call Box Editors Manual Chapter 1 - Window Editor

-,1;'-" , > ! f' Wm' '. dowData '. , 'I .,~ ~:', .' '",' DAmA I. • _, _ ._ •.. ~' l- .. ", ~.
" .' " ~ ._~ 1 •

wRefDon

wInfoRefDon

wFrameDefProe
wlnfoDefProe
wContDefProe

WinEnd

WinColor

WinTitle

de i'WinEnd-WindowData'
de i'%llOlllOOlOOOOlOO'
de i4'WinTitle'
de i4'O'
de i'O,O,200,640'
de i4'WinColor'
de i'O'
de i'O'
de i'200'
de i'640'
de i'200'
de i'640'
de i'4'
de i'5'
de i'40'
de i'160'
de i4'O'
de i'O'
de i4'O'
de i4'O'
de i4'O'
de i'39,lO,160,210'
de i4'-1'
de i4'O'
anop

de h'OOFO'
de h'F002'
de h'OFOO'
de h'FFOF'

de h'C' ,e'DefaultTitle

END

Figure 1.9 Sample Source Code Listing

OBJECT CODE FILETYPE $B1

This type of code is for linking with the APW/ORCA linker. The eode type
can be used by any language that uses this linker. Object eode ean also be
used by the loader call InitialLoad after you have changed the filetype to

Aug 15, 1989 Page 1.10

Call Box Editors Manual Chapter 1 - Window Editor

$B5 (LoaciFile). Use the disk utilities in the CALL-BOX shell to change the
filetype-·of: this file. (See Fig. IIi 10)!

DumpOBJ 1.1

Block count : $00000001
Reserved space : $00000000
Length : $OOoo009E
Label length : $OA
Number length : $04
Version : $01
Bank size : $00000000
Kind :$01
Org : $00000000
Alignment : $00000000
Number sex : $00
Language card : $00
Segment number: $0001
Segment entry : $00000000
Disp to names : $002C
Disp to body : $0040
Load name :

1
o
158
10
4
1
o

static data segment
o
o
o
o
1
o
44
64

Segment name : windowdata

000040 000000 I LCONST ($F2) I 0000009E:
4E0080DF5800000000000000000220028
OOOOOOB400B024EOOOOOOOOOOOO00
CB008oo2C800800204oo1oo28ooAOoooo

00000o
oooooooooo0320OC8oo96ooBBOlF'F'F'FF'
FFF'F'F'0000000000000FOF02FooOFOFO
0F2044656661756C74205469746C65200
v~vvv'~v'JVV'JVV'IVV~'VV~'vvvvvOOOOOOOO

0000000000000000000000000000000000
OOOOOOOOOOOOO

0000E3 00009E I cRELOC ($F5) I 04: 00 : 0004 : 0058
OOOOEA 00009E I cRELOC ($F5) I 04: 00 : 0014 : 004E
0000F100009E I END ($00)

Figure 1.10 Sample Object Code Dump

Aug 15, 1989 Page 1.11

Call Box Editors Manual Chapter 1 - Window Editor

RESOURCE FILETVPE (any)

Resources are stored in a resource fork of an extended ProDOS file. The
exact filetype is not important and resources can be stored in any ProDOS
file of any type.

Resources are defined with a 2 byte "type" number and a 4 byte "I.D."
number. A type would be analogous to a window record, a pascal string, an
icon etc ... An I.D. number would identifY which pascal string or which
icon you are pointing to in a group of pascal strings or icons.

The type for a window template resource is $1002. The I.D.'s can be
anywhere between 0 and 7FFFFFFF.

Window template resources are in OMF2 format and are loaded using the
system converter.

USING SOURCE CODE

The source code created by this editor is a simple text file. It has a filetype of
$BO and is created in a form readily adaptable to source code listings
created for APW or ORCA assemblers. You can use the filetype command
in the APW/ORCA shell or the Disk Utilities function of the CALL-BOX
shell to change the filetype.

Do not use periods (.) in the filename. This is commonplace in ProD OS, but
periods are an illegal character in the assembler and will generate an error
when assembled.

Window templates have pointers which are vital to making the window
operate under your application. Two of these pointers are already installed
<WinTitle and WinColor) but others must be put in before the window is
opened. Each pointer contains a null (0) which tells the Window Manager
to use internal default pointers which ignore the process calls. You must
type in your own symbolic references where the directive and modifier
: dc i4'0' exist in the template.

The pointers are:

wRefCon
wI nfoRefCon
w FrameDefProc
w InfoDefProc
wContDefProc

Aug 15, 1989

application use
value passed to wlnfoDefProc
window frame drawing routine
Info bar drawing routine
contents area drawing routine

Page 1.12

Call Box Editors Manual Chapter 1 - Window Editor

The simplest way of hooking-up a CALL-BOX generated source code file to
y.oUl' -applications s()U17ce, code is to' use the COPY directive .

.
(your code)

COPY Call-BoxWindowl ;Your window template source file

.
(your code)

Another way is to use the COpy function of the APW/ORCA editor
(OpenApple-C) to put a copy of you window template source code in its
SYSTEMP file. It can then be inserted into your source listing with an
INSERT function (OpenApple-V).

Adapting this source code for other assemblers is up to you. We will support
Apple prefered format APW or ORCA only.

USING OBJECT CODE

The object code created by the editor is a $B 1 file. The file is in OMF2 format
and is relocatable. The output is provided for Link-time integration or
Library file use. To add an object module to a link add the filename to the
link command in the APW or ORCA linker.

LINK myprogram mywindowl mywindow2 (etc ... etc).

Where mywindowl and mywindow2 are the filenames of the object code
files created with the CALL-BOX Window Editor.

This type of file can be used directly by your application similar to the way a
library file is used. You must change the filetype of your object file to $B5
(Load File). The window template can then be loaded by the system loader
using the InitialLoad call.

Aug 15, 1989 Page 1.13

Call Box Editors Manual

PushWord MyID
PushLong #Pathname
PushWord #0
_InitialLoad
pIa
pIa
PullLong WindPtrl

pIa

Chapter 1 - Window Editor

;Applicationl:; I.D. number
;Pointer to pathname buffer
;Spec. memo flag (set to 0)

;Size of Dir.pglStack buf.(N/A)
;Addr of Dir.pg/Stack buf.(N/A)
;Pointer to the window template
;in memory
;Applications LD. number

However you choose to use the object code template some hook-up is
required for your window to properly operate in your application. Several
pointers are contained in a window template that point to routines your
application provides.
The pointers are:

wRefCon
w InfoRefCon
wFrameDefProc
w InfoDefProc
wContDefProc

application use
value passed to w InfoDefProc
window frame drawing routine
Info bar drawing routine
contents area drawing routine

Add the following equates to your applications source code:

_wRefCon
_ w InfoRefCon
_ w FrameDefProc
_ w InfoDefProc
_ wContDefProc
_WinColor
_WinTitle

equ8
equ44
equ50
equ54
equ58
equ 78
equ86

These equates are the offsets to pointers from the beginning of the window
template. Use them to index into the window template or to hook the
window up to your window procedures.

Aug 15, 1989 Page 1.14

Call Box Editors Manual Chapter 1 - Window Editor

I(i"

Let's hook-up a contents drawing routine to a window
template... - .. -

PushLong WindPtrl
PullLong $0
ldy # _ wContDefProc
Ida #DrawContRoutine
sta [$O],y
iny
iny
Ida #DrawContRoutine+2
sta [$O],y

;Put the windows pointer in
;a direct page location
;Load Y with the offset
;Get the draw rout. (10)
;Put it in the template
;Advance to (hi)

;Get the draw rout. (hi)
;Put it in the template

Repeat this process for each reference you wish to link in. Once the
template is hooked-up you can proceed with a _NewWindow call and get on
with the business of being an application.

NOTE: This process also applies to window records that are stored as
resources.

USING RESOURCES

All resources created by the CALL-BOX WYSIWYG editors are in OMF2
format and need to be "relocated" in memory. The Resource Manager call
ResourceConverter is used to install these resources. For each resource
your application is going to use you must "Log In" an appropriate OMF2
converter. To find an OMF2 converter use the Miscellaneous Tools call
GetCodeResConverter. You need only make this call once.

PushLong #0
_ GetCodeResConverter
PullLong ConverterPointer

;Space for results

;Pointer to OMF2 converter

This call fetches a pointer to an internal OMF2 converter routine. You now
need to "Log In" this converter for each resource type your application will
be using (with the Resource Manager call ResourceConverter). This step is
repeated for each type of relocatable resource your application will require.

PushLong ConverterPointer
Push Word #$1002
PushWord #1
_ResourceConverter
bcs MemoryError

Aug 15, 1989

;OMF2 converter pointer
;Window Template type
;Log In, Applic. conv. list

Page 1.15

Call Box Editors Manual Chapter 1 - Window Editor

This sets up the resource manager to install and relocate these resources
when they are called with OpenResource. You manipulate the resources
from this point on. A typical sequence of events may be:

OPEN your resource file:

PushWord #0
PushWord #0
PushLong #0
PushLong #PathN ame
_ OpenResourceFile
PullWord FileID

And LOAD it into memory:

PushLong #0
PushWord #$1002
PushLong #1
_LoadResource

;Space for results
;Req. file access
;Res. header address
;Pointer to a class 1 pathname

;Open resource file I.D.

;Space for results
;Requested Type
;Requested I.D.

PullLong ResourceHandle ;Handle of resource in memory

At this point the resource is available to your application. When you are
finished using the resource you can put it away with the call
CloseResourceFile:

Push Word FileID
_ CloseResourceFile

Be sure to "Log Out" your resource converter when your done by issueing a
"Log Out" ResourceConverter call.

PushLong ConverterPointer
Push Word #$1002
PushWord #0
_ResourceConverter
bcs MemoryError

;OMF2 converter pointer
;Window Template type
;Log Out, Applic. conv. list

This covers the fundamental operation of resources in your application.
There are several other functions you can perform with the Resource
Manager but the previously outlined procedure should suffice for most of
your CALL-BOX resource usage.

CALL-BOX Window Template resources are handled similar to object files
are from within your application with the exception that the Resource
Manager handles the loading and saving.

Reference: Universe ToolBox Update (Ch 21:Resource Manager 3/22189)
Universe ToolBox Update (Ch 15:Miscellaneous Tools 3/22/89)

Aug 15, 1989 Page 1.16

Call Box Editors Manual Chapter 1 - Window Editor

BASIC CONSIDERATIONS

The CALL-BOX BASIC Interface uses object code window templates. These
templates are loaded into your Applesoft application as defined in the
CALL-BOX BASIC Interface Manual. Windows under Applesoft are
structured differently than in other languages and do not have the
flexibility that other languages provide. While simpler to use from
Applesoft, some functionality is lost.

Windows in Applesoft BASIC have two data areas. The additional area is a
background pixel buffer where you do all your window drawing. This
simplifies and standardizes the wContDefProc (contents drawing routine)
and eliminates the need for the process to be programmed in BASIC. The
wContDefProc is hard-wired as a _PPToPort call which uses this buffer as
the source pixel image. Whatever you do with Quickdraw II in this
background pixel buffer will automatically be reflected in the windows
contents region.

Info Bars are not supported for windows used from Applesoft BASIC. The
procedure would be too much of a hassle to be practical.

NOTE: Info bars if supported in future releases of the CALL-BOX BASIC
interface, will cause the buffer overhead to double and increase the memory
needed to support the window.

Custom Frame procedures are not supported for the same reason. No plans
are contemplated to support this procedure in future releases.

Aug 15, 1989 Page 1.17

Call Box Editors Manual Chapter 1 - Window Editor

Index of Chapter 1

$1002 1, 7, 8, 12
$BO 12
(NDA's) 2
_ wContDefProc 14
_ wFrameDefProc 14
_WinColor 14
_wInfoDefProc 14
_ w InfoRefCon 14
_WinTitle 14
_wRefCon 14
Alert windows 1
APW 12
APW/ORCA 1, 12
BASIC CONSIDERATIONS 17
Dialog Manager 1
EDITOR OPERATION 2
equates 14
GetCodeResConverter 15
LOAD WINDOWS 8
OBJECT CODE FILETYPE $B 1 10
OMF2 1
ORCA 12

. OVERVIEW 1
pointers 14
RESOURCE FILETYPE (any) 12
SA VB WINDOWS 6
SOURCE CODE FILETYPE $BO 9
USING OBJECT CODE 13
USING RESOURCES 15
USING SOURCE CODE 12
wContDefProc 10, 12, 14, 17
wFrameDefProc 10, 12, 14
Window Editor 1
WINDOWS 1
wInfoDefProc 10, 12, 14
wInfoRefCon 10, 12, 14
wRefCon 10, 12, 14

Aug 15, 1989 Page 1.18

Call Box Editors Manual

CHAPTER 2 - THE DIALOG EDITOR

DIALOGS
EDITOR OPERATION
SA VB DIALOGS
LOAD DIALOGS
SOURCE CODE FILETYPE $BO
OBJECT CODE FllETYPE $B 1
RESOURCE FILETYPE (any)
USING SOURCE CODE
USING OBJECT CODE
USING RESOURCES
BASIC CONSIDERATIONS

Chapter 2 - Dialog Edit

2.1

2.1
2.2
2.8
2.9
2.11
2.13
2.13
2.15
2.16
2.16
2.18

Figure 2.11 Typical Dialog Box 2.2
Figure 2.12 Standard Button Edit Dialog 2.4
Figure 2.13 Check Box Edit Dialog 2.4
Figure 2.14 Radio Button Edit Dialog 2.5
Figure 2.15 Icon Edit Dialog 2.5
Figure 2.16 Text Edit Dialog 2.6
Figure 2.17 Line Edit Dialog Box 2.6
Figure 2.18 Info Window 2.7
Figure 2.19 Save Dialog Box 2.8
Figure 2.20 Save Resource I.D. Window 2.9
Figure 2.21 Edit Resource I.D. Dialog Box 2.9
Figure 2.22 Load Dialog Box 2.10
Figure 2.23 Load Resource I.D. Window 2. 1 0
Figure 2.24 Sample Source Code Listing 2.12
Figure 2.25 Sample Object Code Dump 2.13

Aug 15, 1989 © So What Software Contents

Call Box Editors Manual Chapter 2 - Dialog Editor

CHAPTER 2 .. THE .D.IALOG EDITOR
- --.... --i- •

OVERVIEW

The CALL-BOX Dialog Editor creates templates for use by the Apple JIgs
Dialog Manager. This editor can load either OMF2 object code or resources
and can output APW/ORCA sourcecode, OMF2 object code and resources.
The resource filetype is $1000 and uses a converter to get into memory. The
standard programming procedure for resources is presented at the end of
this chapter.

DIALOGS

A dialog is a presentation feature that appears when an application needs
more information to carry out a command. A dialog box resembles a form
on which the user checks boxes and fills in blanks.

The user supplies any necessary information in the dialog box; for
example, by entering text or clicking a check box. The dialog box usually
contains a button labeled OK to tell the application to accept the information
provided and preform the command, and a button labeled CANCEL to
cancel the command as though it had never been given.

Dialog boxes provide an alert window that displays items (Controls) for the
user to select from. Several standard types are supported by this editor.
(See Fig 2.11)

CD Simple button Causes an immediate or continuous action when
the user clicks it with the mouse .

., Check box Retain and display a setting, either checked(on) or
not checked (off); clicking with the mouse reverses
the setting.

• Radio button Retain and display a setting. Grouped into a
family in which only one button can be on at any
time .

., Line edit item Displays alphanumeric data and allows the user
to edit the data from the keyboard.

• Static text Displays text used for titles or messages
that are not capable of being manipulated by
the user.

Aug 15, 1989 Page 2.1

Call Box Editors Manual

.. Icons, pixel images

Icon

m~CD~f!.m 'D'm~~
l8J Check Box
@ Radio Button

1!I!U.fA;fi tnI [Ii3'W

(Cancel)

Simple Button

EDITOR OPERATION

Chapter 2 - Dialog Editor

For use as alert icons such as the STOP or
CAUTION Icons.

Figure 2.11 Typical Dialog Box

The Dialog Manager's main function
is to present controls until a valid
selection is made at which point the
manager returns information to the
user on what was selected or
changed.

The Dialog Editor is a "DeskTop" type P16 application and follows the
standard conventions for desktop applications. Support for new desk
accessories (NDA's) is provided via the apple selection in the menu bar and
an Edit menu which become activated when a "system" window is up.

To best illustrate how to create a dialog template we will run through an
editing session and create one from scratch.

Let's make this dialog in 320 mode ... if you are just starting
the editor the screen mode will be 640. If you want to create a
dialog in 320 mode select 320MODE from the GOODIES menu.

(i) Select FILE-NEW. A dialog box will appear.

@ Select CONTROLS-DRAGGING, MODIFYING and when you
move the cursor in the dialog box it will change to a hand for
dragging things around.

Aug 15, 1989 Page 2.2

Call Box Editors Manual Chapter 2 - Dialog Editor

Very Important!
;~ "'.' ~ •• {-' ~.~_ r • ;' , {Y" ,. t:} -,

This will be the normal cursor mode, the arrow is just for test operating
your dialog box.

You are now ready to put some dialog items in your dialog box. Let's
use one of each type to get some practice.

@ Select CONTROLS-STANDARD BUTrON followed by the other
five types ... CHECK BOX, RADIO BUTTON, ICON, LINE EDIT
BOX and TEXT.

This wil put a mish-mosh of items in your dialog box one on top of the other.

@ Use the mouse and the hand cursor to drag the items off of
each 'other and place them so that each one can be double
clicked.

You can grab and drag the right and bottom edge of the dialog box to either
grow or shrink it and even grab it somewhere in the middle where it's free
of an item and move the whole dialog box around.

To set-up a particular dialog item you must double-click the item in
question. A dialog box editor will appear tailored for the particular item.

® Double-click the Standard Button item in your dialog box.
(See Fig 2.12)

A dialog box will appear. Change something and then select DONE to see
the results. Repeat this several times to learn how to operate this part of the
editor. A detailed explaination of these functions may introduce more doubt
and uncertainty than if you work it out for yourself.

This learning technique applies to the following five steps and to life in
general. Enough philosophy, fiddle around with the other items in the
dialog box.

® Double-click the Check Box. (See Fig 2.13)

® Double-click the Radio button. (See Fig 2.14)

® Double-click Icon (See Fig 2.15)

@ Double-click Text (See Fig 2.16)

® Double-click Line Edit (See Fig 2.17)

Aug 15, 1989 Page 2.3

-..

Call Box Editors Manual Chapter 2 - Dialog Editor

Button Title:
Button ID: 1

=---___1 III
a...;;;:,. ____ --" o Round Corner, Sing I e Out line

• Round Corner, Double Outline o Square Corner o Square Corner. Drop Shadow
Size: 11.(1 I I 93 1155 11179 I

181 Automatic Sizing
• Outline Color o Interior Color
• I nterior Co I or (Mouse-Down)
• Text Color o Text Color (Mouse-Down)

n Done »

Figure 2.12 Standard Button Edit Dialog

Check Box Text:
II!!
II: lunt4t.j.iij.t44t1:i.i:l

Check Box I D: I 33

location: ,1.(1 ~15~~

• Check Box Color
• Check Box Co I or (Mouse-Down)

• Text Color

« Done D

Figure 2.13 Check Box Edit Dialog

Aug 15, 1989

• • • E
III o o
II
1m
D
~ o o

• • • • El
II
o
o
IE
II
EJ
In
D o

Page 2.4

Call Box Editors Manual

Radio Button Text:

Radio Button I D: 117
Radio Familu tD: ... 1 :::,1_

location: 1411 L 5=--___

• Button Color
• Button Color (Mouse-Down)

• Text Color

¢ Done 11

Figure 2.14 Radio Button Edit Dialog

£-:, B & e ~
location: 1m I 15

¢ Done lJ

Figure 2.15 loon Edit Dialog

Aug 15, 1989

Chapter 2 - Dialog Editor

•• Ii
IE • • • B
III
E1 o
E
III o
II!
EJ
o

Page 2.5

Call Box Editors Manual Chapter 2 - Dialog Editor

I ~ few I ines of "Text I to describe
the Dia logs purpose.

@ left Justify Word-Wr'ap: 195 I o Centered o Fill Justify Vertica I Size: I ~5 I o Right Justify

Specia I Modi tiers: (Done) " = Bold Text = Italic Text (Change Co I ors) $ = Shadow Text
@ = Out line Text
I = Normal Text

Figure 2.16 T~ Edit Dialog

Iliin#i:tina.m ha,1I I
Max. of characters: 111 I

location: 160 I Is I

« Done ~

Figure 2.17 Line Edit Dialog Box

Several selections in the GOODIES menu will aid you when aligning and
centering:

• Horizontal Grid Enables or disables an invisible snap grid for item
placement.

• Align Controls Snaps items to the position of the invisible grid.

e Center Dialog Moves the entire dialog box to the center of the
screen.

• 2/3 Center

Aug 15, 1989

Moves the entire dialog box to center horizontally
and two thirds of the way up from the bottom of the
screen.

Page 2.6

Call Box Editors Manual Chapter 2 - Dialog Editor

Fine adjustments can be made to an items placement by setting the
coordinates numerically while each item is being edited.

To delete an item hold the OPTION key while double-clicking it and an
option to delete it will come up.

This about finishes up creating your dialog box, you could save it at this
point but let's cover some other things about this editor first.

Special Explanation

.. The menu selection GOODIES-DISPLAY INFO will bring up a control
info scroll window. This window represents a list of items in your dialog
box that is kept internally in the editor.

sa
33 = This is CI the ...
1f9 = tVA (Icon)
51 = line-Edit ton... (line-Edit)
67 = A few lines 0 ••• (Text)

Figure 2.18 Info Window

Double-clicking an item in this window will bring up the edit dialog for that
item the same as double-clicking the item itself.

• The menu selection GOODIES-PRINT INFO will dump this list to
your printer. The list is very handy for subsequent identification of
items and their LD. numbers. The menu selection FILE-CHOOSE
PRINTER will select the proper driver for your printer. Your
printer driver must be in the SYSTEMIDRIVERS subdirectory of
your boot volume .

.. Do not be switch modes after a dialog box is started. Colors become
strange and the rectangular limits often go askew .

.. The menu selection CONTROLS-NORMAL RESPONSE will
change the cursor to the system arrow and allow you to test your
dialog box.

Aug 15, 1989 Page 2.7

Call Box Editors Manual Chapter 2 - Dialog Editor

Once you have created a dialog template you will want to save it to disk so it
can be incorporated in your program code.

Select FILE-SAVE AS ... A save dialog box will appear as shown .

.e;, :Ca 11.Box
2 K free of 800 (Hext Drive)

(Hew Folder)

(Open)

(Close)

I() Save

Cancel) (
• Object o Source o Resource

Figure 2.19 Save Dialog Box

This box has buttons to select the drive, create a new folder, open or close a
folder, cancel the operation and save the file. There is also a box for typing
in a filename and three radio buttons across the bottom of the dialog box .
. These three buttons select the type of output you will be saving .

.. Object ($B1)

.. Source ($BO)

.. Resource
(any filetype)

Select this button to save the template as an
OMF2 object file. This filetype can reloaded
by the editor .

Select this button to save the template as an
APW/ORCA source code file. This filetype
can not be reloaded by the editor.

Select this button to save the template to a
resource fork of an extended ProDOS file.
This filetype can be reloaded by the editor.

