
--------;:--------,~~~--------

I .
I

TML
for the APPLE IIGS

User's Guide and
Reference Manual

J IT~~t~~~~r·1 I
,~ i L::=; .. ::::~~::::::1!! ~

Wf""""nW ::::...................... ~ I
fHH-H-I-H .. tI % ~ I.

APW Version
I

IlfNlfL fP&1@@&10

if@ff arm@ #.1[fJ[fJO@ OO@~

User's Guide and Reference Manual

Version 1.0, March 1987
COPYRIGHT © 1987 by TML Systems, Inc.

4241 8aymeadows Rd., Suite 23
Jacksonville, FL 32217

(904) 636-8592

All rights reserved
Printed in U.S.A.

TML PASCAL LICENSE AGREEMENT

This manual and the software described in it were developed and are copyrighted by TML Systems, Inc.
and are licensed to you on a non-exclusive, non-transferable basis. Neither the manual nor the software
may be copied in whole or in part except as follows:

1. You may make backup copies of the software for your use providing that they bear TML Systems'
copyright notice.

2. You have the right to include the object code provided in the several libraries included with TML Pascal
in programs you develop using this software and you also have the right to use, distribute and license
such programs to third parties without payment of any further license fees providing that you include
the following copyright notice (no less prominently than your own copyright notice) in the software and
its documentation: "© 1987 TML Systems, Inc. Certain portions of this software are copyrighted by
TML Systems, Inc."

You may not in any event distribute any of the source files provided as part of this software.
You may only use the software and its documentation at any number of locations or machines so long as
there is no possibility of it being used at more than one location or one machine at a time.

CUSTOMER SUPPORT AND PRODUCT UPDATE PLAN

Software Registration. Your registration of TML Pascal is ESSENTIAL for you to receive the full benefits of
TML Systems' customer services.

Technical Support. We at TML Systems want you to take the greatest advantage of your development
tools possible. If you have a technical problem we will be glad to help. Gather ALL the information
pertinent to the problem along with your registration number, and call our Technical Support Department at
(904) 636-0118 during our normal support hours. You may also write to:

TML Systems, Inc., Technical Support Department
4241 8aymeadows Road, Suite 23, Jacksonville, FL 32217

Remember it is absolutely required that you include your registration number with all correspondence and
have it available with you call TML Systems.

Keeping your software up to date. TML Pascal is a very large and sophisticated software package. From
time to time, TML Systems will improve its product making it even more powerful and useful to you. You
can take advantage of our ongoing development efforts if you have returned your registration card to us.
As a registered TML Pascal user, you will receive announcements about major improvements for your
software. These announcements will provide you the cost of the update and ordering procedures. Only
registered users will receive these update notices and be elgible to purchase the update.

Version Printing Date

1.0 First Printing March 1987

The information contained in this document is subject to change without notice. TML Systems makes no
warranty of any kind with regard to this written material. TML Systems shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this manual.

This document is protected by copyright. All rights reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior written consent of TML
Systems, Inc.

If you have any comments or suggestions regarding either the TML Pascal development system software
or this documentation, please send comments to:

TML Systems
4241 Baymeadows Rd., Suite 23
Jacksonville, FL 32217

Your input is extremely valuable in assisting us to continue to provide you with the best development tools
possible.

TML Pascal User's Guide

Chapter 1 Introduction

The User's Guide Manual
The Reference Manual

Table of Contents

Apple fiGS Technical Documentation from Apple Computer, Inc.
Where to go for more Information
Acknowlegments

Chapter 2 Setting Up TMl Pascal

Files on the Distribution Disk
System Configurations

One SOOK Floppy Disk
Two SOOK Floppy Disks
A Hard Disk

Installing TML Pascal in APW

Chapter 3 Getting Started

Writing Your First TML Pascal Program
A Lesson on Stacks
File Naming Conventions
ProDOS16 File Types used by APW
Where to go from here

Chapter 4 Writing "Plain Vanilla" Applications

Introduction to Plain Vanilla
The Source File
Using ConsolelO
Adding Graphics to Plain Vanilla
Some Examples
Technical Details

ChapterS The Apple ilGS Toolbox Interfaces

Review of the Apple IIGS Tools
What do the Tools Do?
How calling a Tool Routine Works
Other TML Pascal Units

The ProDOS16 Unit
The APW Unit
The ConsolelO Unit

3

4
4
5
6
7

9

9
11
13
14
14
14

17

17
19
20
21
22

23

23
23
24
25
25
25

27

27
2S
30
32
32
33
33

Chapter 6 Writing Apple JIGS Applications

Event-Driven Programming
Using the Apple JIGS Toolbox
Supporting Desk Accessories
Definition Procedures
Large Programs and Segmentation