Selecting either Object or Source will create or overwrite a file on disk. The
operation is straight forward. Selecting Resource, however, will present
extra windows that control how resources are saved to disk.
Resources are assigned types and I.D.'s. The type for a CALL-BOX dialog
template is $1000 and is set by the editor. You only need set the I.D. for your
resource. You can either rewrite an existing resource by double-clicking on

Aug 15, 1989 Page 2.8

Call Box Editors Manual Chapter 2 - Dialog Editor

its LD. number or double-clicking the ---->New entry to save with the next
avaliablEd:.D. riumber~··(Fig2.20} "';1: '". Y.'~': ~~: "., i/l;;

00000003
OOOOOOO~

00000005
00000006
00000007
----)Hew

Figure 2.20 Save Resource LD. Window

You can cancel the resource save operation by
clicking the close box in the title bar of the
resource I.D. window. You can also edit the '
resource LD. (re-number or delete) by pressing
and holding the OPTION key while double
clicking the desired LD. (See Fig 2.21) When re-
numbering resource LD.'s be sure to use 8 hex
digits in the LD. number window (use leading
zeroes to pad small numbers). Failure to do so

will cause unpredictable results and could ruin the resource fork of the
ProDOS file.

1000

I 00000001
~ 00000002

Edit Resource LD. I ruUll1IUUil~ I
« OK ~ (Delete l

- - ',,"ew

~

Figure 2.21 Edit Resource LD. Dialog Box

If a resource fork does not exist for a given ProDOS file a dialog box will
appear that gives you the opportunity to create one.

LOAD DIALOGS

Once you have created dialogs and saved them to disk you may want to load
them to the editor for further editing.

Select FILE-OPEN ... A load dialog box will appear. (See Fig 2.22)
This box has buttons to select the drive, open or close a folder, cancel this
operation and open the file. There are 2 radio buttons at the bottom of the
dialog box. These select the type of input you will be loading.

Aug 15, 1989 Page 2.9

Call Box Editors Manual Chapter 2 - Dialog Editor

(Next Dri ve)

!:!lCB) !:!lCB.VARS Open
!:!lDEMO (Close)
!:!lDEMOBOOT

<3:;a D I AlOG.ED I T
<3:;a fAlSESTA T (Cancel)

@ Object code o Resource

l1li Object, ($B 1)

Figure 2.22 Load Dialog Box

Select this button to load an OMF2 type of dialog
template file.

l1li Resource
(any filetype)

Select this button to load the template from a
resource fork of an extended ProDOS file.

Selecting Object will load a file from disk and the operation is straight
forward. Selecting Resource, however, will present some extra windows
that control how resources are loaded to memory.

Resources are assigned types and I.D.'s. The type for a CALL-BOX dialog
template is set to $1000 by the editor. You set is the I.D. for your resource.
You can load a resource by double-clicking on the desired I.D. number.

2
00000003
00000004
00000005
00000006
00000007

You can cancel the resource load operation by
clicking the close box in the title bar of the
resource I.D. window. You can also edit the
resource I.D. (re-number or delete) by first
pressing and holding the OPTION key while
double-clicking the desired I.D. (See Fig 2.21)
When re-numbering resource I.D.'s be sure to use
8 hex digits in the I.D. number window (use
leading zeroes to pad small numbers). Failure to
do so will cause unpredictable results and could
ruin the resource fork of the ProDOS file.

Figure 2.23 Load Resource J.D. Window

If a resource fork does not exist for a given ProDOS file then no template
will be loaded.

Aug 15, 1989 Page 2.10

Call Box Editors Manual Chapter 2 - Dialog Editor

SOURCE CODE FILETYPE $BO
-Jihj.:~ -._,', - ,:..·iE)·~·:L~ 'e', ,... • 'I ~ '". ,,_;:'

This type of code is for appending to APW/ORCA source code listings. A
simple word processor is adequate for editing this file.

MyDialog DATA

Iteml

BTitlel
BColorl

Item 18

RTitle18
RCo.Ior18

Item33

CTitle33
CColor33

de i'52,27,140,192'
de i'$FFFF'
de i4'O'
de i4'Iteml'
de i4'Item18'
de i4'Item33'
de i4'O'
de i'l'
de i'66,109,80,156'
de i'$OOOA'
de i4'BTitlel'
de i'O'
de i'O'
de i4'BColorl'
str 'OK'
de i'$OOOO'
de i'$OOFO'
de i'$OOOO'
de i'$OOFO'
de i'$OOOF
de i'18'
de i'29,54,38,160'
de i'$OOOC'
de i4'RTitle18'
de i'l'
de i'$OOOl'
de i4'RColor18'
str 'Radio Button'
de i'$OOOO'
de i'$OOFO'
de i'$OOFO'
de i'$OOFO'
de i'33'
de i'17,53,26,138'
de i'$OOOB'
de i4'CTitle33'
de i'l'
de i'O'
de i4'CColor33'
str 'Check Box'
de i'$OOOO'
de i'$OOFO'
de i'$OOFO'
de i'$OOFO'
END

Figure 2.24 Sample source code listing

Aug 15, 1989 Page 2.11

Call Box Editors Manual Chapter 2 - Dialog Editor

OBJECT CODE FILETYPE $B1

This type of code is for linking with the APW/ORCA linker. The code type
can be used by any language that uses this linker. Object code can also be
used by the loader call InitialLoad after you have changed the filetype to $B5
(LoadFile). Use the disk utilities in the CALL-BOX shell to change the
filetype. (See Fig 2.25)

RESOURCE FILETYPE (any)

Resources are stored in a resource fork of an extended ProDOS file. The
exact filetype is not important and in fact resources can be stored in any
ProDOS file of any type.

Resources are refered to by a 2 byte "type" number and a 4 byte "LD."
number. A type would be analogous to a window record, a pascal string, an
icon etc ... An LD. number would identify which pascal string or which
icon you are pointing to in a group of pascal strings or icons.

The type for a dialog template resource is $1000. The LD.'s can be
from 0 to 7FFFFFFF.

Dialog template resources are in OMF2 format and are loaded using the
system converter.

Aug 15, 1989 Page 2.12

Call Box Editors Manual Chapter 2 • Dialog Editor

DumpOBJ 1.1

Block count
Reserved space
Length
Label length
Number length
Version
Bank size
Kind
Org
Alignment
Number sex
Language card
Segment number
Segment entry
Disp to names
Disptobody
Load name
Segment name

000040000000

OOOOFB OOOOB3
OOOOFF OOOOB3
000106 OOOOB3
ooo10D OOOOB3
ooo1140000B3
ooollB OOOOB3
000122 OOOOB3
000129 OOOOB3 .
ooo1300000B3
ooo1370000B3

:$00000001
:$00000000
:$OOOOOOB3
:$OA
:$04
:$01
:$00000000
:$01
:$00000000
:$00000000
:$00
:$00
:$0001
:$00000000
:$OO2C
:$0040

1
o
179
10
4
1
o
static data segment
o
o
o
o
1
o
44
64

I LCONST ($1"2) I OOOOOOB3:
2DooBBooAA00C401FFFFOOOOOOOO1EOOOO
OO48OOOOOO7FOOOOOOOOOOOOO1002800
5A003600BOOOOAOOOOOOOOOO10001
oool0007427574746F6E310000FOOOOOOO
FOOOOFOO11004F000500580088000cOOOO
0000000100010000000000165468697320
6973206120526164696F20427574746F6E
OOOOFOOOFOOOF0002100300005003900A4
oooBOOOOOOOOOOO1000000000000001354
686973206973206120436865636B20426F

I cRELOC
I cRELOC
I cRELOC
I cRELOC
I cRELOC
I cRELOC
I cRELOC
I cRELOC
I cRELOC
lEND

780000FOOOFOOOFOOO
($F5) I 04: 00 : OOOE : oolE
($F5) I 04: 00 : 0012 : 0048
($F5) I 04: 00 : 0016 : oo7F
($F5) I 04: 00 : oo2A : 0036
($F5) I 04: 00 : 0032 : oo3E
($F5) I 04: 00 : 0054 : 0060
($F5) I 04: 00 : oo5C : 0077
($F5) I 04: 00 : oo8B : 0097
($F5) I 04 : 00 : 0093 : ooAB
($00)

Figure 2.25 Sample Object Code Dump

Aug 15, 1989 Page 2.13

Call Box Editors Manual Chapter 2 - Dialog Editor

USING SOURCE CODE

The source code created by this editor is a simple text file. It has a filetype
of $BO and is created in a form readily adaptable to source code listings
created for APW or ORCA assemblers. You can use the filetype command
in the APW/ORCA shell or the Disk Utilities function of the CALL-BOX
shell to change the filetype.

Do not use periods (.) in the filename. This is commonplace in ProDOS, but
periods are an illegal character in the assembler and will generate an error
when assembled.

Dialog templates have a pointer table to access the various items they
contain. Under normal operation you would not access these records
directly but rather with tool calls designed specifically for that purpose.
Sometimes, however, you need to set default conditions that may not be set
in the loaded dialog template. This is where you break the rules and access
the items directly.

The process is simple: Index to the table item you want to work on and use
the address found there as the address to the dialogs item. At this point
you need to index to the specific piece of data and make your change.

No other special considerations need to be made to use these dialog
templates.

The simplest way of hooking-up a CALL-BOX generated source code file to
your applications source code is to use the COpy directive .

.
(your code)

COPY Call1ioxDialogl ;Your dialog template source file

.
(your code)

Another way is to use the COPY function of the APW/ORCA editor
(OpenApple-C) to put a copy of your window template source code in its
SYSTEMP file, which can then be inserted into your source listing with an
INSERT function (OpenApple-V).

Adapting this source code for other assemblers is up to you. We will
support Apple prefered format APW or ORCA only.

Aug 15, 1989 Page 2.14

Call Box Editors Manual Chapter 2 - Dialog Editor

USING OBJECT CODE

The object code created by the dialog editor is a $Bl file. This type offile is in
OMF2 format and is relocatable. This form of output is provided for Link
time integration or Library file use. To add an object module to a link add
the filename to the link command in the APW or ORCA linker.

LINK myprogram mydialogl mydialog2 (etc ... etc)

Where mydialogl and mydialog2 are the filenames of the object code files
created with the CALL-BOX Dialog Editor.

This type of file can be used directly by your application similar to the way a
library file is used. You must change the filetype of your object file to $B5
(Load File). The dialog template can then be loaded by the system loader
using the InitialLoad call.

Push Word MyID
PushLong #Pathname
PushWord #0
_lni tialLoad
pIa
pIa
PullLong DlogPtrl

pIa

;Applications I.D. number
;Pointer to pathname buffer
;Spec. memo flag (set to 0)

;Size of Dir.pg/Stack buf.(N/A)
;Addr of Dir.pg/Stack buf.(N/A)
;Pointer to the dialog template
;in memory
;Applications LD. number

This is all that is required to install this template into your program. Use
standard dialog box operating procedures as outlined in the Toolbox
reference manuals.

NOTE: This process applies to dialog records that are stored as
resources as well.

USING RESOURCES

Resources created by the CALL-BOX WYSIWYG editors are in OMF2
format and must be "relocated" in memory. The Resource Manager call
ResourceConverter is used to install the resources. For each type of
resource your application is going to use you must "Log In" an OMF2
converter. To find an OMF2 converter use the Miscellaneous Tools call
GetCodeResConverter. You need only make this call once.

PushLong #0
_GetCodeResConverter
PuIlLong ConverterPointer

Aug 15, 1989

;Space for results

;Pointer to OMF2 converter

Page 2.15

Call Box Editors Manual Chapter 2 - Dialog Editor

This call fetches a pointer to an internal OMF2 converter routine. You now
need to "Log In" this .converteD for each resource type using the Resource
Manager call ResourceConverter. This step is repeated for each different
type of relocatable resource your application will need.

PushLong ConverterPointer
Push Word #$1000
PushWord#1
_Resource Converter
bcs MemoryError

;OMF2 converter pointer
;Dialog Template type
;Log In, Applic. conv. list

This sets up the resource manager to install and relocate these resources
when they are called with OpenResource. You can now manipulate the
resources from this point on. A typical sequence of events from this point
maybe:

OPEN your resource file:

PushWord #0
PushWord #0
PushLong #0
PushLong #PathN ame
_ OpenResourceFile
PullWord FileID

And LOAD it:

PushLong #0
PushWord #$1000
PushLong #1
_LoadResource

;Space for results
;Req. file access
;Res. header address
;Pointer to a class 1 pathname

;Open resource file LD.

;Space for results
;Requested Type
;Requested LD.

PullLong ResourceHandle ;Handle of resource in memory

At this point the resource is avaliable to your application. When you are
done using this resource you can put it away with the Resource Manager
call CloseResourceFile:

Push Word FileID
_ CloseResourceFile

Be sure to "Log Out" your resource converter when your finished by
issuing a Log Out ResourceConverter call.

PushLong ConverterPointer
PushWord #$1000
PushWord #0
_Resource Converter
bcs MemoryError

Aug 15, 1989

;OMF2 converter pointer
;Dialog Template type
;Log Out, Applic. conv. list

Page 2.16

Call Box Editors Manual Chapter 2 m Dialog Editor

"" ,
This covers the fundamental operation of resources in your application.
There are several other functions you can perform with the Resource
Manager but the previously outlined procedure will suffice for most of your
CALL-BOX resource usage.

CALL-BOX Dialog Template resources are handled the same as object files
are in your application except that the Resource Manager handles the
loading and saving.

Reference: Universe ToolBox Update (Ch 2I:Resource Manager 3/22/89)
Universe ToolBox Update (Ch I5:Miscellaneous Tools 3/22/89)

BASIC CONSIDERATIONS

The CALL-BOX BASIC Interface uses object code dialog templates. These
templates are loaded into your Applesoft application as defined in the
CALL-BOX BASIC Interface Manual. Dialogs under Applesoft are
structured the same as if under a PI6 application and need no special care
or feeding.

Direct template access as presented in USING OBJECT CODE is possible
but difficult from the CALL-BOX BASIC interface. The procedure is the
same but all indexing and addressing must be done with LONG PEEK and
LONG POKE, calls. Fortunately these commands are capable of specifying
the values in either decimal, hex, or binary and can handle WORD and
LONG values.

Aug 15, 1989 Page 2.17

Call Box Editors Manual

Index of Chapter ~ ,
, , ~ .-

$1000
$B5 13
BASIC CONSIDERATIONS
DIALOGS
EDITOR OPERATION
LOAD DIALOGS 9
OBJECT CODE Fll..ETYPE $B 1
Object,($B 1)
Radio button
Resource. 8
RESOURCE FILETYPE (any)
SA VB DIALOGS
SOURCE CODE Fll..ETYPE $BO
Source,($BO)
Static text
USING OBJECT CODE
USING RESOURCES
USING SOURCE CODE

Chapter 2 - Dialog Editor

1, 9, 10, 14

17
1
2

13
8
1

14
8
1 1
8
1
15
16
14

Aug 15, 1989 © So What Software Index

Call Box Editors Manual Cha ter 3 - Menu Editor

CHAPTER 3 - :MENU EDITOR , .
__ ,'1, ('~, t" .,

OVERVIEW
ABOUT MENUS
EDITOR OPERATION
SAVE:MENUS
SOURCE CODE FILETYPE $BO
OBJECT CODE Fll..ETYPE $B 1
RESOURCEFll...ETYPE (any)
USING SOURCE CODE
USING OBmcr CODE
USING RESOURCES
BASIC CONSIDERATIONS

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure.
Figure.

Aug 15, 1989

3.26 Typical Menu Bar and
3.27 Build Menu Window
3.28 Attributes Window
3.29 Save Dialog Box
3.30 Save Resource LD. Window
3.31 Edit Resource I.D. Dialog Box
3.32 Load Dialog Box
3.33 Load Resource LD. Window
3.34 Sample Source Code Listing
3.35 Sample Object Code Dump

© So What Software

3.1
3.1
3.2
3.4
3.9
3.9
3.10
3.11
3.12
3.13
3.15

3.1
3.3
3.4
3.5
3.6
3.6
3.7
3.8
3.9
3.10

Contents

Call Box Editors Manual Chapter 3 .. Menu Editor

CHAPTER 3 - MENU EDITOR

OVERVIEW

The CALL BOX Menu Editor creates templates for use by the Apple IIgs
Menu Manager. This editor can load either OMF2 object code or resources
and can output APW /ORCA sourcecode, OMF2 object code and resources.
The resource filetype is $1001 and requires a converter to load into memory.
The standard programming procedure for resources is presented at the end
of this chapter.

ABOUT MENUS

A menu provides a means of displaying choices or options avaliable to the
user without having to remember selections,words or special keys.

Menus appear as a panel usually located at the top of the screen,. Each
menu has a title and a pull-down menu associated with it. The menu
contains a series of selections or "Items" available to the user.
(See Fig. 3.26)

6i~ '- Kew
Equivalent

An LD. number is associated
with each title and item. The
I.D. number is used by the
menu manager to inform you
when a title or item is
selected.

Figure 3.26
Typical Menu Bar and Menu

To use the menu bar the user selects a menu bar title. The title bar is then
hi-lited and a pull-down menu appears directly below the title.. Keeping the
mouse button pressed and moving the cursor up and down the menu,
hilites items as you move. When you hilite the menu item you want to
select simply release the mouse button and the menu manager will return
the LD. number for the selected item.

Aug 15, 1989 Page 3.1

Call Box Editors Manual Chapter 3 - Menu Editor

Menus can be customized to a certain extent with this .editorj. some- of the
features are:~~i[~;';'I,oi"';";~' 'To, •• :. • ,\. 1

• Key Equivalents,

• Text styles

• Check Character

An alternate way of selecting menu items
from the keyboard.

You can select bold, underline or italisized
for the items text.

You can add check marks, diamonds,
open and closed-apples.

CD Underlines and dividing lines, add visual divisions for groups of
like items in menus.

• Disabling Lets you select only applicable items.

EDITOR OPERATION

The Menu Editor is a "Desk-top" type P16 application and follows the
standard conventions for desk-top applications. Support for New Desk
Accessories (NDA's) is provided via the apple selection in the menu bar and
an Edit menu which activates when a "system" window is up.

To best illustrate how to create a Menu template let's run through an
editing session and create one from scratch.

IIii"

Let's make this menu in 640 mode. The menu editor
functions in 640 mode. You can test in either mode, but
the actual editing process is in 640 .

<D. Select FILE-NEW and the BUILD MENU window will
appear. (See Fig 3.27)

The menu bar has the Apple menu already installed, so let's put an
ABOUT item in the menu ...

@ Click the NEW ITEM button and a new item will appear
in the scroll window.

@. Type the word ABOUT (add three periods just for style).
Press RETURN when you are done.

Aug 15, 1989 Page 3.2

Call Box Editors Manual Cha ter 3 - Menu Edit

_ v_

This is how you build a menu, you can add dividing lines, delete or replace
items and titles by hiliting them in the scroll window and clicking the
desired button.

Once you have your menu selections in place you can try your menu by
selecting the menu bar selection GOODIES-TRYIT 320 or GOODIES
TRYIT 640. Press the OPTION key to return to the build window.

There is an additional button present in the build window called
ATTRffiUTES. This permits each menu items appearance and mode of
operation to be set to r,eflect a particular status.

4. Select the ATrRIBUTES button in the build window (See Fig. 28)

This window allows you to
set the style of the items text,
select enabled or disabled (dimmed)
add a narrow dividing line
add one of 4 item markers and keypress equivalents.

Set the attributes for your menu items so that the menu bar is structured
the way you want it at initialization.

This completes the creation of a menu template there is one more feature
which is covered in the next section.

SPECIAL EXPLANATION

• The selection FILE-PRINT INFO will print you a list of the menu
items cross-referenced by their LD. numbers. this list is very
helpful when integrating your menu into your application.

• The editor edits in 640 mode only! A menu for 320 mode or 640
mode can be created with the editor. To see the menu in different
modes use GOODIES-TRYIT 320 and GOODIES-TRYIT 640.

• The menu selection GOODIES-DISPLAY INFO will bring up a
Control Info scroll window. This window represents a list of the
items in your menu box that is kept internally in this editor .(See
Fig. 2.18)

Double-clicking an item in this window will bring up the item
edit menu for that item the same as double-clicking the item itself.

Aug 15, 1989 Page 3.3

Call Box Editors Manual Chapter 3 • Menu Editor

This window allows you to 'c , ,., "."" ' ..

, ',' r ":,,:' set the style of the' items text, ". '- ': ~
select enabled or disabled (dimmed)
add a narrow dividing line
add one of 4 item markers and keypress equivalents.

Set the attributes for your menu items so that the menu bar is structured
the way you want it at initialization.

This completes the creation of a menu template there is one more feature
which is covered in the next section.

[1] - ---Hew -I .. em --------, ;-', ,.~

Text. St.yle:

@Hormal
OBold
OUnderline
o It.alic

o Disabled

o Bot.t.om line

Check Charact.er:
@Hone
o Check Mark
o Diamond o Open-App 1 e
o Solid-Apple

Key [Qui vol ent. : ([]

Figure 8.28 Attributes Wmdow

Special Explanation

• The selection FILE-PRINT INFO will print you a list of the menu
items cross-referenced by their J.D. numbers. this list is very
helpful when integrating your menu into your application.

• The editor edits in 640 mode only! A menu for 320 mode or 640
mode can be created with the editor. To see the menu in different
modes use GOODIES-TRYIT 320 and GOODIES-TRYIT 640.

SAVE MENUS

Once you have created a menu template you will want to save it to disk so it
can be incorporated into your program code.

Aug 15, 1989 Page 3.4

Call Box Editors Manual Chapter 3 - Menu Editor

Select FILE-SAVE AS and a save dialog box will,appear .
. . " '~ •.. r\ i ~.~ , .' ~ '. 1 .. .

. ,~ i 'I ,~ • ,

~:CQIl.Box
2 K free of 800 (Hext Drive)

(Hew Folder")

(Open)
(Close)

I(~ Save

Cancel) (
• Object. o Source o Resource

Figure 3.29 Save Dialog Box

This box has buttons to select the drive, create a new folder, open or close a
folder, cancel this operation and save the file. There is also a box for typing
in a filename and 3 radio buttons across the bottom of the menu box. These
three buttons select the type of output you will be saving.

It Object ($B 1)

ale Source ($BO)

.. Resource
(any filetype)

Select this button to save the template as an
OMF2 object file. This filetype can be loaded back
in by the editor.

Select this button to save the template as an
APW /ORCA source code file. This filetype
can not be loaded back into the editor.

Select this button to save the template to a
resource fork of an extended ProDOS file.
This filetype can be loaded back in by the editor.

Selecting either Object or Source will create or overwrite a file on a disk and
the operation is pretty straight foreward. Selecting Resource however will
present some extra windows that control how resources are saved to disk.
Resources come in types and LD.'s, the type for a CALL BOX menu
template is $1000 and is hard-set by the editor ... the only thing you need to
set is the LD. for your resource. You can either rewrite an existing
resource by double-clicking on its LD. number if one exists or double
clicking the ---->New entry to save your resource as the next avaliable LD.
number. (See Fig 3.30).

Aug 15, 1989 Page 3.5

Call Box Editors Manual Chapter 3 - Menu Editor

Figure 3.30 Save Resource ID.
" A'· WIDdow~" ~', ~

00000003
00000004
00000005
00000006
00000007
----)He'.,,

You can cancel the resource save
operation by clicking the close box
in the title bar of the resource LD.
window. You can also edit the
resource LD. (re-number or
delete) by first pressing and
holding the OPTION key while
double-clicking the desired LD.
(See Fig 3.31).

When re-numbering resource LD.'s be sure to have 8 hex digits in the LD.
number window (use leading zeroes to pad small numbers). Failure to do so
will cause unpredictable results and could ruin the resource fork of the
ProDOS file.

1001
00000001

~ 00000002

Edit Resource 1.0. I rmnnnluu~ I
« OK » (Delete)

----~"e\."

~

Figure 8..31 Edit Resource ID. Dialog Box

If a resource fork does not exist for a given ProDOS file a dialog box will
appear that gives you the option of creating one.

Once you have created menus and saved them to disk you may want to load
them back into this editor for further editing.

Select FILE-OPEN ... and a load dialog box will appear.

Aug 15, 1989 Page 3.6

Call Box Editors Manual Chapter 3 - Menu Editor

.~- 1 i . c. ; ..

(Next Drive)

Open »
(Close)

~~~~~~ ____ ~( Cancel) 
@ Object code o Resource 

Figure 3.32 Load Dialog Box 

This box has buttons to select the drive, open or close a folder, cancel this 
operation and open the file. There are radio buttons to select the type of 
input you will be loading. 

• Object ($B 1) 

• Resource 
(any filetype) 

Select this button to load an OMF2 type of menu 
template file. 

Select this button to load the template from a 
resource fork of an extended ProD OS file. 

Selecting Object will load a file from disk and the operation is pretty straight 
foreward. Selecting Resource however will present some extra windows 
that control how resources are loaded into memory. 

Resources come in types and LD.'s, the type for a CALL BOX menu 
template is $1001 and is hard-set by the editor ... the only thing you need to 
set is the I.D. for your resource. You can load a resource by double-clicking 
on the desired resource I.D. number. (See Fig 3.33) 

Aug 15, 1989 Page 3.7 



· Call Box Editors Manual 

00000003 
00000004 
00000005 
00000006 
00000007 

Chapter 3 - Menu Editor· 

You can cancel the resource load 
operation by clicking the close box in the 
title bar of the resource LD. window. You 
can also edit the resource I.D. 
(re-number or delete) by first pressing 
and holding the OPTION key while 
double-clicking the desired LD. 
(See Fig 3.31) When re-numbering 
resource LD.'s be sure to use 8 hex digits 
in the LD. number window (use leading 
zeroes to pad small numbers). Failure to 
do so will cause unpredictable results and 
could ruin the resource fork of the 
ProDOS file. 

Figure 3.38 Load Resource ID. Window 

If a resource fork does not exist for a given ProDOS file then no template 
will be loaded. 

Aug 15, 1989 Page 3.8 



Call Box Editors Manual Chapter 3 - Menu Editor 

SOURCE CODE FILETYPE $BO 

This type of code is for appending to APW/ORCA source code listings. A 
simple word processor is adequate for editing the file. ' 

The source code for a menu bar and menus indicates the different menus it 
contains with symbolic references, object code and resources on the other 
hand have a dialog template style pointer table added to the beginning of the 
menu template. 

MyMenu DATA 

Menul anop 
DC C'$$@\NlX',H'OD' 
DC C'» About ... \N256' ,H'OD' 
DC C'.' 

Menu2 anop 
DC C'$$ File \N2',H'OD' 
DC C'» Open ... \N257' ,H'OD' 
DC C'» Close ... \N258',H'OD' 
DC C'» Quit \N259*Qq' ,H'OD' 
DC C'.' 

Menu3 anop 
DC C'$$ Edit \N3',H'OD' 
DC C'» Undo \N260V*Zz' ,H'OD' 
DC C'» Cut \N26l*Xx',H'OD' 
DC C'» Copy \N262*Cc' ,H'OD' 
DC C'» Paste \N263*Vv' ,H'OD' 
DC C'» Clear \N264',H'OD' 
DC C'.' 

END 

Figure.3.34 Sample Source Code Listing 

OBJECT CODE FILETYPE $B1 

This type of code is for linking with the APW/ORCA linker. This code type 
can be used by any language that uses this linker. Object code can also be 
used by the loader call InitialLoad after you have changed the filetype to $B5 
(LoadFile). Use the disk utilities in the CALL BOX shell to change the 
filetype of this file. (See Fig. 3.35) 

Aug 15, 1989 Page 3.9 



Call Box Editors Manual Chapter 3 - Menu Editor 

DumpOBJl,l 

Block count 
Reserved space 
Length 
Label length 
Number length 
Version 
Bank size 
Kind 
Org 
Alignment 
Number sex 
Language card 
Segment number 

Segment entry 
Disp to names 
Disptobody 
Load name 
Segment name 

: $00000001 1 
: $00000000 0 
: $OOOOOOD6 214 
: $OA 10 
:$04 4 
:$01 1 
: $00000000 0 
: $01 static data segment 
: $00000000 0 
: $00000000 0 
:$00 0 
:$00 0 
:$0001 1 
: $00000000 0 
:$002C 44 
:$0040 64 

000040000000 I LCONST ($F2) I OOOOOOD6: 
74OOOOOO2DOOOOOO1000000000000000 
244C5C4E31580D3E3E2041626F75742E2E 
2E205C4800012A00200D2E24242C204669 
6C6520205C4802000D3E3E204F70656E2E 
2E2E205C4801012A00200D3E3E20436C6F 
73652E2E2E205C48020t2AOO200D3E3E20 
51756974205C48030l2A51710D2E242420 
204564697420205C4803oooD3E3E20556E 
646F205C480401562A5A7AOD3E3E204375 
74205C48050t2A58780D3E3E20436F7079 
205C4806012A43630D3E3E205061737465 
205C48070l2A56760D3E3E20436C656172 
205C4808012A00200D2E 

OOOllB OOOOD6 I cRELOC ($F5) I 04: 00 : 0000 : 0074 
000122 OOOOD6 I cRELOC ($F5) I 04: 00 : 0004 : 002D 
000129 000006 I cRELOC ($F5) I 04: 00 : 0008 : 0010 
000130000006 I END ($00) 

Figure.3.35 Sample Object Code Dump 

Aug 15, 1989 Page 3.10 



Call Box Editors Manual Chapter 3 - Menu Editor 

RESOURCE FILETYPE (any) 

Resources are stored in a resource fork of an extended ProDOS file. The 
exact filetype is not important and in fact resources can be stored in any 
ProD OS file of any type. 

Resources are referred to by a two byte "type" number and a 4 byte "I.D." 
number. A type would be analogous to a window record, a pascal string, an 
icon etc ... An I.D. number would identify which pascal string or which 
icon you are pointing to in a group of pascal strings or icons. 

The type for a menu template resource is $1001. The I.D.'s can be 
anywhere from 0 to 7FFFFFFF. 

Menu template resources are in OMF2 format and are loaded using the 
system converter. 

USING SOURCE CODE 

The source code created by this editor is a simple "TEXT" file. It has a 
filetype of $BO and is created in a form readily adaptable to source code 
listings created for APW or ORCA assemblers. You can use the filetype 
command in the APW/ORCA shell or the Disk Utilities function of the 
CALL BOX shell to change this files filetype. 

Each source code file created by this editor needs to have a filename that 
has no (.) peroids in it., This is commonplace in ProDOS, but peroids are an 
illegal character in the assembler and will generate an error when 
assembled. 

The simplest way of hooking-up a CALL BOX generated source code file to 
your applications source code is to use the COpy directive . 

. 
(your code) 

COpy CallBoxmenu1 ;Your menu template source file 

(your code) 

Aug 15, 1989 Page 3.11 



Call Box Editors Manual Chapter 3 - Menu Editor 

Another way is to use the COpy function of the APW/ORCA editor 
(OpenApple-C) to put a copy of you window template source code in its 
SYSTEMP file which can then be inserted into your source listing with an 
INSERT function (OpenApple-V). 

Adapting this source code for other assemblers is up to you. We will support 
Apple prefered format like APW or ORCA only on this editor. 

USING OBJECT CODE 

The object code created by this editor is a filetype $Bl file. This type of file is 
in OMF2 format and is relocatable. This form of output is provided for Link
time integration or Library file like use. To add an object module to a link 
add the filename to the link command in the APW or ORCA linker. 

LINK myprogram mymenul mymenu2 (etc ... etc). 

Where mymenul and mymenu2 are the filenames of the object code files 
created with the CALL BOX menu Editor. 

This type of file can be used directly by your application like a library file is 
used. You must change the file type of your object file to $B5 (Load File) and 
then the menu template can be loaded by the system loader using the 
Ini tialLoad call. 

Push Word MyID 
PushLong #Pathname 
PushWord #0 
_Ini tialLoad 
pIa 
pIa 
PullLong MenuPtrl . , 
pIa 

;Applications I.D. number 
;Pointer to pathname buffer 
;Spec. memo flag (set to 0) 

;Size of Dir.pg/Stack buf.eN/A) 
;Addr of Dir.pg/Stack buf.(N/A) 
;Pointer to the menu template 
;in memory 
;Applications I.D. number 

This is all that is required to install this template into your program. 
Inserting the menu in the system is slightly different than usual. 

Menu templates have a pointer table at the beginning of them used to access 
the various menus they contain. _InsertMenu needs the address of the 
particular menu record to build the menu in the systems memory. You 
would usually point to a menu record and then call _InsertMenu for each 
menu your menu bar will contain. When this menu template is in OMF2 
form you will not know where a particular menu record is at, the only thing 
you will know for certain is where the, menu template begins. Fortunately 

Aug 15, 1989 Page 3.12 



Call Box Editors Manual Chapter 3 - Menu Editor 

we have added an address tabl~ at the beginning of the menu template, ". 
which,p(i)ints to'each menu-in the template."- ' , 

To insert this type of menu bar use the following algorithmn: 

ldy #0 
PushLong #TmpltAddress 
PullLong $0 

Again Ida [$O],y 
sta ThisMenu 
iny 
iny 
Ida [$O],y 
sta ThisMenu+2 
ora ThisMenu 
beqAlIDone 

phy 
PushLong #ThisMenu 
PushWord #0 
_InsertMenu 
ply 
iny 
iny 
bra Again 

AllDone rts 

;Get the tmplt addr. in z-page 

;Fetch the table address 

;Is it null? 
;If so then done inserting 

;Preserve the index 
;Push the handle 
;and the flag 
;Insert this menu 
;Restore index 
;Advance to the next pointer 

;Loop back 

;EXIT!!! 

NOTE: This process applies to menu templates that are stored as 
resources as well 

- . USING RESOURCES 

All resources created by the CALL BOX WYSIWYG EDITORS are in OMF2 
format and need to be "relocated" into memory. The Resource Manager call 
ResourceConverter is used to install these resources in memory. For each 
type of resource your application is going to use you must "Log In" an 
O:MF2 converter for that type. To find an OMF2 converter use the 
Miscellaneous Tools call GetCodeResConverter. You need only make this 
call once. 

Aug 15, 1989 Page 3.13 



Call Box Editors Manual Chapter 3 - Menu Editor 

PushLong #0 ;Space for results 
_ GetCodeResConverter 
PullLong ConverterPointer ;Pointer to O:MF2 converter 

This call fetches a pointer to an internal OMF2 converter routine. You now 
need to "Log In" this converter for each resource type your application will 
be using with the Resource Manager call ResourceConverter. This step 
would be repeated for each different type of relocatable resource your 
application will need. 

PushLong ConverterPointer 
Push Word #$1001 
PushWord #1 
_ResourceConverter 
bcs MemoryError 

;OMF2 converter pointer 
;menu Template type 
;Log In, Applic. conv. list 

This sets up the resource manager to install and relocate these resources 
when they are called with OpenResource. You can now OPEN, LOAD, 
UPDATE or whatever to the resources from this point on. A typical 
sequence of events from this point may be: 
OPEN your resource file: 

PushWord #0 
PushWord #0 
PushLong #0 
PushLong #PathName 
_ OpenResourceFile 
PullWord FileID 

And LOAD it into memory: 

PushLong #0 
PushWord #$1001 
PusbLong #1 
_LoadResource 

;Space for results 
;Req. file access 
;Res. header address 
;Pointer to a class 1 pathname 

;Open resource file I.D. 

;Space for results 
;Requested Type 
;Requested I.D. 

PullLong ResourceHandle ;Handle of resource in memory 

At this point the resource is avaliable to your application. When you are 
done using this resource you can put it away with the Resource Manager 
call CloseResourceFile: 

Push Word FileID 
_ CloseResourceFile 

Be sure to "Log Out" your resource converter when your done by issuing a 
Log Out type ResourceConverter call. 

Aug 15, 1989 Page 3.14 



Call Box Editors Manual 

PushLong Converter Pointer 
".(\1',' PushWord #$1001, . , 

PushWord #0 
_ResourceConverter 
bcs MemoryError 

Chapter 3 - Menu Editor 

;OMF2 converter-pointer 
;menu Template type -
;Log Out, Applic. conv. list 

. l 
, .... 

This covers the fundamental operation of resources in your application. 
There are several other functions you can perform with the Resource 
Manager but the previously outlined procedure will suffice for most of your 
CALL BOX resource useage. 

CALL BOX menu Template resources are handled the same as object files 
are from within your application except that the Resource Manager 
handles the loading and saveing. 

Reference: Universe ToolBox Update (Ch 21:Resource Manager 3/22189) 
Universe ToolBox Update (Ch 15:Miscellaneous Tools 3/22/89) 

BASIC CONSIDERATIONS 

The CALL BOX BASIC Interface uses object code menu templates. These 
templates are loaded into your Applesoft application with syntax as defined 
in the CALL BOX BASIC Interface Manual. Menus under Applesoft need 
no special care and feeding. 

Aug 15, 1989 Page 3.15 



Call Box Editors Manual Chapter 3 - Menu Edit 

Index of Chapter 3 . 
¥ .::,~,-*.:-~".;'1I7'±:~~l-:~' .i>,:~\~',:".. . ,l:.!l'; ~ ,l~ ", 

ABOUTMrnNUS 1 
BASIC CONSIDERATIONS 1 5 
EDITOR OPERATION 2 
OBffiCf CODE Fll.ETYPE $B 1 9 
OVERVIEW 1 
RESOURCE FILETYPE (any) 1 0 
SAVE MENUS 4 
SOURCE CODE Fll.ETYPE $BO 9 
USING OBffiCT CODE 1 2 
USING RESOURCES 1 3 
USING SOURCE CODE 1 1 

Aug 15, 1989 Page 





Call Box Editors Manual Cha ter 4 - Ima e Editor 

CHAPTER 4 - THE IMAGE EDITOR-c .• :'. i: -J ~ \ _, ;'·c I 

ABOUT IMAGES 
EDITOR OPERATION 
SAVE IMAGES 
LOAD IMAGES 

'4.... r"'I'. _,I," I". 

SOURCE CODE FILETYPE $BO 
BINARY FILETYPE $06 
RESOURCE FILETYPE (any) 
USING SOURCE CODE 
USING BINARY CODE 
USING RESOURCES 
BASIC CONSIDERATIONS 

Figure 4.36 
Figure 4.37 
Figure 4.38 
Figure 4.39 
Figure 4.40 
Figure. 4.41 

Figure. 4.42 

Figure 4.43 

AUG 15, 1989 

Save Dialog Box 
Save Resource LD. Window 
Edit Resource LD. Dialog Box 
LoadDialog Box 
Load Resource LD. Window 
Sample Pixel Image Source 
Code Listing 
Sample icon source code 
listing 
Sample cursor source code 
listing 

© So What Software 

4.1 
4.2 
4.4 
4.5 
4.6 
4.9 
4.9 
4.9 
4.10 
4.11 
4.12 

4.5 
4.5 
4.6 
4.7 
4.8 

4.9 

4.10 

4.11 

Contents 



' .. 

Call Box Editors Manual Chapter 4 - Image Editor 

CHAPTER 4 .. THE IMAGE EDITOR 

ABOUT IMAGES 

Images are pictures ... this is very obvious but what is not obvious is the 
various types that the Apple IIgs uses. 

Most people are familiar with PIC images.made by commercial "paint 
programs". PIC images can be in either 320 or 640 mode. [320 x 200] or 
[640 x 200] pixels. 320 mode PIC images can use 16 different solid colors 
while 640 mode PIC images can use only 4. You will see 640 mode images 
that appear to have more than 4 colors but don't be fooled. There are only 
four possible solid colors. When you see a 640 mode picture that appears to 
have more than four colors it is using dithered colors which are two dis
similar 640 mode pixels next to each other. The combination will appear as 
a third color to the eye. These images can be said to be 320 mode in a 640 
mode framework. 

This can be confusing. It is not too important that understand the details ... 
( but it is nice if you do! ) The image editor handles these things 
automatically and provides you with 16 colors in both modes. 

The Apple IIgs uses other images based on the above. This editor can 
create, Pixel Images, Icons and cursors. 

A Pixel Image is a PIC Image that is less than 320 x 200 or 640 x 200 pixels 
in size ... kind of a mini-PIC.. Pixel images are always rectangular. 

Icons are similar to pixel images except that they contain a mask. A mask 
is an image the same size as the main pixel image that signifies which 
pixels will show up and which ones will not. This allows you to create 
images that are not rectangular. They can be of any shape, and even have 
holes in them like a doughnut. 

The last type of image is a Cursor. Cursors are similar to an Icon but are 
handled differently by the system. The ARROW is an example of a cursor 
image. Cursors have an attribute that other images do not have, this is a 
"Hot Spot". A Hot Spot is that pixel out of the image that represents the 
cursors actual X and Y position. The tip of the ARROW cursor is its hot 
spot. 

The image editor makes it very easy to load one type of image and save it as 
another type. The main power of this editor, however, is in enabling the 
user to take a standard "Paint Program" type picture and capture a portion 
of it as either a pixel image, Icon or cursor. 

Aug 15, 1989 Page 4.1 



Call Box Editors Manual Chapter 4 - Image Editor 

EDITOR OPERATION 
I 

To use this editor you must put an image in the "capture window", by 
loading in any of the seven input types previously described using the menu 
bar selection File/Open. or by selecting File/N ew320 or FilelN ew640. If you 
are using a Filetype $Cl picture as an image source the editor will switch to 
the mode (640 or 320) that the picture was created in. You will have to use 
File/N ew320 or FilelN ew640 to set the mode prior to loading the pixel image, 
icon or cursor types. 

Once you have an image (even if its a blank screen for creating an image 
from scratch) you must select Edit/Capture and using the full window 
crosshair cursor click-drag-click a rectangle around the image you want to 
process. The image will slowly invert and an indicator bar will appear 
reporting the progress of the magnify operation taking place. 

This magnify operation creates three windows containing the image just 
captured in a magnified form called "Image". The mask image (always 
completely black after capture) in a magnified form called a "Mask" and 
the captured image as an icon called an "Icon". The Image and Mask 
windows are editable with the "Pencil" cursor which is visible when the 
cursor position is in either window when it is the top-most or active 
window. The menu bar selection "Color" is now active and contains a color 
palette used to set the pencil color. You can now use the pencil to draw to 
the magnified image or mask. 

Three functions help in drawing to the magnified images. EditlFill Image 
will change every pixel in the image window to the current color of the 
pencil. EditIFill Mask will set all the pixels in the mask window to black or 
white.(on or oft) using color #15 as white and any other color as black. 
Edit/Image to Mask will set all pixels that correspond to colored pixels in 
the image window to black (on) in the mask window and set all 
corresponding white (color #15) pixels to white (oft). 

If you need to reframe your image you can select EditlRe-Capture which 
clears out the capture window and plots your current magnified image in 
the upper left region of the capture window. You then need to select 
Edit/Capture and capture your image again only this time at new 
rectangular coordinates which will in tum create the Image, Mask and 
Icon windows again. You can continue editing if needed. 

If you are creating a cursor you will need to set the "Hot Spot" with the 
menu selection Edit/Set Hot Spot. The hot spot is represented by a black 
rectangle initially around the upper left pixel of the magnified image. 
Simply select Edit/Set Hot Spot and click on the magnified pixel you want for 
the hot spot. The rectangle will move to surround the selected pixel. 

Aug 15, 1989 Page 4.2 



Call Box Editors Manual Cha ter 4 - Ima e Editor 

When everything is just the way you want it select File/Save as.to preserve 
your handy-work. Be sure to set the radio buttons at the bottom of the save 
window for the type and style. 

This outlines the major features and procedures implemented in using this 
editor, we will now discuss some of the finer points of image editing. 

Special Explanations 

Ii All images, either 320 or 640 mode can be treated like 320 mode 
images. Most good looking 640 mode images are actually in dithered 
colors which is simply two pixels of different colors side by side that 
appear like one larger pixel in a color that is the mix of the two 
colors. This way you can get sixteen apparently different solid colors 
in 640 mode that only has.a palette of four colors (read about mini
palettes in the IIgs toolbox reference under Quickdraw II). If you are 
using dithering, and you probably will be, then you are actually 
handling a 320 mode image because one apparent pixel is composed 
of two smaller (640 mode) pixels. 

• You can capture a 320 mode image, save it as a pixel image, switch 
modes using File/New640 and re-Ioad it for editing in the new mode, 
the reverse is also true. Naturally the colors will be off but this is not 
important. A Pixel image, Icon or cursor responds to the current 
system palette your program is using, not necessarily the one that 
you are currently editing in. You are just producing a byte pattern 
that represents what color numbers to use and where they are to be 
used. 

• 640 mode images sometimes exhibit a color shift which depends on 
where the viewable image has its left edge (on an even or odd 
numbered position). This is due to the mysteries of Dithered colors 
and poses no problems to your finished image. The image in the Icon 
window is a true representation of the colors in your finished image, 
the colors in the Image window mayor may not be accurate in 640 

~. . mode depending on how the horizontal scroll bar is set. 

/I Cursors have a unique mode sensitivity problem which deals with 
the hot spot. If a cursor is created in 320 mode and then used in 640 
mode the cursor will appear the same in both modes. The difference 
will be in the· actual position of the hot spot. To best illustrate this 