Code Segmentation
Data Segmentation

Chapter? Writing Desk Accessories

Introduction
Getting Started
The Source File

The DAOpen Function
The DAClose Procedure
The DAAction Proceure
The DAlnit Procedure

Installing a Desk Accessory

35

35
37
40
41
42
42
42

45

45
45
45
47
48
48
49
50

Table of Contents

Chapter 1 Introduction

The User's Guide Manual
The Reference Manual
Apple JIGS Technical Documentation from Apple Computer, Inc.
Where to go for more Information
Acknowlegments

Chapter 2 Setting Up TMl Pascal

Files on the Distribution Disk
System Configurations

One 800K Floppy Disk
Two 800K Floppy Disks
A Hard Disk

Installing TML Pascal in APW

Chapter 3 Getting Started

Writing Your First TML Pascal Program
A Lesson on Stacks
File Naming Conventions
ProDOS16 File Types used by APW
Where to go from here

Chapter 4 Writing "Plain Vanilla" Applications

Introduction to Plain Vanilla
The Source File
Using ConsolelO
Adding Graphics to Plain Vanilla
Some Examples
Technical Details

Chapter 5 The Apple ilGS Toolbox Interfaces

Review of the Apple JIGS Tools
What do the Tools Do?
How calling a Tool Routine Works
Other TML Pascal Units

The ProDOS16 Unit
TheAPW Unit
The ConsolelO Unit

3

4
4
5
6
7

9

9
11
13
14
14
14

17

17
19
20
21
22

23

23
23
24
25
25
25

27

27
28
30
32
32
33
33

Chapter 6 Writing Apple ilGS Applications

Event-Driven Programming
Using the Apple IiGS Toolbox
Supporting Desk Accessories
Definition Procedures
Large Programs and Segmentation

Code Segmentation
Data Segmentation

Chapter 7 Writing Desk Accessories

Introduction
Getting Started
The Source File

The DAOpen Function
The DAClose Procedure
The DAAction Proceure
The DAlnit Procedure

Installing a Desk Accessory

35

35
37
40
41
42
42
42

45

45
45
45
47
48
48
49
50

©UiJffJ[fJll@fl 11
Introduction

Welcome to TML Pascal for the Apple IIGS. The programming language TML Pascal has been designed to
meet the needs of the broadest range of programmers possible for the Apple IIGS. The language is solidly
based upon the American National Standard for the Pascal language with numerous extensions for
programmers acustomed to other Pascal implementations, thus achieving the greatest amount of
compatibility possible.

TML Pascal is available in two versions for the Apple IIGS - as a language tool running under the Apple
Programmer's Workshop (APW) and as an integrated stand-alone package. This product represents TML
Pascal implemented as an APW language tool and therefore can only be used in conjunction with the
Apple Programmer's Workshop.

TML Pascal supports Units, random disk 110, and standard subprograms such as MoveLeft, FiliChar, etc.
that are found in UCSD implementations of Pascal such as Apple Pascal. And of course language features
from the Macintosh version of TML Pascal such as type casting, bit operations, CYCLE and LEAVE
statements, Unit bodies, and much more are found in TML Pascal for the Apple IIGS.

TML Pascal for the Apple IIGS has been designed to take specific advantage of and provide access to the
new features and capabilities of the Apple IIGS. TML Pascal runs in full i6-bit native mode under
ProDOSi6 as an APW language tool. Complete and full access in Pascal is provided to every routine in
the Apple IIGS Toolbox as well as ProDOSi6 and APW. With TML Pascal, you will be able to develop
stand-alone ProDOS16 applications, New Desk Accessories, and other APW tools, as well as the ability to
easily create definition procedures.

In addition to developing applications which take advantage of the Apple IIGS Toolbox, TML Pascal allows
you to develop what we call plain vanilla or textbook applications. This feature allows you to enter
programs directly from textbook examples and compile them. In this evnironment, TML Pascal provides a
20 row by 80 column console window in Super HiRes 640 Mode which behaves as a standard CRT
terminal.

The TML Pascal User's Guide and Reference Manual have been written to guide you through the use of
TML Pascal, however, they are not tutorials. You should be familar with using the Apple IiGS and
programming in Pascal, although no specific knowledge of programming the Apple IIGS is necessary.