anomaly an example is needed: 

• Create a cursor in 320 mode that is a framed rectangle 5 x 5 pixels. 
Set the hot spot at 3,3 (Right in the middle of the framed rectangle). 
Use this cursor in 640 mode and the hot spot will seem to shift to the 
left of the rectangle. The hot spot numbers will still be 3,3 but the 
rectangle will no longer be 5 x 5! A 320 mode 5 x 5 rectangle becomes 

Aug 15, 1989 Page 4.3 



Call Box Editors Manual Chapter 4 - Image Editor 

a 640 mode 5 x 10 rectangle to maintain the same appearance. ,To 
rectify this situation you should use separate cursors for 320 and 640 
modes. You could also directly rewrite the hot spot numbers based on 
the current mode your program is in. IT your cursors hot spot is at a 
horizontal position of 0 or 1 don't worry. The mode shift is half the 
distance from the original hot spot to the left edge of the cursor.(if 
your position is 0 or 1 the shift is so slight as to not be noticeable) . 

.. As if cursors did not cause enough problems there is yet another 
thing you have to look out for. Add one extra word (4 magnified 
pixels) to the right side of your cursor image and fill them with 
zeroes (black in the image and white in the mask). The way the 
Apple handles cursors necessitates this. I won't get into it here. 
Failure to add this word will cause you equipment to behave 
strangely. Check it out for yourself its actually quite interesting to 
see . 

.. The last thing we want to tell you about cursors is that you need a 
black (color #0) as the background of the image window and white 
(color #15) to draw your image. The colors are reversed in the image 
window when creating cursors. 

• This editor is memory hungry and should be used with all the free 
memory you can summon up (at least 3 or 4 banks). The maximum 
size an image can be is directly linked to how much free memory is 
available. Images in excess of 75 pixels square should be avoided, 
(images that large plot slowly). Secondly you will run out of memory 
in the editor. You can go as large as memory will allow. We 
recommend not exceeding 75 by 75 which should be sufficiently large 
for most applications. 

• You can close all of the windows except the Icon window by 
clicking in the close box of the windows frame. This will make the 
windows disappear. You can make the image and mask windows 
re-appear by selecting EditJImage Edit or Edit/.Mask Edit. The 
capture window does not have a selection to make it re-appear. You 
will have to re-Ioad an image or use FilelN ew320 or FileIN ew640 to 
make the capture window appear. 

SAVE IMAGES 

Once you have created an image you will want to save it to disk so it can be 
incorporated into your program code. 

Select FILE-SAVE AS ... and a save dialog box will appear. (See Fig 4.36) 

Aug 15, 1989 Page 4.4 



Call Box Editors Manual Chapter 4 - Image Editor 

-81:HARD1:CALL.BOX: 
11061 K free of 32161 ( 

l1li11:1 ~ ... "tI1I. I(l1 
<"4 e I~LL .f)OK r-=- ( 

Next. Drive) 

New Folder) 

( Open ) 
D EDITORS 
C:!KKK 
C:!KKKK 

~ ('-----..;C;;,.;I;;,.;o;;,.;s;;,.;e~ __ ) 
Image Save Fil e ... 

I I [,,=~s~a=v=e~~l1 ... X_X_X ____________ ( Cance I ) 

o Pixel Image @ Resource Fork File 
@ I con 0 APW Source Code $BO o Cursor 0 Binary Fil e $06 

Figure 4.36 Save Dialog Box 

This box has buttons to select the drive, create a new folder, open or close a 
folder, cancel the operation and save the file. There is also a box for typing 
in a filename and 6 radio buttons across the bottom of the dialog box. These 
six buttons select the type of output you will be saving. 

Three buttons on the left side of the dialog box select the style of of image you 
can save (Pixel image, icon or cursor). The three buttons on the right side 
select the filetype as Resource, Source or Binary. 

Images do not need to be relocated in memory because they do not have 
. absolute address references. This is why a binary form is provided instead 

of object code. Both source and binary saves are fairly straight forward and 
need no real explanation. Selecting Resource however will present some 
extra windows that control how resources are saved to disk. 

Resources are identified by types and LD.'s. The type for CALL BOX 
images are $1003 for pixel images, $8001 for icons and $1004 for cursors. 
These types are set by the editor, you need to set the LD. for your resource. 
You can either rewrite an existing resource by double-clicking on its I.D. 
number or double-clicking 
the ---->New entry to save your resource as the next available LD. number. 

(See Fig 4.37) 

Aug 15, 1989 Page 4.5 



Call Box Editors Manual 

00000003 
00000001.1 
00000005 
00000006 
00000007 
---->Hew 

Cha ter 4 - Ima e Editor 

You can .cancel the resource save operation 
by clicking the close box in the title bar of the 
resource LD. window. You can also edit 
the resource LD. (re-number or delete) by 
pressing and holding he OPTION key while 
double-clicking the desired I.D. (See Fig 
4.38). When re-numbering resource LD.'s 
be sure to use 8 hex digits (use leading 
zeroes to pad small numbers). Failure to do 
so will cause unpredictable results and 
could ruin the resource fork of the ProDOS 
file. 

Figure 4.37 Save Resource ID. window 

If a resource fork does not exist for a given ProDOS file a dialog box will 
appear giving you the option of creating one. 

8001 
00000001 

~ 00000002 

E«Ii t. Resource I.D. I nnnJUlnnl~ I 
C OK ~ ( Delet.e ) 

----'"ew 

~ 

Figure 4.88 Edit Resource ID. Dialog Box 

LOAD IMAGES 

Once you have created images and saved them to disk you may want to load 
them back into this editor for further editing. 

Select FILE-OPEN ... and a load dialog box will appear. 

Aug 15, 1989 Page 4.6 



Call Box Editors Manual Cha ter 4 - Ima e Editor 

Image Load fi I e ... 

-S:HARD1:CALl.BO~ 
IIlilnm.,1I fr [ Next Drive ) 
& CALL.BOX ,.=.. 
D EDITORS « Open ) CXXX 
CXXXX ( Close ) 

~ ( Cancel ) 
o Fi I etype $Cl Picture @ Icon o Binary Fi I e o Cursor 
@ Resource o Pixel Image 

Figure 4.39 Load Dialog Box 

This box has buttons to select the drive, open or close a folder, cancel this 
operation and open the file. There are six radio buttons across the bottom of 
the dialog box. These six buttons select the type of input you will be loading. 

When loading images you must be very careful to have these buttons set 
properly for the type of input you will be loading. All filetypes will appear 
selectable in the scroll window and no special filtering is provided due to the 
fact that resources can be contained in any filetype. Loading the wrong type 
of file can result in a crash! You will just have to be careful. 

Selecting Resource will present some extra windows that control how 
resources are loaded into memory. 

Resources are assigned by types and I.D.'s. The type for CALL BOX 
images are $1003 for pixel images, $8001 for icons and $1004 for cursors. 
These types are set by the editor.you set just the I.D. for your resource. 
You can either rewrite an existing resource by double-clicking on its I.D. 
number or double-clicking the ---->New entry to save your resource as the 
next available J.D. number. (See Fig 40) 

Aug 15, 1989 Page 4.7 



Call Box Editors Manual 

00000003 
OOOOOOO~ 

00000005 
00000006 
00000007 

Chapter 4 - Image Editor 

; -'-'-" .... ;·t;,; 

Figure 40 Load Resource ID. Window 

You can cancel the resource save operation 
by clicking the close box in the title bar of 
the resource LD. window . You can also 
edit the resource I.D. (re-number or delete) 
by using the OPTION key while double
clicking the desired LD. (See Fig 38) When 
re-numbering resource LD.'s be sure to 
use 8 hex digits in the LD. number (use 
leading zeroes to pad small numbers). 
Failure to do so will cause unpredictable 
results and could ruin the resource fork of 
the ProDOS file. 

If a resource fork does not exist for a given ProDOS file a dialog box will 
appear giving you the option of creating one. 

Aug 15, 1989 Page 4.8 



Call Box Editors Manual Cha ter 4 .. Ima e Editor 

SOURCE CODE FILETYPE $BO 

This type of code is for appending to APW/ORCA source code listings. A 
simple word processor is adequate for editing this file. 

, 
The three styles of image output are presented here using the same 
captured image. 

Aug 15, 1989 

Pixel image DATA 

de h'llOO' 
de h'1400' 

de h'FFFFFFF44444FFFFFFFF' 
de h'FFFF444EEE66444FFFFF' 
de h'FF444EE444EE6664FFFF' 
de h'F4666446664EEE664FFF' 
de h'46446664466EEEEE64FF' 
de h'44FF4E4FF466EEEE64FF' 
de h'4FFl14FFl146EEEEE64F' 
de h'4FFFF4FFFF46EEEEE64F' 
de h'44FF444FF466EEEEE64F' 
de h'4644EEE446EEEEEEE64F' 
de h'4EE46E646EEEEEEEE64F' 
de h'F4E644466EE666EE64FF' 
de h'F4EE6666EEEE466E64FF' 
de h'FF4EEEEEE444E6E64FFF' 
de h'FFF4666EEEE66664FFFF' 
de h'FFFF44466666444FFFFF' 
de h'FFFFFFF44444FFFFFFFF' 

END 

Figure. 4.41 Sample Pixel Image Source Code Listing 

Page 4.9 



-.. 

Call Box Editors Manual 

icon DATA 

de h' 0100' 
de h'AAOO' 
de h'llOO' 
de h'1400' 

Cha ter 4 - Ima e Editor 

de h'FFFFFFF44444FFFFFFFF' 
de h'FFFF444EEE66444FFFFF' 
de h'FF444EE444EE6664FFFF' 
de h'F4666446664EEE664FFF' 
de h'46446664466EEEEE64FF' 
de h'44FF4E4FF466EEEE64FF' 
de h'4FFl14FFl146EEEEE64F' 
de h'4FFFF4FFFF46EEEEE64F' 
de h'44FF444FF466EEEEE64F' 
de h'4644EEE446EEEEEEE64F' 
de h'4EE46E646EEEEEEEE64F' 
de h'F4E644466EE666EE64FF' 
de h'F4EE6666EEEE466E64FF' 
de h'FF4EEEEEE444E6E64FFF' 
de h'FFF4666EEEE66664FFFF' 
de h'FFFF44466666444FFFFF' 
de h'FFFFFFF44444FFFFFFFF' 

de h'OOOOOOOFFFFFOOOOOOOO' 
de h'OOOOFFFFFFFFFFFOOOOO' 
de h'OOFFFFFFFFFFFFFFOOOO' 
de h'OFFFFFFFFFFFFFFFFOOO' 
de h'FFFFFFFFFFFFFFFFFFOO' 
de h'FFOOFFFOOFFFFFFFFFOO' 
de h'FOOFFFOOFFFFFFFFFFFO' 
de h'FOOOOFOOOOFFFFFFFFFO' 
de h'FFOOFFFOOFFFFFFFFFFO' 
de h'FFFFFFFFFFFFFFFFFFFO' 
de h'FFFFFFFFFFFFFFFFFFFO' 
de h'OFFFFFFFFFFFFFFFFFOO' 
de h'OFFFFFFFFFFFFFFFFFOO' 
de h'OOFFFFFFFFFFFFFFFOOO' 
de h'OOOFFFFFFFFFFFFFOOOO' 
de h'OOOOFFFFFFFFFFFOOOOO' 
de h'OOOOOOOFFFFFOOOOOOOO' 

END 

Figure. 4.42 Sample icon source code listing 

Aug 15, 1989 Page 4.10 



Call Box Editors Manual 

cursor DATA 

de h' 1100' 
de h'OSOO' 

Cha ter 4 - Ima e Editor 

de h'FFFFFFF44444FFFFFFFF' 
de h'FFFF444EEE66444FFFFF' 
de h'FF444EE444EE6664FFFF' 
de h'F4666446664EEE664FFF' 
de h'46446664466EEEEE64FF' 
de h'44FF4E4FF466EEEE64FF' 
de h'4FFl14FFl146EEEEE64F' 
de h'4FFFF4FFFF46EEEEE64F' 
de h'44FF444FF466EEEEE64F' 
de h'4644EEE446EEEEEEE64F' 
de h'4EE46E646EEEEEEEE64F' 
de h'F4E644466EE666EE64FF' 
de h'F4EE6666EEEE466E64FF' 
de h'FF4EEEEEE444E6E64FFF' 
de h'FFF4666EEEE66664FFFF' 
de h'FFFF44466666444FFFFF' 
de h'FFFFFFF44444FFFFFFFF' 

de h'OOOOOOOFFFFFOOOOOOOO' 
de h'OOOOFFFFFFFFFFFOOOOO' 
de h'OOFFFFFFFFFFFFFFOOOO' 
de h'OFFFFFFFFFFFFFFFFOOO' 
de h' FFFFFFFFFFFFFFFFFFOO ' 
de h'FFOOFFFOOFFFFFFFFFOO' 
de h'FOOFFFOOFFFFFFFFFFFO' 
de h'FOOOOFOOOOFFFFFFFFFO' 
de h'FFOOFFFOOFFFFFFFFFFO' 
de h'FFFFFFFFFFFFFFFFFFFO' 
de h'FFFFFFFFFFFFFFFFFFFO' 
de h'OFFFFFFFFFFFFFFFFFOO' 
de h'OFFFFFFFFFFFFFFFFFOO' 
de h'OOFFFFFFFFFFFFFFFOOO' 
de h'OOOFFFFFFFFFFFFFOOOO' 
de h'OOOOFFFFFFFFFFFOOOOO' 
de h'OOOOOOOFFFFFOOOOOOOO' 

de h'OOOO' 
de h' 0000' 

END 

Figure. 4.43 Sample cursor source code listing 

Aug 15, 1989 Page 4.11 



Call Box Editors Manual Cha ter 4 - Ima e Editor 

BINARY F~TYPE $06 

A binary filetype is the actual bytes that make up the image. These bytes 
can best be illustrated by Figs. 4.41,4.42 and 4.43. This filetype can be used 
by any language and is the most fundamental filetype in computing. Binary 
files need no relocation or special handling and can be loaded in the 
computer by standard P8, P16 or Applesoft commands. 

RESOURCE FILETYPE (any) 

Resources are stored in a resource fork of an extended ProDOS file. The 
exact filetype is not important and in fact resources can be stored in any 
ProDOS file of any type. 

Resources are refered to by a two byte "type" number and a four byte "I.D." 
number. A type would be analogous to a window record, a pascal string, an 
icon etc ... An I.D. number would identify which pascal string or which 
icon you are pointing to in a group of pascal strings or icons. 

The type for image resources are $1003, $8001, $1004. The I.D.'s can be 
anywhere from 0 to 7FFFFFFF. 

Image resources are in binary form and require no system converter to load 
to your IIgs. 

USING SOURCE CODE 

. The source code created by this editor is a simple text file. It has a filetype of. 
$BO and is created in a form readily adaptable to source code listings 
created for APW or ORCA assemblers. You can use the filetype command 
in the APW/ORCA shell or the Disk Utilities function of the CALL BOX 
shell to change this files filetype. 

Each source code file created by this editor needs to have a filename that 
has no (.) periods in it. This is commonplace in ProDOS, but periods are an 
illegal character in the assembler and will generate an error when 
assembled. 

Aug 15, 1989 Page 4.12 



Call Box Editors Manual Cha ter 4 - Ima e Editor 

The simplest way of hooking-up a CALL BOX generated source code file to 
your applications source code is to use the COpy directive . 

. 
(your code) 

COpy CallBoxImage ;Your Image source file 

. 
(your code) 

Another way is to use the COPY function of the APW/ORCA editor 
(OpenApple-C) to put a copy of your image source code in its SYSTEMP file 
which can then be inserted into your source listing with an INSERT 
function (OpenApple-V). 

Adapting this source code for other assemblers is up to you. We will support 
Apple prefered format like APW or ORCA only on this editor. 

USING BINARY CODE 

The binary code created by this editor is non-relocatable code and is very to 
install in your program. The binary image will be a sep'arate disk file and 
can be loaded via 
PI6, PB or even Applesoft BASIC. There are no special handling 
considerations for binary images and a sample load might go something 
like this: 

; We will use GS/OS class 1 calls for this 
; Get the files length so you can allocate a spot for it 

. ; We will assume that you have set-up the parameter tables already 

GETFILEINFOGS GETFILEBlock 
ldx #$24 ;Offset to the EOF 
Ida GETFILEBlock,x 
sta temp ;Save a copy of the EOF 
Ida GETFILEBlock+2,x 
sta temp+2 

Aug 15, 1989 Page 4.13 



Call Box Editors Manual 

; Allocate a block to put the image in 
'. _ • _.f 

PushLong #0 
PushLong temp 

Push Word MyID 
PushWord #0 
PushLong #0 
_NewHandle 
CopyLong ImageHandle 

PullLong $0 
Idy#2 
Ida [$0] 
sta READBlock+4 
Ida [$O],y 
sta READBlock+6 

; OPEN-READ-CLOSE the image file 

OPENGS OPENBlock 
Ida OPENRefNum 
sta READRefNum 
sta CLOSERefNum 
READGS READBlock 
CLOSEGS CLOSE Block 

Chapter 4 - Image Editor 

;Space 
;Length 
;user LD. 
;Attributes (none) 
;Location (anywhere) 

;Fetch the handle 

;Deference it for a pointer 

;Put it in the READ parameter 
;block 

;Open up the image file 
. ;Pass the reference numbers 

;Read the file into the block 
;Close the file 

This will put any binary image in a legal memory block for use by your 
. program. 

The images address can now be passed to the appropriate routine for 
plotting into a window or the super hi-res screen. 

USING RESOURCES 

Using the resource form of an image is quite similar to the binary form 
except that the P16 or P8 calls are replaced by calls to the resource 
manager. 

OPEN your resource file: 

PushWord #0 
PushWord #0 
PushLong #0 
PushLong #PathName 
_ OpenResourceFile 
PullWord FileID 

Aug 15, 1989 

;Space for results 
;Req. file access 
;Res. header address 
;Pointer to a class 1 pathname 

;Open resource file LD. 

Page 4.14 



Call Box Editors Manual 

And LOAD it into memory: 

PushLong #0 
Push Word #$8001 
PushLong #1 
_LoadResource 
CopyLong ResourceHandle 
PullLong $0 
Idy#2 
Ida [$0] 
sta ResourcePointer 
Ida [$O],y 
sta ResourcePointer+2 

Cha ter 4 - Ima e Editor 

;Space for results 
;Requested Type (icon) 
;Requested LD. 

;Handle of resource in memory 
;Deference it for a pointer 

At this point the resource is available to your application. When you are 
done using this resource you can put it away with the Resource Manager 
call CloseResourceFile: 

Push Word FileID 
_ CloseResourceFile 

The images address can now be passed to the appropriate routine for 
plotting into a window or the super hi-res screen. 

BASIC CONSIDERATIONS 

The CALL BOX BASIC Interface uses binary code images. These images 
are loaded into your Applesoft application with syntax as defined in the 
CALL BOX BASIC Interface Manual. Images under Applesoft need no 
special care and feeding. 

Aug 15, 1989 Page 4.15 



Call Box Editors Manual Chapter 4 - Image Editor 

Index of Chapter 4 

ABOUT IMAGES 1 
BASIC CONSIDERATIONS 15 
BINARY FILETYPE $06 12 
EDITOR OPERATION 2 
LOAD IMAGES 6 
RESOURCE FILETYPE (any) 12 
SAVE IMAGES 4 
SOURCE CODE FILETYPE $BO 9 
USING BINARY CODE 13 
USING RESOURCES 14 
USING SOURCE CODE 12 

Aug 15, 1989 Page 4.16 





I So What Software Notice #0 

Call Box 
SOFTWARE NOTICE Contents 

This notice is the index for all of the Call Box software notices. 

April 1,1990 

Current disk = sampler.l 

sampler.1 1 
sampler.1 2 
sampler.1 3 
sampler.1 4 

sampler.1 5 
sampler.1 6 

Program Revision: CB V2.0.1 
New Program: AMP V1.0 
New Program: MERGE.EDIT VXO.l 
New Library: Advanced Function Templates V1.0 

Desktop. Tmplt 
Memory .Tmplt 
GSOS.Tmplt 
Sound.Tmplt 
Long.Strt. Tmplt 
REM.Tmplt 

New Program: AMPER.EDIT V1.0 
New Program: CB.ST ARTUP V1.0 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 

4/90 
4/90 
4/90 
4/90 

4/90 
4/90 

Page 1 of 1 



I So What Software Notice 
Program Revision: CB 
Version: 2.0.1 
Prior Version: 2.0 

This revision fixes 3 bugs found in the software: (see sampler #1) 

#1 

April 1,1990 
January 15,1990 

1. The port commands for local to global and global to local were not referencing the windows 
port ree. This caused the wrong coordinates to be returned. 
2. The long poke command would not poke values to any address other than bank O. Attempts to 
poke addresses above bank zero would result in trashing some bytes somewhere in bank zero. 
3. The SoDGS (GS/OS Emulator) Class1 GpenGS call would only return the first byte of the 
auxtype. This would cause unpredictable results for software using the codes stored in the auxtype 
fields of a ProDGS file. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



Iso What Software Notice 
New Program: AMP 
Version: 1.0 

#2 

April 1,1990 

This program is an Ampersand interpreter for the program CB. and is supported by the Call Box 
BASIC program AMPER.EDIT found on C.B.P.A. sampler #1. 

This program is installed after installing the file CB. You can now issue Ampersand (&) commands 
(Edit these commands with the Call Box BASIC programAMPER.EDID. This program will use a 
page of bank zero memory just as most tools will. This page will be managed automatically by the 
program. It will be disposed of by the issue of the CBShutdown command (CALL QF). 

Using ampersand commands is advantageous in the fact that you do not have to RESTORE 
C B. V AR S because variables are not used to identify functional families in ampersand 
programming. The disadvantage in using ampersand commands is that they usually take up more 
code space than calls and if you heed the aforementioned advantage you will not be able to locate the 
BASIC Driver global page. If you use ampersand style commands (preferable for foreign lqnguage 
users) it is mrongly advised that you still RESTORE CRV ARS because many "advanced" functions 
of the BASIC driver depend on some of the addresses it contains. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 

.< 



I So What Software Notice 
New Program: MERGE. EDIT 
Version: X.O.l 

#3 

April 1,1990 

This program is only 2 functions of a future un-announced program. It is provided however to aid 
in the use of templates for those of you who do not have Applesoft merge programs. 

Merge.Edit will merge two Applesoft programs into one or will remove previously merged code 
sections. This program is filetype S16 and should be placed in the EDITORS subdirectory so it can 
be selected from the Editors menu in the launching shell. 

When you enter Merge.Edit you will be presented with an info window displaying stats on two 
Applesoft programs, one called Applesoft and the other called Applesoft (aux). You can select 
Display from the Functions menu and two scroll windows will fill the screen. This is an alternate 
display mode for this editor and should only be used when speed is not a factor to you ... it is very 
slow! (This will be fixed eventually,for right now this is experimental code). 

Use the File menu selection Load Applesoft to load your target program (the program that is to be 
written to). Next load the program that is to be appended to this file by using the File menu ~election 
Load Applesoft (aux). Now select the Functions menu selection Merge to write the aux program into 
the main program. You can now select Save Applesoft or even Save Text which saves a text file of 
the Applesoft program code. You can repetitively load and merge several Applesoft aux program 
code segments without indicent. NOTE: Once a program has been merged the aux program copy 
in memory can not be used again, it must be reloaded if you want to remove the merged code for 
example. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



I So What Software Notice 
New Library: ADVANCED FUNCTION TEMPLATES 
Version: 1.0 

#4 

April 1,1990 

This library contains merge-able program segments which give your Call Box BASIC programs 
instant access to routines that are not in the supported command set. 

The following are breif descriptions of each templates functions and use. These templates follow the 
Call Box BASIC Standard for Line Numbering and are fully REMed. Refer to the Tech Notes for 
the exact use of the routines contained in these templates. 

DESKTOP.TMPL T 
This template is the minimum required code necessry for a desktop application. It includes Desktop 
Initialization, entity loading thermometer, Event loop, Menu distributor, Close topmost window, 
No operation and Quit.routines and is used as the starting template in creating a new Call Box 
BASIC desktop application. 

MEMORY.TMPL T 
This template provides you with 4 important memory allocation j de-allocation routines. This 
template is needed by most of the other templates and should rarely be omitted. You can Allocate a 
block of memory and deallocate it or Allocate a direct page and deallocate it. IMPORT ANT 
PRIMAL FUNCTIONS! 

GSOS.TMPLT 
This template gives you the ability to use SoDOS (GS/OS emulator) to issue Class 0 and Class 1 
GSjOS commands. These commands are vital for things like sound or OBJ/EXEC file loading. You 
get A fully automated GSOS Class 1 file load, GSExpandPath, GSOpen, GSRead, GSClose, 
GSOS Error Handler plus error messages. 

SOUND.TMPL T 
This template gives you the ability to load and play sound files in either of the ACE compressed 
modes or normal uncompressed form. You get A fully automated sound file loader!uncompressor, 
Play sound and Play sound exclusive. Startup and shutdown code is included as well. 

LONG.STRT.TMPLT 
This template changes the first line in the DESKTOP.TMPLT to use the CB.STARTUP program 
which is used for long Call Box BASIC program code segments that can not to do a -CB from 
within themselves. 

REM.TMPLT 
This template is used to either zap the REM statements out of your program to conserve memory 
space or to put them back in to deliniate a printout. This template effects the REM statements in the 
Call Box Advanced Function Templates only. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



I So What Software Notice 
New Program: AMPER.EDIT 
Version: 1.0 

This program is used to edit the ampersand text for the program AMP. 

#5 

April 1,1990 

This program is written in Call Box BASIC and is used to edit the text of the Ampersand commands 
found in the program AMP. This program must be run in the same directory as the file AMP is 
located. Each ampersand command is 8 characters maximum and all are edited by either pointing 
and clicking on them in the dialog box or step through them using the tab and left and right arrow 
keys. Caution should be observed when editing ampersand commands so that no command is 
created that contains character combinations that duplicate any Applesoft "tokens". 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



I So What Software Notice 
New Program: CB.STARTUP 
Version: 1.0 

This program is used by the code supplied in LONG.STRT.TMPLT. 

#6 

April 1,1990 

This program simply sets the screen to 80 column text, starts-up CB and RESTOREs the file 
CRV ARS. The trick to this program is that it CHAINs back into its calling program which then 
continues operation without ever having to start-up CB from within itself. This allows the calling 
program to be as large as there is memory for ... (approx 28 to 30K). The calling program must use 
the program line presented in LONG.STRT.TMPLT and then this program will be evolked 
automatically. it should be in the same directory as CB, CB.V ARS and your calling program, other 
configurations will necessitate that you alter the paths to suit. 

This program should not be run directly! It should only be called from another Applesoft program 
using the LONG.STRT.TMPLT code line. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



Iso What Software Notice #0 

Call Box 
SOFTWARE NOTICE Contents 

This notice is the index for all of the Call Box software notices. 

July 1,1990 

Current disk = sampler.2 

sampler.2 1 
sampler.1 2 
sampler.1 3 
sampler.1 4 

sampler.1 5 
sampler.1 6 
sampler.2 7 
sampler.2 8 
sampler.2 9 

Program Revision: CB V2.1 b3 
New Program: AMP V1.0 
New Program: MERGE.EDIT VXO.l 
New Library: Advanced Function Templates V1.0 

Desktop. Tmplt 
Memory.Tmplt 
GSOS.Tmplt 
Sound. Tmplt 
Long.Strt. Tmplt 
REM. Tmplt 

New Program: AMPEREDIT Vl.O 
New Program: CB.ST ARTUP V1.0 
Program Revision: WINDOW.EDIT V1.1b3 
New Program: ACE.EDIT V1.0 
New Program: PA TTERN.EDIT V1.0 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 

7/90 
4/90 
4/90 
4/90 

4/90 
4/90 
7/90 
7/90 
7/90 

Page 1 of 1 



I So What Software Notice 
Program Revision: CB 
Version: 2.1b3 
Prior Version: 2.0.1 

#1 

July 1,1990 
April 1,1990 

This revision fixes 1 bug found in the software and adds 1 new function: (see sampler #2) 

V2.0.1 April 1990 
1. The port commands for local to global and global to local were not referencing the windows 
port rec. This caused the wrong coordinates to be returned. 
2. The long poke command would not poke values to any address other than bank O. Attempts to 
poke addresses above bank zero would result in trashing some bytes somewhere in bank zero. 
3. The SoDOS (GS/OS Emulator) Class 1 OpenOS call would only return the first byte of the 
auxtype. This would cause unpredictable results for software using the codes stored in the auxtype 
fields of a ProDOS file. 

V2.1b3 July 1990 
1. The Dialog command to return text would malfunction when 2 or more text items were fetched. 
The program was not updating an internal pointer. 
2. CALL SF has been added to this driver. This call creates and operates LOAD and SA VB dialogs 
which are identical to STANDARD FILE TOOL boxes in OS/OS V5.0.2. CB V2.1b3 requires the 
file SF and CB.INITbl to be present in the boot volumes SYSTEM/SYSTEM.SETUP 
subdirectory. The old CB.INIT can be discarded. To make the SF functions available in BASIC add 
the following statements directly after you issue a RESTORE CB.V ARS ... 

GS = A Y + 3 : SF = GS + 3 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



Iso What Software Notice 
Program Revision: WINDOW. EDIT 
Version: 1.lb3 

This revision fixes several bugs and adds 1 new feature. 

.#7 

July 1,1990 

This revision adds a dialog that lets you set the rectangles that describe the windows nonnal and 
zoomed rectangles. This selection is called NUMERIC RECfS. The color table has been fixed so 
that Alert windows come up looking right. This change affects the colors dialog and some re
familiarization will be needed to use this dialog properly. Several internal and obscure errors have 
been corrected. These errors altho not noticable by the user caused imbalances in the operating 
system that could cause hangs or crashes in special circumstances. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



I So What Software Notice #8 
New Program: ACE EDIT 
Version: 1.0 July 1,1990 

This program is an ACE (Audio Compression and Expansion) editor named ACErs. 

This program is titled ACErs by Joe Jaworski and is used to create compressed sound files from 
uncompressed ones or to create uncompressed sound files from compressed ones. There are 
facilities to set the playback speed and volume as well as to preview your sound files. 

Sound files created (sampled) with any of the popular digitizing hardware/software products can be 
edited with ACE EDIT and the size limit of the sound file is proportional to the amount of memory 
your computer has. This program has operating instructions included under the colored apple menu 
as well as a description of a proposed compression standard for these files. 

Sound Files found on the GEnie BBS as well as other Apple specific bom:ds are usually in forms 
compatible with this editor and you can directly download them for immediate use. 

I would like to take this opportunity to thank Joe Jaworski for donating this program for your use. 
He has created some of the Call Box WYSIWYG Editors, HyperLaunch and numerous other 
programs and is one of the major movers and shakers of the Apple IIgs community aside from 
being one of the most intelligent programmers I know. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



ISo What SoftwareN otice 
New Program: PATTERN.EDIT 
Version: 1.0 

This program is a Pattern Editor which is writter in Call Box BASIC. 

#9 

July 1,1990 

This program edits patterns for use by the Call Box BASIC driver. You can load or save patterns 
and edit or create patterns using point and click type of editing. The program is self evident as to 
how it works and uses some advanced techniques in Call Box BASIC programming. This program 
should be listed out and used as a tutorial and example code for you programming work. The 
controls used in this editor are "home brewed" and not under the direction of the Control Manager. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 



I So What Technical Notes #0 

Call Box 
TECHNICAL NOTES Contents April 1.1990 

This technical note is the index for all of the Call Box technical notes. * R * = Revised * * * = New 

1 Tool Loading using CB.Tool.List 1/90 
*R* 2 Allocating Your Own Memory 2/90 
*** 3 The Call Box BASIC Global Page 2/90 
*** 4 Allocating Direct Pages 2/90 
*** 5 Finding a Ports Pixel Image 2/90 
*** 6 Using GS/OS Calls 2/90 
*** 7 Setting up a Special Edit Menu 2/90 
*** 8 Directory Structures 2/90 
*** 9 Custom Desktops 2/90 
*** 10 Using Sound in your BASIC Applications 2/90 
*** 11 The Call Box Standard for Line Numbering 3/90 
*** 12 Recommended Reference Documentation 3/90 
*** 13 Standard Program Templates 3/90 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





Iso What Technical Notes #1 

Call Box 
Tool Loading using CB. Tool.List 
Written by: William Stephens January 15,1990 

This technical note describes the loading of system tools using the special files named 
CB.TOOL.LIST, START and CB.PreLaunch in the Call Box TPS V2.0. 

Tools are loaded under as/os V5.0.2 in the Call Box TPS environment. These tools are 
subsequently re-started by the Call Box BASIC Driver under ProDOS 8 control. A method for 
loading just the files you need is provided by the use of the file CB.TOOL.LIST. This file is placed 
in the SYSTEM/fOOLS subdirectory of your boot volume and is a standard text type file which you 
can edit with any word processor or text editing software. Instructions for editing the file is provided 
in the file itself which also covers the startup order for system tools. 

The file CB.TOOL.LIST is read by the programs CB.PreLaunch and the special START program 
for use on bootable Call Box BASIC disks. These files startup and then shutdown the specified 
tools making them memory resident ... Call Box BASIC can then re-hook these tools into the system 
and make them available to your Call Box BASIC programs. 

The files CB.PreLaunch and the special START are located in the CB.Init subdirectory of the 
Launching Shell disk. This subdirectory contains other special files which you should not have to 
directly manipulate. These flIes are copied and used by installation scripts which are executed from 
within the Installer program provided on the Launching Shell disk .. 

Some of the tools specified in the file CB.TOOL.LIST are not currently supported in V2.0, these 
tools are noted as such and should not be installed or operated under Call Box BASIC. Failure to 
heed these warnings will cause crashes and hangs galore! The entries in the CB.TOOL.LIST file 
have the following format: i 

04,$0301 Qulckdraw II 
I 32 characters eXictly----~ 

The tool table is terminated with two ASCII zeroes ... OO at the beginning of the last line of the table. 
The format of the rest of this file is up to you and can contain comments, notes or whatever without 
restriction as long as the very beginning lines are the tool table. 

Further Reference 

Call Box BASIC Manual V2.0 

Call Box· So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





I So What Technical Notes 

Call Box 
Allocating Your Own Memory 
Written by: William Stephens 
Revised by: William Stephens 

#2 

January 15,1990 
February 15,1990 

This technical note describes how to use CALL LC (Long Call) to allocate memory blocks for 
your own uSe in the higher banks of the Apple figs memory range. 

Some programs need data buffers for special data needed by a particular programming applications. 
These buffers (blocks) can be allocated by using a Long Call to the Memory Managers New Handle 
function. This function needs a user lD. to allocate blocks with and this lD. is present in the Call 
Box Global Page. Use the following statement to get the user LD. number: 

10 = 6144 + PEEK(PO + 180) 

This statement creates a special user I.D. in the fonn of $18xx, where xx is the assigned user LD. 
for the Call Box Basic Driver. Once you have a user LD. you can then allocate a block of memory. 
FQr example let's allocate a block of memory that is $1000 bytes long, can reside anywhere in 
memory and is locked: 

CALL LC,_O,_$1000,1D,$0000,_0\$0902\_H 
IF H = 0 THEN (memory allocation e"or handler) 

This statement will allocate the block of memory and return a HANDLE for the block allocated. This 
handle is important to remember for de-allocating the block later on so keep this variable. H 
however needs to be DEFERENCED (De-Referenced) to derive a pointer to the memory block 
which is what you need to address the block of memory from your application. Use the following 
statement to deference the handle: 

CALL PE,4,H,P 

Now H will contain the handle of the memory block and P will contain its pointer. 

The techniques outlined here apply to many toolbox functions which can be accessed by CALL LC. 
Some routines will require a user LD. and some will require handles or pointers ... by using these 
statements you will be able to derive the right kind of data for your tool calls. 

Further Reference 
Call Box BASIC Manual V2.0 
Apple figs Toolbox Reference: Volume(s) 1,2 and 3 

Apple is a registered trademark of Apple Computer Inc. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





Iso What Technical Notes 

Call Box 
Allocating Your Own Memory 
Written by: William Stephens 
Revised by: William Stephens 

#2 

January 15,1990 
February 15,1990 

This technical note describes how to use CALL LC (Long Call) to allocate memory blocks for 
your own use in the higher banks of the Apple IIgs memory range. 

Some programs need data buffers for special data needed by a particular programming applications. 
These buffers (blocks) can be allocated by using a Long Call to the Memory Managers New Handle 
function. This function needs a user I.D. to allocate blocks with and this lD. is present in the Call 
Box Global Page. Use the following statement to get the user lD. number: 

ft"" " 

10 = 6144 + PEEK(PO + 180) 

This statement creates a special user lD. in the form of $18xx, where xx is the assigned user lD. 
for the Call Box Basic Driver. Once you have a user lD. you can then allocate a block of memory. 
For example let's allocate a block of memory that is $1000 bytes long, can reside anywhere in 
memory and is locked: 

CALL LC,_0,_$1000,1D,$0000,_0\$0902\_H 
IF H = ° THEN (menwry allocation error handler) 

This statement will allocate the block of memory and return a HANDLE for the block allocated. This 
handle is important to remember for de-allocating the block later on so keep this variable. H 
however needs to be DEFERENCED (De-Referenced) to derive a pointer to the memory block 
which is what you need to address the block of memory from your application. Use the following 
statement to deference the handle: 

CALL PE,4,H,P 

Now H will contain the handle of the memory block and P will contain its pointer. 

The techniques outlined here apply to many toolbox functions which can be accessed by CALL LC. 
Some routines will require a user lD. and some will require handles or pointers ... by using these 
statements you will be able to derive the right kind of data for your tool calls. 

Further Reference 
Call Box BASIC Manual V2.0 
Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3 

Apple is a registered trademark of Apple Computer Inc. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





Iso What Technical Notes #3 

Call Box 
The Call Box BASIC Global Page 
Written by: Eric Joham February 5,1990 

This technical note describes the Call Box BASIC driver GLOBAL PAGE. This page of memory 
contains important addresses for advanced programming of the Call Box BASIC driver. 

Here is a more detailed description of the Call Box BASIC Driver Global Page. Reserved areas are 
not described in detail and should not be used as they may contain important information needed by 
the Driver. 

$xxOO 
I 
I 
I 

$xx6B 
$xx6C 

I 
I 
I 

$xx81 
$xx82 

I 
$xx8D 
$xx8E 

$xx90 
I 

$xxB3 
$xxB4 

$xxB6 
• 

$xxDl 
$xxD2 

$xxD4 
• 

$xxEF 
$xxFO 
$xxF2 
$xxF4 

$xxF6-$xxFF 

(+0) 

(+108) 

(+130) 

(+142) 
(+144) 

(+180) 
(+182) 

(+210) 
(+212) 

(+240) 
(+242) 
(+244) 
(+246) 

BASIC Driver entry point vectors. Must not be 
modified! All vectors are set to the following: 

jsr $xx6C 
where $xx is the most significant byte of the Global Page 
address. 
Routine vector interpreter. Determines which set of calls 
are to be executed and jumps to high bank subroutine 
distributor. RESERVED! 
Firmware entry point for native mode routines. 
RESERVED! 

Active Flag: Call Box is active ifbit 15 is set. 
Reserved direct page locations. MUST not be used or 
modified! 

User ID: Can be used to obtain memory but must not be changed. 
Reserved direct page locations. MUST not be used or 
modified! 

Stack Size: holds number of pages reserved for native mode stack. 
Reserved direct page locations. Must not be used or modified! 

User Buffer Address: Holds location of user buffer. 
User Buffer Length: Holds length of user buffer. 
Direct Page Size: holds number of pages used by tools. 

Remaining locations are reserved. 

There may be times when you want to directly access the individual Call Box commands such as 
when installing an Ampersand interpreter. The entry points are in the BASIC Driver entry point 
vectors at the beginning of this direct page. The following list identifies these entry points. It should 
be noted that non-Apples oft language access to these vectors is difficult at best because the calls get 
their input information from the Applesoft program listing pointed to by the Applesoft line parser 
located at $Bl in the % page and the output is usually returned in Applesoft variables. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of2 



I So What Technical Notes 

+00 
+03 
+06 
+09 
+12 
+15 
+18 
+21 
+24 
+27 
+30 
+33 
+36 
+39 
+42 
+45 
+48 
+51 
+54 
+57 
+60 
+63 

CALL PO 
CALLPE 
CALLQF 
CALLSC 
CALLPL 
CALLSB 
CALLPN 
CALLLN 
CALLRE 
CALLOV 
CALLRR 
CALLAR 
CALLEV 
CALL CD 
CALLTX 
CALLPT 
CALLWN 
CALL ME 
CALLDI 
CALLTL 
CALLLC 
CALLAY 

Further Reference 
Call Box BASIC Manual V2.0 

Big Poke command 
Big Peek command 
Shutdown Call Box BASIC command 
Screen commands 
Palette commands 
Scanline Control Byte commands 
Pen commands 
Line command 
Rectangle command 
Oval command 
Rounded Rectangle commands 
Arc commands 
Event commands 
Cursor commands 
Text commands 
Port commands 
Window commands 
Menu commands 
Dialog commands 
Tool commands 
Long Call command 
Super Array commands 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 

#3 

Page 2 of2 



I So What Technical Notes #4 

Call Box 
Allocating Direct Pages 
Written by: William Stephens February 9,1990 

This technical note describes how to allocate direct pages needed by some tools and for your own 
applications use. 

Direct pages are 256 bytes long and reside in bank zero of your IIgs. These pages are page aligned 
(starting on page boundaries ie: 0, 256, 512, 768 ... ). Some tools require a direct page for their own 
use and some require more than one yet others require none ... refer to the Tool Box Reference 
Manuals for the exact information on the tool you wish to use. Usually in Call Box BASIC you will 
not need to worry about this but when you wish to use tools not directly supported by the BASIC 
driver then you must take matters into your own hands and allocate your own memory. 

Allocating direct pages under Call Box is quite simple but requires a machine code patch to call 
ProDOS 8 for some space. This patch can be installed by using the BigPOKE command. 

As an example let's put the patch in a rarely used area of the input buffer at $2CO (704). 

20 CALL PO,4,704,$F52001 A9 : CALL PO,2,708,$60BE 

The first call installs 4 bytes and the second call installs another 2 bytes for a total of 6 bytes. The 01 
part of the hexidecimal number in the first call is the number of pages you wish to allocate ... if this 
is changed to 03 for example then 3 direct pages will be allocated. To actually do the allocation you 
need to call this patch. 

CALL 704 

The next thing you need to do is inform Call Box about this allocation by incrementing the direct 
page size by the amount of direct pages you have allocated. 

A = PEEK(PO+244} : A = A + 1 : POKE PO+244,A 

The last thing you need to do is pass the address of your global page back to your program so you 
have a record of where it is. This is accomplished by multiplying the current page count by 256 and 
subtracting it from the Call Box BASIC global page address: 

A = PO • (A*256) 

Direct page de-allocation should be performed by Call QF and should not be attempted on your 
own. You really have to know what you are doing to make this type of thing happen. 

Further Reference 
Call Box BASIC Manual V2.0 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





Iso What Technical Notes 

Call Box 
Finding a Ports Pixel Image 
Written by: William Stephens 

#5 

February 15,1990 

This technical note describes how to find the address to a grafports pixel image. This address is 
needed for direct accessing of the pixel image. 

Grafports, unlike other entities do not have a call to return the handle or pointer to their images. The 
need will arise from time to time when you need to know this address for some reason like fetching 
color palettes or SCB's from the grafports pixel image. A grafport in Call Box BASIC differs from 
the traditional grafport in that the pixel image also includes all the SCB's and all 16 color palettes. 
When the port is displayed only the SCB's and the majority color palette is used, leaving the other 
15 color palettes in the ports pixel image and not in the display pixel image at $El!2000. To access 
these other palettes you need to know their address. To derive the address of a ports pixel image use 
the following procedure: (N = Ports Entity Number A = Ports Pixel Image Address) 

A = ({ PEEK{PO + 120)* 65536)+ 256) + (N * 4) 
CALL PE,4,A,A : CALL PE,4,A,A : A = A + 2 : CALL PE,4,A,A 

This will find the address of the grafports pixel image and put the results in A. If you want to access 
the SCB's then add 32,000 to the value A, if you want to access the color tables then add 32,256 
to the value A. 

Example: 
Let's copy all of the color palettes associated with a Call Box Grafport to the display grafport. First 
you must run the above procedure and then use the Quickdraw II call SetColorTable ($OE04) 
in a FOR - NEXT loop which sequentially reads palettes 0 through 15: 

A = A + 32256 : FOR N = 0 TO 15 : CALL LC,N,_A\$OE04\ 
A = A + 32 : NEXT 

This is just a single example to give you the ''feel' of how this technique works. It is handy to 
know about grafport record structure plus handles and deferencing to fully appreciate the power and 
flexibility of this type of procedure. Unfortunately ... these things may be hard to understand for the 
uninitiated. At the very least this tech note will allow you to use this technique without having to 
fully understand it ... for now that is. 

Further Reference 

Apple IIgs Toolbox Reference Vol 1,2 and 3 
Call Box BASIC Manual V2.0 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





I So What Technical Notes .#6 

Call Box 
Using GS/OS Calls 
Written by: William Stephens February 15,1990 

This technical note describes how to use GS/OS Class 1 calls to load a disk file into an allocated 
block of memory. 

Loading and managing your own blocks of data is vital for any sophisticated program and is 
necessary for things such as sound files for the Sound Manager and A. C.E. The process requires 
several steps and necessitates the set-up of a direct page for all the parameter blocks and pathname 
buffer. The scenario goes something like this ... Allocate a direct page, Create the GS/OS Caller, 
Create the Pathname, OPEN the file, ALLOCATE a block for it, READ the file into the block 
followed by CLOSE the file. When you are done with the files data you DE-ALLOCATE the block 
of memory, and then DE-ALLOCATE the direct page and then quit. This is how it's done in 
Assembly language or for that matter from any language. 

The following diagram shows the layout of the needed GS/OS parameter blocks: 

GSOpen ($2010) 
PCou,. (IS) 

R.eCamet' 

I-- Pathnme Ptf. -
Act'" AUowod (0) 

Rtlouru' (0) 

Aoow 

PildyPc 

I-- AUltype -
Storlietype 

I-- -
I-- Crute_Date_Time -
f- -
f- -- Mod_Dl1C_ Time -
- -
- Option Litl (0) -
- BOP -
- B\o<b U",J -
- ReIOW'te BOP -
- RCJourcc BloW -
PUlIDela' b~ Jiu .. sa byte. 

to 
t2 

H 

t8 

tl0 

t12 

tl~ 

t16 

+20 

+22 

t30 

t38 

t~2 

H6 

tlO 

t14 

GSRead ($2012) Expand Path ($200E) GSClose ($2014) 
PC"" •• (l) 

I\eferalcc , 

f- DIII_Buffer_PIr. 

f- RcquCllod Cnt. 

-
-

to 

t2 

t-4 

t8 

f-

f-

peouot (3) 

Input Path -
Output PUh -

Fh, 

to 
t2 

t6 

tl0 

peount (1) 

R.eference' 

PlllmcUf bbck liu .... b)1t1 

f- Trander CDt. 
+ 12 Parameter bklCk .iu = 12 bytu -

Clche Priority t16 

Parameter block Jiu :: 11 by!" 

DI 

DI+8 
D 1+10 

OUT 

GS/OS Caller Routine 

CLC 
XCE 
REP #$30 
JSL $E100A8 
XX 
XXXX 
STA $FE 
BNE OUT 
STZ $FE 
SEP #$30 
SEC 
XCE 
RTS 

Set Native mode 

as/os inline call 
Call code 
Parameter Ptr. 
Handle errors 

Set emulation mode 

OSJOS Caller Rowinc .Iu = 2S by ttl 

to 
t2 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 6 



I So What Technical Notes #6 

The first step of this process is to allocate and then setup the direct page work area. Allocate 1 direct 
page as outlined in tech note 4: 

CALL PO,4, 704,$F52001 A9 : CALL PO,708,$60BE : CALL 704 
A = PEEK(PO + 244} : A = A + 1 : POKE PO + 244, A : 

01 = PO . (A 11 256): 
FOR I = 0 TO 255: POKE 01 + 1,0: NEXT 

D 1 equals the starting address of this direct page. Let's layout the direct page as follows ... starting 
at address D1 put the GS/OS Caller Routine which takes up 25 bytes. Next is the GSOpen 
parameter block which is 58 bytes long followed by the GSRead block (18 bytes) the Expand_Path 
block (12 bytes) and the GSClose block (4 bytes) finally let's use the last 128 bytes of the direct 
page for the pathname buffers. Give a variable to each of these locations to simplify the code. 

02 = 01 + 25 : 03 = 02 + 58 : 04 = 03 + 18 : 05 = 04 + 12 : 
06 = 01 + 128 : 07 = 01 + 190 : 08 = 01 + 188 

Now D1 = GS/OS Caller Routine, D2 = GSOpen parameter block, D3 = GSRead parameter block, 
D4 = Expand_Path block, D5 = GSClose parameter block, D6 = Input buffer, D7 = Output Path 
and D8 = Output Path Buff. 
Its time to setup this page by first writing in the GS/OS Caller routine: 

CALL PO,4,01,$30C2FB18: CALL PO,4,4 + 01 ,$E1 00A822: 
CALL PO,4,14 + 01,$02BOFE85: CALL PO,4,18 + 01,$30E2FE64: 

CALL PO,3,22 + 01,$60FB38 

Next put the PCounts and buffer size in. 
CALL PO,2,02,15: CALL PO,2,03,5: CALL PO,2,04,3 : CALL PO,2,05,1 

CALL PO,2,08,66 
It's now time to put the pathname in the pathname buffer. For this example let's assume that the 
pathname is contained in the string variable A$. : 

L1 = LEN(A$}: FOR I = 1 TO L1: 
A = ASC( MIO$( A$,1,1}}: POKE 06 + 1 + I,A: NEXT: 

CALL PO,2,06,L 1 

Use Expand_Path to create a full pathname from the partial in A$. 

CALL PO,4,2 + 04,06 : CALL PO,4,6 + 04,08 : CALL PO,4,1 0 + 01,04 
CALL PO,2,8 + 01,$200E : CALL 01 

IF PEEK(254} < > 0 THEN (GS/OS ERROR MESSAGE ROUTINE) 

It's now time to make a GSOpen call: 
CALL PO,4,4 + 02,07 : CALL PO,4,10 + 01,02: CALL PO,2,8 + 01,$2010: 

CALL 01 
IF PEEK(254} < > 0 THEN (GS/OS ERROR MESSAGE ROUTINE) 

If this call is successful then all of the data specified in the GSOpen parameter block will be filled 
in. If this call fails for some reason then you need to handle the errors yourself, if the volume 
specified in the pathname is not online then a dialog box will appear prompting you to insert the 
proper volume before proceeding. . 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of 6 



I So What Technical Notes #6 

Pass the reference nwnbers to the other parameter blocks from the GSOpen block.: 

CALL PE,2,2 + 02,A: CALL PO,2,2 + 03,A: CALL PO,2,2 + 05,A 

The GSOpen call will return several pieces of data, one.of them in particular is of intrest to you and 
that is the EOF. EOF (End Of File) is the length of the file you just opened, it's found at the 42nd 
byte of the GSOpen parameter block. You must now use the EOF to allocate a block of memory for 
the file to reside in. Use the procedure outlined in tech note 2 to allocate this block of memory, use 
the EOF for the 2nd (length) parameter in the call.: 

CALL PE,4,42 + 02,L: 10 = 6144 + PEEK(PO + 180} 
CALL LC,_0,_L,10,$0000,_0\$0902\_H 

IF H = ° THEN (MEMORY ERROR MESSAGE ROUTINE) 
CALL PE,4,H,A 

A will hold the address of the beginning of the allocated block and H will hold its handle ... keep 
both of these for later use. . 

Now we can read the file into the block, but first we must setup the GSRead parameter block. Put 
the address (A) and the length (L) into the parameter block.: 

CALL PO,4,4 + 03,A: CALL PO,4,8 + 03,L 

Read the file into the block." 

CALL PO,4,10 + 01,03: CALL PO,2,8 + 01,$2012: CALL 01 
IF PEEK(254} < > ° THEN (GS/OS ERROR MESSAGE ROUTINE) 

All that is needed now is to close the file.: 

CALL PO,4,10 + 01,05: CALL PO,2,8 + 01,$2014: CALL 01 

This puts the file in the block and everything is ready for use. REMEMBER ... A holds the address 
and H holds the handle. Do not loose these values because they are vital for locating and de
allocating this memory block when your program is ready to shutdown. 

Example Code: 
The following pages present actual Applesoft program lines which you can copy into your 
programs. There are 3 memory allocation routines, 5 GS/OS read routine and 3 GS/OS setup/error 
routines. The variables ID,I,A,L,L1,H,P,D1,D2,D3,D4,D5,D6,D7 and D8 are used by these 
routines. H = Memory block handle L = Block size P = Memory block address ID = special user 
I.D. nwnber D1 = Direct page address. 

Allocate a block of memory: (in = L, out = H,P,ID) 
De-Allocate all special blocks: (in = ID, out = ) 
Allocate and clear a Direct Page: (in =, out = D 1) 
Load a file into memory GS/OS Class 1: (in =A$,D1,D2,D3,D4,D5,D6,D7,D8, out = H,P,L,ID) 
GSExpand_Path: (in = A$,D1,D4,D6,D8 out =) 
GSOpen: (in = D1,D2,D5,D7,{full pathname} out =) 
GSRead: (in = D1,D3,P,L out =) 
GSClose: (in = D1,D5 out = ) 
Set-Up the GS/OS Dir. Page and Error Messages: (in =, out = Dl ,D2,D3,D4,D5,D6,D7 ,D8) 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 3 of 6 



I So What Technical Notes #6 

Use routine 56000 once at the beginning of your program and simply put a full or partial 
pathname in A$ and GOSUB 50000 to load it into memory and get the Handle, Pointer and 
Length returned to you. An error handler is included as well using text file GSOSERROR.T. 

44999 REM 
Allocate a block of memory 

45000 ID = 6144 + PEEK (PO + lS0): CALL LC,_0,_L,ID,$0000,_0\$0902\_H: IF H 0 THEN 
55030 

45010 CALL PE,4,H,P: RETURN 
45019 REM 

Oe-Allocate all special Blocks 

45020 CALL LC,ID\$1102\: RETURN 
45029 REM 

Allocate and Clear a Oirect Page 

45030 CALL PO,4,704,$F52001A9: CALL PO,2,70S,$60BE: CALL 704:A = PEEK (PO + 244):A 
= A :,. 1 :POKE PO + 244,A:Ol = PO - (A • 256): FOR I = 0 TO 255: POKE 01 + 1,0: NEXT 

: RETURN 
49999 REM 

Load a file into memory GSiOS Class 1 

50000 GOSUB 50100: GOSUB 50200: CALL PE,4,42 + 02,L: GOSUB 45000: GOSUB 50300: 
GO TO 50400 

50099 REM 

50100 Ll = LEN (A$): FOR I = 1 TO L1:A = ASC ( MIO$ (A$,I,l)): POKE 06 + 1 + I,A: NEXT: 
CALL PO,2,06,Ll: CALL P0,4,2 + 04,06: CALL PO,4,6 + 04,OS 

50110 CALL PO,4,10 + 01,04: CALL PO,2,S + 01,$200E: CALL 01: IF PEEK (254)< > 0 THEN 
55000 

50120 RETURN 
50199 REM 

GSOpen 

50200 CALL PO,4,4 + 02,07: CALL PO,4,10 + 01,02: CALL PO,2,S + 01,$2010: CALL 01: IF 
PEEK (254) < > 0 THEN 55000 

50210 CALL PE,2,2 + 02,A: CALL PO,2,2 + 03,A: CALL PO,2,2 + 05,A: RETURN 
50299 REM 

GSRead 

50300 CALL PO,4,4 + 03,P: CALL PO,4,S + 03,L: CALL PO,4,10 + 01,03: CALL PO,2,S + 
01,$2012: CALL 01: IF PEEK (254) < > 0 THEN 55000 

50310 RETU RN 
50399 REM 

GSClose 

50400 CALL P0,4,10 + 01,05: CALL PO,2,S + 01,$2014: CALL 01: RETURN 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA: 92708 Page 4 of 6 



Iso What Technical Notes #6 

54999 REM 
GSOS Error Handler 

55000 CALL SC,O: HOME: FOR I = 0 TO 21: CALL AY,2,ER,[I],A: IF A = PEEK (254) THEN 
55020 

55010 NEXT 
55020 CALL SC,O: HOME : PRINT "GS/OS Error .... ;: CALL AY,2,ER$,[X],A$: GOSUB 45020: 

CALL - 1052: CALL OF: ENO 
55030 POP CALL SC,O: PRINT "Memory Allocation Error .... : GOSUB 45020: CALL OF: ENO 
55999 REM 

Setup the GSOS Oir. Page and Error Messages 

56000 GOSUB 45030:02 = 01 + 25:03 = 02 + 58:04 = 03 + 18:05 = 04 + 12:06 = 01 + 128:07 = 

01 + 190:08 = 01 + 188 
56010 CALL P0,4,01,$30C2FB18: CALL PO,4,4 + 01,$E100A822: CALL PO,4,14 + 

n. 01,$02BOFE85: CALL PO,4,18 + 01,$30E2FE64: CALL PO,3,22 + 01,$60FB38: CALL 
PO,2,02,15: CALL PO,2,03,5: CALL PO,2,04,3: CALL PO,2,05,1: CALL PO,2,08,66 

56020 CALL AY,1,ER,[21): CALL AY,1,ER$,[21): PRINT CHR$ (4);"OPEN GSOSERROR.T" : 
PRINT CHR$ (4);"REAO GSOSERROR.T" 

56030 FOR I = 0 TO 21: INPUT A: CALL AY,3,ER,[I],A: NEXT : FOR I = 0 TO 21: INPUT A$: 
CALL AY,3,ER$,[I],A$: NEXT: PRINT CHR$ (4);"CLOSE": A = FRE (0) : RETURN 

The Call Box Standard for Line Numbering 
To keep a desktop Applesoft program "tidy" we recommend that certain line number 
ranges be used for certain functions. This will allow you to cut and paste your Applesoft 
(or at least cursor trace) programs using standard templates ... let's face it, toolbox 
programming requires a lot of information to be passed to and from the routines and if you 
already typed it out, why do it again! A growing library of templates is being generated for 
tricky Call Box procedures which are available to you through C.B.P.A. and will follow 
these guidelines, This tech note is one ofthem. The standard goes something li~e this ... 

o . 198 Call Box initialization, Entity loading and program initialization. 
200 - 298 Main Event loop stuff. 
300 - 398 Menu distributor stuff 
400 - 498 Quit stuff 
500 - 39998 (Undefined) 
40000 - 44998 Sound stuff 
45000 - 49998 Memory management stuff (as shown in this tech note) 
50000 • 54998 GS/OS stuff (as shown in this tech note) 
55000 • END Error message handling and environment initialization 

Deviations on this scheme is purely up to you, we just hope that you have a good re
numbering program available because we will adhere to this standard and put out our tech 
notes and sample code dhks using it. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 5 of 6 



Iso What Technical Notes #6 

This is the file GSOSERROR.T. Type this in on any word processor or text entry software and 
save it to disk as a type TXT file. 

Further Reference 
GS/OS Reference 

16 
39 
40 
43 
46 
64 
67 
68 
69 
70 
72 
74 
75 
76 
78 
79 
80 
82 
83 
88 
90 
99 
Device Not Found 
1/0 Error 
No Device Connected 
Disk is Write Protected 
Disk Switched 
Invalid Pathname Syntax 
Invalid Reference Number 
Path Not Found 
Volume Not Found 
File Not Found 
Volume Full 
Version Error 
Unsupported Storage Type 
EOF Encountered 
Access Not Allowed 
Buffer Too Small 
File Is Open 
Unsupported Volume Type 
Invalid Parameter Value 
Not A Block Device 
Block number out of range 
File Does Not Contain Resource Fork 

Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3 
Call Box BASIC Manual V2.0 
Tech Notes 2 and 4 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 6 of 6 



I So What Technical Notes #7 

Call Box 
Setting up a Special Edit Menu 
Written by: William Stephens February 16,1990 

This technical note describes how to modify a menu entity to respond with Special Edit Menu 
features activated by System Windows. 

A Special Edit Menu is a menu which contains the menu items UNDO, CUT, COPY, PASTE, 
CLEAR and CLOSE. These items have I.D. numbers of250 through 255 and are activated 
whenever a system window is the topmost window on the desktop. Most New Desk Accessories 
(NDA's) use these items because NDA's are in system windows. 

The Call Box Menu Editor is capable of including these items by name but not by LD. number. LD. 
numbers are automatically assigned in this editor starting at 256 and are in sequential order, so the 
special edit menu items in your menu would have LD. numbers larger than 256. You can use Long 
Call (CALL LC) to make SetMltemID ($380F) calls to change these items LD.'s to the range 
250 - 255 which would setup the Special Edit Menu. 

Example: 
Make a simple menu entity using the Call Box Menu Editor with the following items: 

Apple 

File 

Edit 

About 

Close 
Quit 

Undo 
Cut 
Copy 
Paste 
Clear 

(enabled) 
(enabled - underlined) 
(enabled) 
(disabled - underlined) 
(enabled - Key = Q) 
(enabled) 
(disabled - underlined - key = Z) 
(disabled - Key = X) 
(disabled - Key = C) 
(disabled - Key = V) 
(disable~) 

About = 256, Close = 257, Quit = 258, Undo = 259, Cut = 260, Copy = 261, Paste = 262 and 
Clear = 263. After you load and display this menu from within your program use the following 
statements to convert the menu item LD.'s to the Special Edit Menu item I.D.'s. 

CALL LC,255,257\$380F\ 
FOR 1 = 0 TO 4: CALL LC,250 + 1,259 + 1\$380F\: NEXT 

Putting the Call Box BASIC Drivers Menu command Check Menu (CALL ME,2,N) in your 
programs event loop will detect the presence or absence of a system window and enable or disable 
these items automatically. 

Further Reference 
Apple JIgs Toolbox Reference: Volume(s) 1,2 and 3 
Call Box BASIC Manual V 2.0 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





I So What Technical Notes 

Call Box 
Directory Structures 
Written by: William Stephens 

#8 

February 18,1990 

This technical note describes the layout of subdirectories for disk and hard disk setups using the 
Call Box TPS or BASIC Driver. 

The following descriptions should be used as a guide for the layout of Call Box environments. You 
will notice that the environment for 3.5 inch disks is a subset of the environment for hard disks. 

Volume (Root) Level 1 

ROOT --- CALL.BOX 

Volume (Root) Level 1 

Hard Disk Subdirectory levels 

Level 2 Level 3 Level 4 

ENTITY l WINDOW 
DIALOG 
MENU 
IMAGE 
SOUND 
CONTROL 

SCRIPTS 
WINDOW.EX 
MENU.EX 
DIALOG.EX 
IMAGE.EX 
EDITORS 
TEMPLATES 

3.5 inch disk Subdirectory levels 

Level 2 Level 3 Level 4 

CB.BASIC -- ENTITY ----, WINDOW 

Further Reference 

DIALOG 
MENU 
IMAGE 
SOUND 
CONTROL 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 

Level 5 

. Level 5 

Page 1 of 1 





I So What Technical Notes #9 

Call Box 
Custom Desktops 
Written by: William Stephens February 22,1990 

This technical note describes how to make desktops containing patterns or pictures instead of the 
standard desktop colors. 

You can set the desktop color by using the screen color call CALL SC,2,$???? after calling CALL 
TL,2,"DESK" and this is quite straight forward and simple .. but if you want some pattern or even a 
picture as your desktop you need to use a different process. This process requires you to use the 
Tool Locator call MessageCenter before calling CALL TL,2,"DESK". 

The Window Manager which handles desktop drawing looks for a desktop message before it creates 
one. If a desktop message is present then the Window Manager uses the information in this message 
to draw the desktop, if no message is found then it uses the standard default colors (usually 
Periwinkle blue in 640 mode or light blue in 320 mode). The Toolbox Reference Manual describes 
this message as follows: 

+4 

+6 

+8 

-

.... 

Reserved 

MessType 

Draw Type 

- Long Any Value ... make it 0 

Word 2 is the Desk Message 

Word 0 = Pattern 1 = Picture 

.,.; 

[ ~ 1 
Data 32 bytes of pattern data or 32000 bytes 

of picture data. 
DrawData 

Making a Message ... 
To make a pattern message put yourself in plain old Applesoft BASIC and type CALL -151, this 
puts you in the monitor. Type in the following line: 

1000: 00 00 00 00 02 00 00 00 

Next you either type in 32 bytes of data which is a pattern or if you have some saved to disk 
BLOAD them at $1008. Now issue the following command: 

BSAVE PATTERN.MESS,A$1000,L$28 

This saves the message to disk as the file PA TTERN.MESS. 

Making a picture message is very similar, but you first need to take a filetype $C 1 picture and 
change its filetype to B IN (Use the File Utilities in the Call Box Launching Shell) and then 
BLOAD it at $1008. Now from the monitor type in the following line: 

1000: 00 00 00 00 02 00 01 00 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 0[2 



Iso What Technical Notes #9 

Next type in this line: 

BSAVE PICTURE.MESS,A$1000,L$7D08 

This is all there is to it! 

Using the Message ... 
After you startup the Call Box BASIC Driver (-CB) and load in its variables (RESTORE 
CB.V ARS) you need to load and then pass the message. Use the GS/OS load code presented in tech 
note 6 to load in your message: 

GOSUB 56000 : A$ = "(pattern or picture).MESS" : GOSUB 50000 

Next you pass the message handle to the message center: 

CALL LC,1 ,2,_H\$1501 \ 

Now when you issue the CALL TL,2,"DESK" your picture or pattern will fill the desktop. This 
condition will persist until you shutdown your IIgs or you issue a delete message command ... 

CALL LC,3,2,_H\$1501\ 

As I said, this condition persists even if you "BYE" out of Applesoft into a GS/OS Launching 
program ... If this launcher is a desktop application like Hyperlaunch or the Finder the desktop will 
still be in the style you put it in with these commands. 

Further Reference 
Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of2 



Iso What Technical Notes 

Call Box 
Using Sound in your BASIC Applications 
Written by: William Stephens 

#10 

February 24,1990 

This technical note describes how to add Sound Manager and ACE (Audio Compression and 
Expansion) tool calls to your Call Box BASIC Applications. 

Care and feeding 
Edit the CB.TOOL.LIST (see tech note #1) file in the SYSTEM/fOOLS subdirectory of your boot 
volume. Load or (import) the file into your word processor or text edit software and copy the lines 
for Sound Manager and ACE and insert them just below the Dialog Manager in the tool list... save 
the CB.TOOL.LIST file back to the subdirectory. (make sure it's still hasfiletype TXT) 

If you are running Call Box BASIC on disk then the file SYSTEM/START will install the ACE 
tools, if your on a hard drive and are not using HyperLaunch V3.0.2 as the launching program then 
you will have to launch the file CB.PreLaunch prior to launching into Call Box BASIC (usually 
once ACE gets put in it stays in ... however, this is not guaranteed, when the system reverts to 
GS/OS again this tool is marked as purgeable and a subsequent applications memory allocation 
process may wipe the tools code out! Going back to Call Box BASIC and using ACE again will 
probably do something screwy ... or destructive!!! be careful, if your not sure launch the file 
CB.PreLaunch again. This is not a concern on a bootable 3.5 inch disk but you must copy the tool 
TOOL.029 to your disks SYSTEM/fOOLS subdirectory, it is not put in by the default initialization. 
You can also alter your disk initialization installer script to include this tool as well. 

Programming with sound 
The sound calls are very simple, but the 2.0 version of SoDOS is limited to 256 block files. (No 
trees as of yet) This is where ACE comes in handy as well as saving disk space for those of you 
who do not have the benefit of a hard drive. 

Both Sound Manager and ACE require a direct page, (that's 2 pages) and waveforms should never 
be loaded in bank zero for obvious space reasons so you will need GSOS calls to load in your 
wavefOlms (use tech note #6). When your program does its environment initialization you 
should do 2 "Allocate and Clear a Direct Page" gosub's to get these pages, save the returned 
variable Dl asSO for the first page andAC for the second. Next you shouldGOSUB 56000 in 
the GS/OS code to setup the GS/OS call block. Now it's time to start these guys up: 

CALL LC,SO\$0208\: REM SoundStartup 
CALL LC,AC\$021 0\: REM Startup ACE 

The next thing you need to do is allocate a block of memory for your sound parameter block ... for 
this explanation we will use only 1. Each parameter block is 18 bytes long, to allocate a memory 
block for it gosub "Allocate a block of memory" and zero it out: 

L = 18 : GOSUB 45000 : H1 = H: P1 = P : 
FOR A = 0 TO 17 : CALL PO,1,0 + A + P1,0 : NEXT 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 4 



I So What Technical Notes #10 

Now you need to load in your sound file. Put the files pathname in the variable A$ then aOSUB 
"Load a file into memory as/os Class 1" 

A$ = "{soundfile pathname}" : GOSUB 50000 : H2 = H : P2 = P : L2 = L 

Even with the file closed you still have the open file infonnation in the as/os caller block, so 
check the Aux type for the freqOffset. This is not a recommended practice by Apple Computer Inc. 
but is the way many wavefonns are annotated. The shareware program ACERS by Joe Jaworski 
uses this type of annotation. 

CALL PE,2,16 + D2,PB : IF PB > 32767 THEN PB = PB • 32768 

You can now check the filetype and see if it's an ACEd file or not: (filetype $CD = ACEd sound 
file). 

CALL PE,2,14 + D2,A : IF A = 205 THEN (goto ACE routine) 

The last piece of overhead you must take care of before playing your sound is the setting up the 
sound parameter block. The toolbox reference specifies this parameter block as follows: 

+0 

+4 

+6 

+8 
+10 

+12 

+16 

-

-

waveStart 

waveSize 

freqOffset 

DOC Buffer 

BufferSize 

nextWavePtr 

volSetting 

-

-

Starting address of wave 

Wavefonn size in pages 

Output sample rate 

DOC buffer start address 

DOC buffer size 

Start of next wave parameter block 

DOC volume setting 

You need only supply the waveStart (P), the wavesize, the freqOffset (PS), and the volSetting (0 -
255). All other parameters should be zero. 

CALL PO,4,P2,P : CALL PO,2,4 + P1,0 + L2/256 : CALL PO,2,6 + P1,PS 
CALL PO,2,16 + P1,255 

Any time after this you can play your sound by issuing the following line: 

CALL LC,$0401,_P1\$OE08\: REM FFStartSound 

Refer to the Apple IIgs Tool Box reference manual for the flags and other subtle nuances of the 
Sound Manager routines. Your sound file will play while your Applesoft program continue to 
execute. If you want program execution to stop while the sound is playing add the following lines 
after the FFStartSound line: 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of 4 



I So What Technical Notes 

CALL LC,0,4\$140S\F: REM FFSoundDoneStatus 
IF F = ° THEN {GOTO the FFSoundDoneStatus line} 
CALL LC,16\$OFOS\: REM FFStopSound 

The ACE Routine 

#10 

ACE has 2 compression styles expressed as ratios ... 8:4 or 8:3. 8:4 means that the compressed 
waveform stored as a file is If2 the size of the same waveform uncompressed, and the 8:3 means 
that the stored file is 3/8 the size of its uncompressed size. 

When you load in a compressed sound file you need to get its size and allocate another block either 
2 (the reciprocal of.5 or 112) times the size of the compressed file for 8:4 or 2.6667 (the reciprocal 
of .375 or 3/8) times the compressed size for 8:3. You can usually tell if a file is in 8:4 or 8:3 style 
by checking the files AuxType and see if it's greater than 32767, If it is then the file is usually 
compressed in 8:3 style, if it's not then it's 8:4. Allocate the expanded sound file memory block as 
follows: 

L = 2 * L : F = 1 : CALL PE,2,16 + D2,A : IF A > 32767 THEN L = (L / 2) * 
2.6667 : F = 2 
GOSUB 45000 : H3 = H : P3 = P : L3 = L : L = L3 / 512 

It's now time to expand the sound file in the first memory block to the new memory block (this can 
take a while depending on the size of the original soundfile): 

Now dispose of the first memory block: 

CALL LC,_H2\$1002\ : REM DisposeHandle 

And setup the sound parameter block: 

CALL PO,4,P1,P3 : CALL PO,2,4 + P1,.0 + L3/256 : CALL PO,2,6 + P1,A 
CALLPO,2,16 + P1,255 

Finally goto the FFStartSound line to play the sound file. 

Remember your Memory ... 
YOU MUST BE VIGILANT! When you use these procedures you must dispose of the H2 or H3 
blocks accordingly before you reuse these routines from within the same application. Failure to do 
this will cause the IIgs to accumulate uncompressed sound files in memory which takes up "Lots" 
of room!!! Sometimes this is exactly what you want to do. Remember to keep a record of all the 
allocated blocks handles and pointers for disposal or access later on because H2 and H3 are 
overwritten each time a sound file is loaded. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 3 of 4 



Iso What Technical Notes #10 

Example Code: 
This page presents actual Applesoft program lines which you can copy into your programs. There 
are 3 Sound Manager and ACE routines, The load sound routine needs the GSjOS code presented in 
tech note #6. The variables ID,Dl,D2,DT,SO,AC,A,PB,F,H,Hl,H2,H2,P,P1,P2,P3,L,L1,L2 
and L3 are used by these routines. H-H3 = Memory block handle L-L3 = Block size P-P3 = 
Memory block address ID = special user 1.D. number D1 = Direct page address. 

LoadlUncompress sound file: (in = A$, out = H,H2,H3,P,P2,P3,L,L2,L3,ID) 
Play Sound: (in = , out = ) 
Play Sound exclusive: (in = , out = ) 

39999 REM 
Load/uncompress sound file 

40000 GOSUB 50000:H2 = H:P2 = P:L2 = L 
40010 CALL PE.2.16 + 02,PB: IF PB > 3'2767 THEN PB = PB - 32768 
40020 CALL PE .. 2,14 + 02,A: IF A = 205 THEN 40040 
40030 CALL PO,4,P1,P: CALL PO,2,4 + P1,0 + L2 I 256: CALL PO,2,6 + P1,PB: CALL 

PO,2,16 + P1,255: RETURN 
40040 L = 2 • L:F = 1: CALL PE,2,16 + 02,PB: IF PB > 32767 THEN L = (L I 2) • 

2.6667:F = 2:PB = PB - 32768 
40050 GOSUB 45000:H3 = H:P3 = P:L3 = L:L = L3 I 512 
40060 CALL LC,_H2,_0,_H3,_O,L,F\$OA10\: CALL LC,_H2\$1002\: CALL PO,4,P1,P3: 

CALL PO,2,4 + P1,0 + L3 I 256: CALL PO,2,6 + P1,PB: CALL PO,2,16 + P1,255 
: RETURN 

40099 REM 
Play sound 

40100 CALL LC,0,4\$1408\F: IF F = 0 THEN 40100 
40110 CALL LC,16\$OF08\: CALL LC,$0401,_P1\$OE08\: RETURN 
40199 REM 

Play sound (exclusive) 

40200 CALL LC,$0401,_P1\$OE08\ 
40210 CALL LC,O,4\$1408\F: IF F = 0 THEN 40210 
40220 CALL LC,16\$OF08\: RETU RN 
56099 REM 

Sound I ACE setup 

56100 OT = 01: GOSUB 45030:S0 = 01: GOSUB 45030:AC = 01:01 = OT: CALL LC,SO\ 
$0208\: CALL LC,AC\$021 D\ 

56110 L = 18: GOSUB 45000:H1 = H:P1 = P: FOR A = 0 TO 17: CALL PO,1,0 + A + P1, 
0: NEXT: RETURN 

Further Reference 
Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3 
Call Box BASIC Manual V2.0 
Tech Notes 2, 4 and 6 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 4 of4 



I So What Technical Notes #11 

Call Box 
The Call Box Standard for Line Numbering 
Written by: William Stephens March 15,1990 

This technical note outlines the Applesoft Line numbering standard for use in conjunction with Call 
Box BASIC. 

With the introduction of standard code templates it has become necessary to assign ranges of line 
numbers for special uses. There is still a vast range of undefined numbers for your unique program 
code. More templates will become available in the future so adherence to this standard should be 
observed to be compatible "across the board". Using program templates you can construct a very 
sophistocated and complex program without ever typing in a line of code ... well, maybe one or 
two. 

o . 198 ~all Box Initialization, Entity Loading, and general Program Initialization 
200 • 298 Main Event Loop 
300 . 398 Menu distributor 
400 . 498 Quit handler 

500 . 34998 (undefmed) User assignable line numbers 

35000 • 39998 (reserved forfuture expansion) 
40000 • 44998 SoundManager/ACEhandler 
45000 • 49998 Memory Management routines 
50000 . 54998 GS/OS / OMF2 routines 
55000 • END Error Message and Environment Initialization 

The ???99 line number should always be reserved for a REM statement, so ranges should go from 
???OO to ???98. REM statements should take the form of: 

1999 REM 
This is a REM statement 

2000 (thefirSI line of your routine) 

Getting a REM statement to appear this way requires you to type the line number then the letters 
REM followed by a space and then a control J (Down Arrow) and then your statement followed by 
another control J and the press return. This gives you a well space REM statement with a minimum 
of characters used. 

The first 10 lines (line 0 thru 9) should be reserved for a title statement. This is illustrated in any of 
the Call Box BASIC templates. You will notice that line 9 of these titles is actually an END 
statement followed by the REM. This is just a reminder to you that templates are incomplete code 
segments and should never be run directly. When you make programs using templates these lines 
will always be present after merging, before you use the program created by this process be sure to 
delete lines 0 thm 9 or the program will not run. 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





Iso What Technical Notes 

Call Box 
Recommended Reference Documentation 
Written by: William Stephens 

#12 

March 15,1990 

This technical note lists recommended reference documentation needed to get a full understanding of 
the Apple IIgs and its operating systems. 

The following are monthly publications that are Apple II specific. There are more and possibly better 
known publications than these but you will fmd that you do not get the depth and level of the 
information provided by these ones. 

A2 Central 
P.O. Box 11250 
Overland Park, KS 66207 
(913)469-6502 

8/16 
(Ariel Publishing, Inc.) 
P.O. Box 398 
Pateros, WA 98846 
(509)923-2249 

Computlst 
33821 E. Orville Rd. 
EatonVille, WA 98328 
(206)474-5750 

The following are Apple figs reference manuals that describe the thousands of functions and 
features of the Apple figs and its operating system ... a must for serious programming. 

Manual Name 

Applesoft Programmers Reference 
Beneath Apple ProDOS 
Apple IIgs Firmware Reference 
Apple IIgs Hardware Reference 
Apple figs Toolbox Reference #1 
Apple figs Toolbox Reference #2 
Apple figs Toolbox Reference #3 
GS/OS Reference #1 
GS/OS Reference #2 

A2 Central 
P.O. Box 11250 
Overland Park, KS 66207 
(913)469-6502 

A2 Central 

AW-021 
QS-001 
AW-022 
AW-002 
AW-019 
AW-006 

~.P.D.A. 

A.P.D.A. 

A2Z2022 

A2G0054 
A2G0055 
A2G0057 
A2G0058 
A0229LL/A 
A2F2037 
AOO08LL/A 

20525 Mariani Avenue, MIS 33G 
Cupertino, CA 95014-6299 
1 (800)282-2732 

This support documentation is vital to understanding the Apple IIgs ... at first glance it seems like a 
lot but once you have been through it it will seem slightly inadequate. This is the nature of the 
beast. .. when you are dealing with systems as complex as the ones associated with the Apple IIgs it 
is virtually impossible to document all the possible ways of turning it, however .. these references 
will take you most if not all of the way there. 

Further Reference 

Call Box· So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 





I So What Technical Notes 

Call Box 
Standard Program Templates 
Written by: William Stephens 

#13 

March 20,1990 

This technical note describes the Standard Call Box BASIC Templates which are used to construct 
Call Box BASIC applications. 

The templates outlined here should be inserted into your program code using the MERGE.EDIT 
program provided on sampler #1. This. merge program will overwrite existing lines which gives it 
an update capability ... Other merge programs may not work this way and this type of action is 
needed for proper template integration. 

Desktop. Tmplt 
o 
1 
2 

REM 
REM 

REM 
BASIC CODE TEMPLATE 

3 REM Desktop environment 
4 REM -------------------------------------
5 REM Reference: 
6 REM -------------------------------------
7 REM So What Software V1.0 25-Jan-90 
8 REM ===================================== 
9 END: REM 

10 PRINT CHR$ (4);"PR#3": HOME : PRINT CHR$ (4);"-CB": PRINT CHR$ (4);"RESTORE 
CB.VARS" 

20 CALL TL,2,"DESK": CALL SC,2,640: CALL SC,1: CALL WN,3: CALL CU,1: CALL CU,3: 
GOSUB 56000 

39 REM 
Load in the Entities ... 

40 CALL WN,O,3,"Entity:Window:Load.Window": CALL WN,1,3: CALL PT,O,3: CALL TX,1,O,15: 
CALL PN,2,5,17: CALL TX,O,O,"Loading Entities ": CALL WN,4,3,1 

41 GOSUB 42: GOTO 50 
42 CALL PT,O,3: CALL TX,O,O,". ": CALL WN.4,3,.1: RETURN 
50 CALL ME,O,1,"Entity:Menu:M.Master": CALL ME,1,1: GOSUB 42 
51 CALL DI,O,2,"Entity:Dialog:DemoQuit.D": GOSUB 42 
99 REM 

Set-up Entities 

100 CALL WN,2,3: REM Close the Loading window 
140 CALL CU,2: REM change to arrow cursor 
199 REM 

Event Loop 

200 CALL EV,@,X,Y,B,M,K,T,C,D: CALL ME,2,1: REM check for an event 
210 IF C = 17 THEN 300: REM Menu item hill 
220 IF C = 22 THEN 290: REM Close box hitl 
288 GOTO 200 
290 CALL WN,8,N,D,2: CALL WN,2,N: GOTO 200: REM Close the top window 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 5 



Iso What Technical Notes 

Desktop.Tmplt (continued) 
299 REM' 

Menu Distributor 

300 M1 = INT (0 / 65536):M2 = (0 - M1 • 65536) - 255 
310 ON M2 GOSUB 330,400 
320 CALL ME,7,1 ,M1 ,0: GOTO 200: REM Un-hilite the 
330 RETURN: REM Do Nothing II 
399 REM 

Ou~ 

400 CALL 01,1,2: CALL 01,2,2,1 
410 IF I = 1 THEN 440 
420 IF I = 2 THEN 480 
430 CALL 01,3,2: RETURN 
440 REM 

bar 

479 POP: CALL 01,3,2: CALL OF: PRINT CHR$ (4);"BYE" 
480 REM 
498 POP: CALL 01,3,2: CALL OF: END 
55998 REM 

... Environment Initialization ... 

56000 REM 
59998 RETURN 

Memory.Tmplt 
o 

2 
3 
4 
5 
6 

REM 
REM 

REM 
REM 
REM 

REM 
REM 

===================================== 
BASIC CODE TEMPLATE 

Memory allocation/de-allocation 

Reference: Tech Note(s) #2,#4 and #6 

7 REM So What Software V1.0 15-Feb-90 
8 REM ===================================== 
9 END: REM 

405 GOSUB 45020 
485 GOSUB 45020 
44999 REM 

Allocate a block of memory 

item 

#13 

45000 10 = 6144 + PEEK (PO + 180): CALL LC,_0,_L,ID,$8000,_0\$0902\_H: IF H 0 THEN 
55030 

45010 CALL PE,4,H,P: RETURN 
45019 REM 

De-Allocate all special blocks 

45020 CALL LC,10\$1102\: RETURN 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of5 



I So What Technical Notes 

Memory.Tmpit (continued) 
45029 REM 

Allocate and Clear a Direct Page 

#13 

45030 CALL PO,4,704,$F52001A9: CALL PO,2,708,$60BE: CALL 704:A = PEEK (PO + 244):A 
= A + 1: POKE PO + 244,A:D1 = PO - (A • 256): FOR I = 0 TO 255: POKE D1 + 1,0: NEXT 

: RETURN 
55029 REM 

Memory Error 

55030 POP: CALL SC,O: PRINT ·Memory Allocation Error. .. ·: GOSUB 45020: CALL OF: ENO 

GSOS.Tmplt 
o 
1 
2 
3 
4 
5 
6 

REM 
REM 

REM 
BASIC COOE TEMPLATE 

REM GS/OS Calls 
REM ----------------- -- ------------ -- ----

REM Reference: Tech Note #6 
REM ----------------- ---------------- ----

7 REM So What Software V1.0 24-Feb-90 
8 REM ===================================== 
9 END: REM 

49999 REM Load a file into memory GS/OS Class 1 

50000 GOSUB 50100: GOSUB 50200: CALL PE,4,42 + D2,L: GOSUB 45000: GOSUB 50300: 
GOT050400 

50099 REM 

50100 L1 = LEN (A$): FOR I = 1 TO L1:A = ASC ( MID$ (A$,I,1)): POKE 06 + 1 + I,A: NEXT: 
CALL PO,2,D6,L 1: CALL PO,4,2 + D4,06: CALL PO,4,6 + D4,08 

50110 CALL P0,4,10 + D1,D4: CALL PO,2,8 + D1,$200E: CALL D1: IF PEEK (254) < > 0 THEN 
55000 

50120 RETURN 
50199 REM 

GSOpen 

50200 CALL PO,4,4 + 02,D7: CALL PO,4,10 + D1,D2: CALL PO,2,8 + D1,$2010: CALL D1: IF 
PEEK (254) < > 0 THEN 55000 

50210 CALL PE,2,2 + D2,A: CALL PO,2,2 + 03,A: CALL PO,2,2 + D5,A: RETU RN 
50299 REM 

GSRead 

50300 CALL PO,4,4 + D3,P: CALL PO,4,8 + D3,L: CALL PO,4,10 + 01,03: CALL PO,2,8 + 
D1,$2012: CALL D1: IF PEEK (254) < :- 0 TH EN 55000 

50310 RETU RN 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 3 of 5 



I So What Technical Notes #13 

GSOS. Tmplt (continued) 
50399 REM 

GSClose 

50400 CALL PO,4,10 + D1,D5: CALL PO,2,8 + D1,$2014: CALL D1: RETURN 
54999 REM 

GSOS Error Handler 

55000 CALL SC,O: HOME : FOR I 
55020 

o TO 21: CALL AY,2,ER,[I],A: IF A PEEK (254) THEN 

55010 NEXT 
55020 CALL SC,O: HOME : PRINT "GS/OS Error .. .";: CALL AY,2,ER$,[I],A$: GOSUB 45020: 

CALL - 1052: CALL OF: END 
55999 REM 

Setup the GSOS Dir. Page and Error Messages 

56000 GOSUB 45030:D2 = D1 + 25:D3 = D2 + 58:D4 = D3 + 18:D5 = D4 + 12:D6 = D1 + 128:D7 
D1 + 190:D8 = D1 + 188 

56010 CALL PO,4,D1,$30C2FB18: CALL PO,4,4 + D1,$E100A822: CALL PO,4,14 + 
D1,$02BOFE85: CALL PO,4,18 + D1,$30E2FE64: CALL PO,3,22 + D1,$60FB38: CALL 
PO,2,D2,15: CALL PO,2,D3,5: CALL PO,2,D4,3: CALL PO,2,D5,1: CALL PO,2,D8,66 

56020 CALL AY,1,ER,[21): CALL AY,1,ER$,[21): PRINT CHR$ (4);"OPEN GSOSERROR.T": 
PRINT CHR$ (4);"READ GSOSERROR.T" 

56030 FOR I = 0 TO 21: INPUT A: CALL AY,3,ER,[I],A: NEXT: FOR I = 0 TO 21: INPUT A$: 
CALL AY,3,ER$,[I],A$: NEXT: PRINT CHR$ (4);"CLOSE":A = FRE (0) 

Sound. Tmplt 
o 
1 
2 

REM 
REM 

REM 
BASIC CODE TEMPLATE 

3 REM Sound I ACE Calls 
4 REM -------------------------------------
5 REM Reference: Tech Note #10 
6 REM 
7 REM So What Software V1.0 14-Mar-90 
8 REM ===================================== 
9 END: REM 

410 CALL LC\$031 D : CALL LC\$0308\ 
490 CALL LC\$031D : CALL LC\$0308 
39999 REM 

Load/uncompress sound file 

40000 GOSUB 50000:H2 = H:P2 = P:L2 = L 
40010 CALL PE,2,16 + D2,PB: IF PB > 32767 THEN PB = PB - 32768 
40020 CALL PE,2,14 + D2,A: IF A = 205 THEN 40040 
40030 CALL PO,4,P1,P: CALL PO,2,4 + P1,0 + L2 I 256: CALL PO,2,6 + P1,PB: CALL 

PO,2,16 + P1,255: RETURN 
40040 L = 2 • L:F = 1: C~LL PE,2,16 + D2,PB: IF PB > 32767 THEN L = (L I 2) • 

2.6667:F = 2:PB = PB - 32768 
40050 GOSUB 45000:H3 = H:P3 = P:L3 = L:L = L3 I 512 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 4 of 5 



Iso What Technical Notes #13 

Sound.Tmplt (continued) 
40060 CALL LC ,_H2 ,_0 ,_H3 ,_O,L,F\$OA 10\: CALL LC ,_H2\$1 002\: CALL PO ,4, P1 ,P3: 

CALL PO,2,4 + P1,0 + L3 I 256: CALL PO,2,6 + P1,PB: CALL PO,2,16 + P1,255 
: RETURN 

40099 REM 
Play sound 

40100 CALL LC,0,4\$1408\F: IF F = 0 THEN 40100 
40110 CALL LC,16\$OF08\: CALL LC,$0401,_P1\$OE08\: RETURN 
40199 REM 

Play sound (exclusive) 

40200 CALL LC,$0401,_P1\$OE08\ 
40210 CALL LC,0,4\$1408\F: IF F = 0 THEN 40210 
40220 CALL LC,16\$OF08\: RETURN 
56099 REM 

Sound I ACE setup 

56100 OT = 01: GOSUB 45030:S0 = 01: GOSUB 45030:AC = 01:01 = OT: CALL LC,SO\ 
$0208\: CALL LC,AC\$0210\ 

56110 L = 18: GOSUB 45000:H1 = H:P1 = P: FOR A = 0 TO 17: CALL PO,1,0 + A + P1, 
0: NEXT 

Long.Strt.Tmplt 
o 

2 
3 
4 
5 
6 

REM 
REM 

REM 
REM 
REM 

REM 
REM 

BASIC CODE TEMPLATE 

Long Program Initialization 

Reference: 

7 REM So What Software V1.0 12-Feb-90 

8 REM ===================================== 
9 END: REM 

10 FN $ = "_Program Name_": PRINT CHR$ (4);"CHAIN CB.STARTUP" 

Further Reference 

Call Box BASIC Manual V2.0 
Tech Note 2, 3,4,6 and 10 

Call Box - So What Software 10221 Slater Ave. S.ui.te 103 Fountain Valley, CA. 92708 Page 5 of 5 





I So What Technical Notes #0 

Call Box 
TECHNICAL NOTES Contents Julyl 1,1990 

This technical note is the index for all of the Call Box technical notes. *R * = Revised * * * = New 

1 Tool Loading using CB.Tool.List 1/90 
*R* 2 Allocating Your Own Memory 2/90 
*** 3 The Call Box BASIC Global Page 2/90 
*** 4 Allocating Direct Pages 2/90 
*** 5 Finding a Ports Pixel Image 2/90 
*** 6 Using GS/OS Calls 2/90 
*** 7 Setting up a Special Edit Menu 2/90 
*** 8 Directory Structures 2/90 
*** 9 Custom Desktops 2/90 
*** 10 Using Sound in your BASIC Applications 2/90 
*** 11 The Call Box Standard for Line Numbering 3/90 
*** 12 Recommended Reference Documentation 3/90 
*** 13 Standard Program Templates 3/90 
*** 14 Controls in Windows 5/90 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1 



:t ,.f ,:,-. I:. 

,Ii 



Iso What Technical Notes #14 

Call Box: 
Controls in Windows 
Written by: William Stephens May 15,1990 

This technical note describes how to create windows that have controls in them. This procedure 
gives you more flexibility than using just the Dialog Manager. 

The Dialog Manager is a very convienient tool to use for user interaction but is limited in the types of 
controls it can present. You can take matters into your own hands and be your own Dialog Manager 
by using a Window that contains controls that you manage yourself. There is a little more work 
involved in managing your own controls than there is in operating the Dialog Manager, but the 
increased functionality of dialogs created this way far outweighs the added difficulty. 

Virtually every call you will make with this type of window will be of the Long Call variety. Before 
we get into the exact procedure we should first cover the command syntax: 

NewControl 
This call adds a control parameter list to the specified window record and returns the handle for the 
control created. This handle is used to find the control later on and should be stored by your 
program for each control created. If zero is returned then there was an error in creating the control. 
CALL LC,_O,_W ,_R,_ T ,F,V ,P1 ,P2,_C,_O,_O\$091 O\_CH 

FindControl 
This call returns the handle of which control was hit (if any) based on the global mouse coordinates 
and the window pointer. You must supply a 4 byte buffer for the results. 
CALL LC,O,_CH,X, Y,_ W\$131 O\P 

TrackControl . 
This call acts like the Event Manager and tracks the mouse action you take after button down on the 
control. If you depress the mouse on a control and then without releasing, move the pointer off the 
control this routine will signify that no control has been selected. 
CALL LC,O,X,Y,_O,_CH\$1510\P 

DrawControls 
This call draws all the controls in the specified window. This routine is usually used in update event 
loops and in wContDefProc's. 
CALL LC,_W\$1010\ 

GetCtlValue 
This call gets the value of the selected control. 
CALL LC,O,_CH\$1 A1 O\V 

InvalRect 
This call tells the Window Manager that a rectangle has changed and must be updated. 
CALL LC,_RE\$3AOE\ 

Call Box· So What Software 10221 Slater Ave. Suite t03 Fountain Valley, CA. 92708 Page 1 of 8 



I So What Technical. Notes #14 

HiliteControl 
This call hilites or un-hilites the specified control. This call is used to blink or dim buttons and 

. things like that. 
CALL LC,H,_CH\$1110\ 

SetCtlValue 
This call sets the value of the selected control. 
CALL LC,V,_CH\$1910\V 

SetContentDraw 
This call sets the specified window with a new wContDefProc (window contents drawing 
procedure). 
CALL LC,_P,_W\$490E\ 

BeglnUpdate 
This call sets up the Window Manager to handle update events. 
CALL LC,_W\$1 EOE\ 

EndUpdate 
This call ends the update session. 
CALL LC,_W\$1 FOE\ 

_W 
Windows pointer, Get from CALL WN,8 ... 

_C 
Standard Control TypeVafues: 
$00000000 (0) = Button 

_R 
Pointer to controls enclosing rectangle 

_T 

$02000000 (33554432) = Check Box 
$04000000 (67108864) = Radio Button 
$06000000 (100663296) = Scroll Bar 
$08000000 (134217728) = Size Box 

Pointer to text string, Pascal 0 
_CH 

F Controls handle. 
Control Flags (see fig. 14.1) . ',J:::~':S I1,vOO 

{,e, '/101113 Ilweb ~ 
V Horizontal mouse coordinate 
Controls Value. 

PI .,' "i~""!'"m1<!""'.w.X$.q,i,~a! mouse coordinate 
• • ' .I ';,~i,;l'l '~~i~;:'~i~I'" !\,j'Jh' :,1 Data SIze for scroll bar, If nat f.croll then Oi. :.';;.;;.J.~';';S .. ,';lL.\'l"::;i 

, 1 r, \ '\ ~ ~J _P 
P2 .' '<ii,,,),,,: Contents Draw pointer usually 0 
View size for scroll bar, if not scroll then O;k iV 

"~,~,,,.~,~Y~RE,. ,. , 
H . ,(" hi Ie'" , Wiridow rli;tailgle pointer 

Hitite Flag 0 = none, 1-253 = part code, 255 = inactive 

Call Box· So What Software 10221 'Slatdf AV~!fSm\J:¥6:H\'cifintain'Valltly,1eic92708 Pagt: 2 0{8 



I So What Technical Notes #14 

Simple button 1~~tlmOOIU~tlmtmtl~~tllmmllttittltt~ttll 7 111~lltltt~ttltl~lIIlll~tllltmtttI1 I 0 I 
ctllnvis-.J 

Invisible = 1 
Visible = 0 

Si ngle -0 u IIi ne d, squ are -co rne red ,dro p-shadowed bu tto n 
Single-outlined,square-cornered button 

Bold-outlined,round-cornered button 
Single-outlined, round-cornered button 

111 
10 
01 
00 

Check Box 1~~tUOOtl~~tll~I~II~~IUI~IIII~IIIII~11117 111~lllltl~ttlll~llllll~tllll~tllllmlttlll~1111 

Radio Button 

ctllnvis-.J 
Invisible = 1 

Visible = 0 

n~llmOOIII~mnlmll~~lllmmtltt~ttlttilttl 7 16 I 5 14 I 3 12 11 I 0 I 
ctllnvis-.J I I 

Invisible = 1 
Visible = 0 

Family number-

Scroll Bar mllmmltlli~tUtmll~~tllmmtllt~lllllmttI17Itt~tlllll~ltI4 13 12 11 I 0 I 
ctllnvis-.J J 

Invisible = 1 
Visible = 0 

horScroll 
Horizontal scroll bar = 1 

Vertical scroll bar = 0 

rightFlag-
Right arrow on scroll bar = 1 

No right arrow on scroll bar = 0 

leftFlag
Left· arrow on scroll bar = 1 

No left arrow on scroll bar = 0 

downFlag
" Down arrow on scroll bar = 1 

. . N~ down arrow on scroll bar = 0 
1'(10(1') ~·/,:j()rn 11l1flo:):l1of-1 upFlag-

Up. arrow on scroll bar = 1 
'.r 
,I.. No up arrow on scroll bar = 0 

'. rr ,f> '.~rt:~; \/ 

Grow Box 1B~~~'!JI.lllt~tllll~tltlllmtllittillll!I~I;1 
ctl/nvis-.J 

.~:. ","" ,(', ,",i'):)i(O Invisible = 1 

VisiblA != 0 

......... ______ """="='_~"":'""'::"'__"!'!:l~~-~"::"""""~___::=_::__~~-------------I 
Figure 14J.C<mtrol Manager Flag Bits 



Iso What Technical Notes #14 

This procedure is shown in the program "control.demo" on the C.B.P.A.2 Sampler disk. This 
program was created by starting off using the "Desktop.Tmplt" program found on C.B.P.A.1 and 
then control operating code was added. 

The first thing you need is a Window for your controls to be drawn in. Use the Call Box Window 
Editor to create a window with the following specifications ... 

Window type: Alert 
Normal Rectangle: 25,150,175,550 
Zoom Rectangle: 0,0,0,0 
wDataH and wMaxH: 150 
wDataW and wMaxW: 400 

Save this window away to disk as an object file named "ctrl.window". Now load up the program 
template called "Desktop.Tmplt" and save it to disk as the program "my.ctrl.demo". All of the 
following steps will involve adding program lines to the "my.ctrl.demo"program ... Let's roll up our 
sleeves and make a control window now! 

Next we need is a work area for some of the control parameters. In this example I will use a "Direct 
Page" (see tech note 4) because I will not need over 256 bytes of space and both poke/peek and 
LongPoke/LongPeek commands work there. For larger control records you can use a larger block 
of memory as allocated by the Memory Manager in tech note 2. You may, however wish to use 
several direct pages instead because even though using direct pages decreases the available 
Applesoft code memory, both kinds of peeks and pokes will work. Memory Manager memory 
blocks can only be LongPeeked or LongPoked unless they are located in bank zero ... which is 
impossible because Call Box BASIC and the SYSTEM own all of bank zero and nothing is left 
down there to allocate except for direct page requests made to ProDOS8 and Call Box BASIC. 

Type in line 56010 which allocates a direct page for your use and assigns the variable UP to point to 
it. 

56010 CALL PO,4,704,$F52001A9: CALL PO,2,708,$60BE: CALL704:A = 
PEEK(PO + 244): A = A + 1 :POKE PO + 244,A:UP = PO • (A*256) 

You now need to install the control wContDefProc. This is a native mode machine code routine 
which is specified as follow3: l;'!:rnqwo(, JOY nt)iiB:'I.;[ei!;n\ !i:\W;"flfiOi-i· " ; 

:If."{:~ f1{lfJ~{!,j? :)ilJ b·~i!.6j2ni b:-tt L~· .. ~It) :J'"itJ\(I-::~3.i"':' "~:,~' !. _~\ ~,.:}·I;jl'~P'.:'l 

wee nt DefPrec pea ,.(;' ri $.Oi9,.1tGi ;wrrn~gf1irh 1.jRlJ-.sfti'~1l !t)h,:Ebrw.lfldoWri»~\i' :~, ,j~ ,~,!; : 

Pea- .. , ···'_$:90nQh ;"1:;:'[ 11,)t·.J'\I/ =~o,ttl1a:r;!'> -'Il':) f' , '",:,., 'x', 'I '." ' 
, .,f; \!." "'~,, . ~ ~fJ '· .. H ... ' 'I "I. ', •• "f'!!,./Itr\'..... . J ,I)!. 'i '._' 

,', " 'ldx-1 '. ' .. H$,1nr"O, c ';'J"'!'r J'1')lt' "11('!'" "rrrr '\ "I ,; • <,.' .,!'J ,l'f .... "1 ~. {J l,,>, ,\~ ,d'~ J-J~1. r.~'\ ~"lt ('. 

lsi .'" \ $fS~1 P.q~:P~lBbqU 1(ll is.Rfaw9p·ntr;9t.1s 
rtl . jExlt 

Type in line 56020 to put thlscode i~·hte~oW.~~ f + otl) >i ::L; ':~ h 

56020 DATA 244,0,0,244,0,0,162~lt$:rf61,311.j;(J;O';225~r1;O'l! FOR X = 0 TO 13: 
READ A: POKE UP + X,A: NEXT : OX = 16 

. "\~' 

.",. . .' \~ <" \' tl#,' $4.I.t(jti~ tOt ."Jhi"" lr.l\ )~ ':.~ L.(/.H~-,.·~---~.-,~ 

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 4 of 8 



Iso What Technical Notes #.14 

The next thing to do is to put in the control rectangles and the control text if any. These two items 
need to be poked into your workspace because the control manager handles these items by their 
pointers and not the actual data themselves. This is a common type of referencing in tools and .this 
is why you usually need some kind of workspace to use tools effectively. In this example we will 
use all 5 types of standard controls, namely: Simple Button, Check Box, Radio Button, Scroll Bar 
and Grow Box. I have divided the 256 byte work area into 16- 16 byte long sections where each 
section handles either a rectangle or a Pascal type 0 string. The first 16 bytes of this area contains 
the wContDefProc you just entered with line 56020. The fIrst rectangle will be located 16 bytes into 
the area and its corresponding string will reside 128 bytes from the beginning of the rectangle. The 
second will be 32 bytes in and 160 bytes respectively and so on. This scheme is easy to index and 
is written by the control poker code at 55000. 

Let's enter the control poker code fIrst: 

55000 REM 
Control Poker 

55010 READ A: CALL PO,2,0 + DX + UP,A: READ A: CALL PO,2,2 + DX 
+ UP,A: READ A: CALL PO,2,4 + DX + UP,A: READ A: CALL 
PO,2,6 + DX + UP,A: READ A$:DX = DX + 128: GOSUB 55900: 
DX = DX • 112: RETURN 

55900 L 1 = LEN (A$): FOR I = 1 TO L 1:A = ASC (MID$ (A$,1,1)): POKE 
DX + UP + I,A: NEXT: POKE DX + UP,L 1: RETURN 

Use the following lines to poke the controls rectangles and text: 

56029 REM 

56030 
56032 
56034 
56036 
56038 

Poke in the controls rectangles and text 

DATA 46,240,60,300,Button: GOSUB 55000 
DATA 68,240,82,400,Check Box: GOSUB 55000 
DATA 86,240,100,380,Radio Button: GOSUB 55000 
DATA 106,240,120,380,.: GOSUB 55000 
DATA 129,240,143,268,.: GOSUB 55000 

,[lit! ~/L·Ufl, ",ilium ,r; zi ddT ,xncfb(jjr I,,).j 

This completes the Environmental Initialization for your program. Basically, you have created and 
initialized your direct page work area and installed the support data for the 5 controls. There is a bit 
more initializatiort!l(%f~rtWii(f,~ut ~~{)~1er th~ngs must W~~' fIrst. Y?U will not~ce that line 20 of 
your program ends WIth a GOSUB )50000 WhICh rims alPeh~(,&de you Just typed m. Add one more 
statement to the end of this line. This st.atement puts a ~~I~ef::to the Can Box BASIC TaskRecord 
in the variable YR. This poirttet;i~ :tle~d~f for Update 'f~gri.t (detection later on . 

. ~ I :.~~ ;j l 

PSlge5cf 8 
'\ ",' 



I So What Technical Notes #14 

52 CALL WN,0,4,"entity:window:ctrl.window": CALL Wf\1,1,4: 
GOSUB 42 

Now that the window is in we can complete the control initialization. The following line derives the 
windows pointer and then patches this pointer into the control wContDefProc located in your direct 
page workspace: 

110 CALL WN,8,4,WP,1: CALL PO,2,1 + UP,O • INT (WP / 65536): 
CALL PO,2,4 + UP,O + WP • INT (WP / 65536) * 65536 

It's now time to issue the NewControl calls which add the controls to the window: 

112 CALL LC,_0,_WP,_16 + UP,_16 + 128 + UP,!0000000000000011 
,0,0,0,$00000000,_0,_0\$0~1 0\C1 

114 CALL LC,_0,_WP,_32 + UP,_32 + 128 + UP, !OOOOOOOOOOOOOOOO 
,0,0,0,$02000000,_0,_0\$0910\C2 

116 CALL LC,_O,_WP,_ 48 + UP,_ 48 + 128 + UP, !OOOOOOOOOOOOOOOO 
,0,0,0,$04000000,_0,_0\$0910\C3 

118 CALL LC,_0,_WP,_64 + UP,_64 + 128 + UP,!0000000000011100 
,0,1,10,$06000000,_0,_0\$0910\C4 

120 CALL LC,_0,_WP,_80 + UP,_80 + 128 + UP, !OOOOOOOOOOOOOOOO 
,0,0,0,$08000000,_0,_0\$0910\C5 

the final step in getting this window up is to hookup the wContDetProc, show the window and 
draw the controls: 

180 CALL LC,_UP,_WP\$490E\: CALL WN,4,4,1: CALL LC,_WP\$1010\ 

If you run your program at this point you will see your window with the 5 controls drawn in it. 
These controls will not work as of yet but they will at least be there! The following discussion is 
about how to operate the controls that you have created. Operating the controls is similar to 
operating a dialog box except that you use TaskMaster to get your events rather than a proprietary 
dialog manager command like ModalDialog. You want to respond to Window Content Hit events 
(code 19) in order to find, track and respond to control hits. 

Add the followin~ line to detec~ a hit in the contents region of your window: 
/- . ~,( "<-, '\'~r--.~e VIiJYL-, ,,:; . 

240 IF C ~ 19 THEN 500: F\£;."" Contents Hit!:;n/\ 111' :" 1 
This line will route ap.YPlouse click in Y9ui:~1ndow to the routine at 5Qo.J'lh~'r~$t tIung you n~d ; 
to do at 500 is to cQ~6kand see if a co*tt~! ;vtAs hit and if it was, which'ifq~,ti-.~l.Ji.ns. The ,: l 

FindControl command dOesth,~~ t~sk ~~fd.&ns the controls handle. TheJ~Yf~' st¥p is to fetch~is :~ 
handle and then TrackControl which checks If the mouse button was released In the same control. In 
'it is' th~n-this can be considered'~vali(rcqpttOih1t,~hfh}~~·cilri:ifow.;pi:cieess. Type in the" ' 
following lines to Find and then Track your control: 
5,OOi:,f ': CALL LC,O;~25Cl1'.uP~X,Ym~Wf!:\t1:3I1G~PlD ,RE·M.rf·jndControl ," 
5'10'.' < ;1 IF P - 0 THEN 200-"~ ~ ."do ")/;',, 'ljl\hft"'ci lh,-"",{'-tJ'h r '\l ;hr' _ tl.1 'IJ"~_j,-... ,- ••••• .\J.:;; .. l;'-Jt~~ .. ,&." '., ,,' 

515 "", CALL PE,4,250 + UP,HoI:ReMi IFetCnJt\thevcontrbl handle 
520 'I' " CALL LC 0 X Y 0I'n$1l51(O~pi:' R!E'Mt 'fta:C:k'Oo'ntrol ' " , , , ,- ,-
525 IF P = 0 THEN 200 



I So What Technical Notes #14 

Now we are in the home stretch ... all that is left to handle is comparing the returned control handle 
to the handles returned from the NewControl calls and then taking some action based on which 
control was hit. Type in the following lines to compare the handles: 

530 IF H = C1 THEN 598: REM Button Hit! 
535 IF H = C2 THEN 600: REM Check Box Hit! 
540 IF H = C3 THEN 600: REM Radio Button Hit! 
545 IF H = C4 THEN 620: REM Scroll Bar Hit! 
550 IF H = C5 THEN 598: REM Grow Box Hit! 

As you can see some of the control handlers are the same ... as a matter of fact I am only using 3 
handlers for 5 controls. These handlers are analogous to some routine that you want to run in 
response to a control hit. Buttons and the Grow Box have no radical function except to remain at 
value 0 until you click in it when the value changes to 1... trapping the value Of a button is kind of 
meaningless because just the fact that you detected a hit in the control is enough justification to act 
upon the hit. For our purposes we will use a "Do Nothing" routine for these controls: 

598 GOTO 200 

Check boxes and Radio Buttons have a more complicated life. These controls display and retain a 
status (either checked and unchecked or selected and unselected). You handle these controls just the 
same way you do in Dialogs, the only thing that changes is the Set and Get commands ... the 
methodology is identical. In this example we will use a "value toggle" routine for both: 

600 CALL LC,0,_H\$1A10W: CALL LC,1 . V,_H\$191 0\: GOTO 200 

This leaves us with scroll bars which are more complicated still. Scroll Bars actually have 5 parts to 
them ... 2 arrows, 1 thumb and 2 page regions (the greyed areas). Each of these parts has a part 
code. (see fig. 14.2) 

o No Part 11 Editable Line 
1 Reserved ·12 User Item 
2 Simple Button 13 Long Static Text 
3 Check Box 14 Icon 
4 Radio Button " "<:.> 1.5:31 Reserved (into~f~al}!j('( I "ql pi·,' 

5 Up Arrow. 32-1,27 Reserved (application) 
6 Down Arrow 11111 f;!fls1noO flfu:lt1 ' i reserved (infernal) 

; Icl::J[ fJe ' ~tflirlj jf,~lf,g~rWP,oo;~ jH (inhu()"I e'fll 01 wot)fJ~\~9~fJ(i~' II ':)il~humb d '(i, 1 I) 
8 'lrlT '1 ~ge)HRc~.flr"'r'f;'/' ')I'W 't'':\l' f)(l'"' tlrl ,,1.~~t 1 n q 'I eserv~ IJ:V~,fra 

J. ,/: ~ •• ~ , tkttg Tex! 1:':;) :'.' "::, ~ .. t ",~ ': (,1" l,~ ,'~,~ ,: R~servep'(aSplication), 1 
G~~ r,)! J (I) d , Size B~~L) .Jlt)1l6n z10!1flO:J eJ,ll (::!t2g~~ §b ),~~, Re~erved (intetnal) ',Jill! \ 

"':Cc;'')'! 2fYN floJwd ~:'J(!uOff! ~rlJ 11 2j['X)f i ) [bdl[' 'n: Iln:~ sil."I" 
F}igqrl2u14w) IH,QobhtQi 1Manager7:P3rI Codes '. ' n~~i.1 

:iO'lwOO 1LJU: )brnT n:)Jii;, [1 go; 

In this example we wm litmdle.iJie arf@Milluru"itdge'.i;h,gi((n.s{tff~ bian~~!.to siinplify this example. Eadh~ 
part code usually responds to a different handler. The plan hercOis 10 che~k which part of the Scroll', 
Bar was hit and dlen alter >~h(>va.J.!lle:oftm(yiS\ttptl1Mf:!~ s1Jit: .. F~ dick on the left arrow or page will 
cause the control value tq4r~~~py li'f.l~~~l c!iq¥tctl(~~vri~t 1.Il!0lJll or page will increment it.,. 



[So What Technical Notes #14 

Type in the following lines to install this simple scroll bar handler: 

620 IF P = 6 OR P = 8 THEN 650: REM Part Code = Rt.Ar. or Rt.Pg. 
630 IF P = 5 OR P = 7 THEN 660: REM Part Code = It.Ar. or It.Pg. 
640 GOTO 200 
650 CALL LC,0,_H\$1A10W: IF V = 9 THEN 200 
651 V = V + 1: CALL LC,V,_.H\$1910\: GOTO 200 
660 CALL LC,0,_H\$1A10W: IF V = 0 THEN 200 
661 V = V • 1: CALL LC,V,_H\$1910\: GOTO 200 

Now that you think you are done it is time to inform you that there is one more detail to take care 
of ... that is Update Events! If something changes in your window the Window Manager will fix up 
the window to appear just right automatically, this ·is one of the benifits of using the desktop 
environment. As you may have noticed you have not entered any commands to draw the controls 
except initially in the setup code. You will not have to handle this task directly ... the Window 
Manager handles this for you through the wContDetProc and the Update code. The Update code is 
very similar to the wContDetProc except that 3 new commands are needed. These commands are 
InvaiRect, BeginUpdate and EndUpdate. You will have to install 3 more lines of code to handle 
Update events. One line installs a rectangle for the whole window, one line detects the Update Event 
and the last is the update event handler: Type in the following lines to complete your Control 
Window: 

56040 DATA 0,0,150,400,.: GOSUB 55000 

230 CALL PE,2,VR,V: IF V = 6 THEN 295: REM Update Event 

295 CALL LC,_96 + UP\$3AOE\: CALL LC,_WP\$1 EOE\: CALL 
LC,_WP\$1010\: CALL LC,_WP\$1FOE\: GOTO 200 

This is about it for this tech note. I have given you the basics and you can take it from here altho 
proceeding without the Apple Ugs Toolbox Reference Manuals is kind of like buying a new car and 
telling the salesman to leave the drive shaft out! Everything appears to be there but the car will not 
move on its own. The Toolbox Reference's present much more information than is economically 
possible in a forum like this, 

>'c"","',""'_' 'I., ,- :-: •. ' 



~D-- Ca 
About CALL BOX 
Welcome to the wonderful world of WYSIWYG. 
(What You See Is What You Get.) 

Create programs in assembly, C, pascal or 
even Applesoft BASIC using the powers of 
CALL BOX in a fraction of the time needed 
before. 

CALL BOX is a programming system with 

·Box --~§ 
Control Manager, Dialog Manager, Menu 
Manager, and Line Edit Tools are available 
for Applesoft BASIC with a parametered 
CALL. Any toolbox tool can be operated 
throu~h a generic long-CALL plus Applesoft 
enhancements like Long peek, Long poke, 
and Super Array are included to increase 
Applesoft's ability to deal with Apple IIgs. 

several facets designed to maximize your pro- CALL BOX starts up to a launching shell 
gramming ease and pleasure. Most 'popular which has menu selections for the WYSIWYG 
languages are supported by the Editors in- Editors, Demo/tutorial, file utilities, and 
cluded in t~is tern Ed~ ~~ Editors Options system rout-
system whIch ers. Your own 
have been de- application 
signed to pro- (such as your 
duce "difficult Call development 
to make" items shell) can be 
needed in ap- programmed 
plications that B into a user 
use the Apple OX system router 
IIgs toolbox. ~) for easy flip-
You can create Th T Ib ping back and 
ICONS, PIX- e 00 OH forth from 
EL IMAGES, Progr arnrning your program 
CURSORS, S tern editor to the 
WINDOWPA- CALL BOX 
RAMETER system. The 
LISTS, DI- file utilities 
ALOG TEM- allow you to 
PLATES, and REN AME, 
MENU TEM- DELETE, Set 
PLATE S us- ACCESS bits, 
ing the 4 WYSIWYG editors supplied on the Set filetype and Set Auxtype for any file 
CALL BOX disk. These editors support online currently. Another utility is provided 
APW /ORCA Source code, OMF2 object files for the Applesoft user which allows you to 
and Resources to allow you great flexibility change the default variables in the CB.VARS 
w hen creating a program. file. 

The CALL BOX BASIC Interface gives the 
ProDOS 8/ Applesoft programmer access to 
the Apple IIgs toolbox functions once reserved 
for the C or assembly language programmer. 
Over 24 new CALLS and dozens of sub
CALLS make Applesoft BASIC a potent 
competitor in the program development arena. 
The functions of Quickdraw II, Event/Task
master, Quickdraw II aux., Window Manager, 

SO WHAT 

The Demo/ tutorial shows the Applesoft 
BASIC programmer how to use the many 
functions of the CALL BOX BASIC Inter
face by demonstration and example. Apple
soft BASIC never looked so good and now 
operating under GS/ OS V5.0 even faster! 

Fully GS/ OS compatible (System Disk 5.0), 
not copy protected. 

SOFTWARE 
10221 Slater Ave . Suite 103 Fountain ValleY ,Ca .92108 


	Front cover
	Part 1
	Part 2
	Part 3
	Part 4
	Part 5
	Part 6
	Part 7
	Part 8
	Part 9
	Part 10
	Part 11
	Part 12
	Part 13
	Part 14
	Rear cover