In order to use TML Pascal, you will require a copy of the Apple Programmer's Workshop (APW) or a
compatible product such as ORCAIM for the Apple IIGS, one 3.5 800K floppy disk drive, and a memory
expansion card with at least 5i2K bytes of additional memory for a total of 768K of memory. For
development of large applications, two 3.5 800K floppy disks or a hard disk is recommended.

Pascal User's Guide 3 Introduction

The User's Guide Manual

Chapter 1: Introduction is this chapter. A brief overview of TML Pascal for the Apple IiGS and its
documentation is given together with a complete reference of supplemental documentation and texts that
can assist your development efforts.

Chapter 2: Setting Up describes the contents of the distribution disk, how to install TML Pascal into the
Apple Programmer's Workshop as a language tool, and reviews several common system configurations.

Chapter 3: Getting Started with TMl Pascal provides a brief review of the Apple Programmer's Workshop
and then takes you step by step through the compilation process necessary to build an application with
TML Pascal. File naming conventions are also explained.

Chapter 4: Writing "Plain Vanilla" Applications exposes the capability of TML Pascal to compile plain vanilla
or textbook applications. This capability allows you to take standard Pascal programs and compile them
with TML Pascal without having to be familar with the specific details of the Apple IIGS.

Chapter 5: The Apple IIGS Toolbox Interfaces details TML Pascal's access to the extensive collection of
ROM and RAM based tools that make the Apple IIGS so unique from previous Apple II's.

Chapter 6: Writing Apple ilGS Applications discusses the techniques of event driven programming and
shows how to take advantage of the new Apple IiGS features such as Menus, Windows, QuickDraw, etc. in
your own applications.

Chapter 7: Writing Desk Accessories explains the details of designing and writing New Desk Accessories
in TML Pascal that can be used from the Apple Menu of Apple IIGS applications.

The Reference Manual

The TML Pascal Reference Manual is a complete reference for the Pascal language features implemented
by TML Pascal. TML Pascal is based upon the ANS standard for Pascal with numerous extensions for
achieving compatibility with the Macintosh version of TML Pascal and UCSD Pascal. Each of the chapters
discusses a functional component of the Pascal language.

Chapter 1: Tokens

Chapter 2: Blocks, Scope, and Activations

Chapter 3: Types

Chapter 4: Variables

Chapter 5: Expressions

Chapter 6: Statements

Chapter 7: Procedures and Statements

Chapter 8: Programs and Units

Chapter 9: Input and Output

Pascal User's Guide 4 Introduction

Chapter 9: Input and Output

Chapter 10: Standard Procedures and Functions

Appendix A: Compiler Error Messages and IOResult Codes provides a summary of the error messages
reported by the TML Pascal compiler and the result codes returned by the Pascal function 10Resuit for I/O
operations performed at runtime.

Appendix B: Compiler Directives explains each of the directives which affect the way the TML Pascal
interprets the source code it compiles.

Appendix C: Inside TML Pascal offers additional technical information for advanced Pascal programmers,
including the memory model, internal representation for data types, calling conventions, and interfacing to
assembly language routines.

Appendix D: Comparing TML Pascal with ANS Pascal details the differences between the ANS standard
for the Pascallangauge and the implementation of TML Pascal.

Apple IIGS Technical Documentation from Apple Computer, Inc.

While the Apple IIGS provides a new degree of friendliness to the user, the programmer is confronted with
the burden of developing software for a much more sophisticated machine. Without the appropriate
technical references, the task of programming the Apple JIGS will be nearly impossible. The following
paragraphs outline the technical documentation published by Apple Computer for the Apple IIGS. Each of
these references is available directly from the Apple Programmer's and Developer's Association (APDA) or
from Addison-Wesley.

Technical Introduction to the Apple IIGS is the first book in the suite of technical manuals for the
Apple IIGS. It describes all aspects of the Apple IIGS, including its features, general design, and
Toolbox.

Apple IIGS Hardware Reference and Apple IIGS Firmware Reference cover the hardware details of
the Apple IIGS. You will not necessarily need these texts in order to develop applications for the
Apple IIGS, however, reading them might provide you with a better insight as to how the machine
operates.

Programmer's Introduction to the Apple IIGS provides an excellent introduction to the concepts and
guidelines you'll need to know in order to develop quality applications which take specific
advantage of the Apple IIGS. While this text does not use TML Pascal, it does review the principles
of event-driven programming using the Toolbox and operating system.

Apple IIGS Toolbox Reference: Volume 1 and Volume 2 is the complete and authoritative
reference for the Apple IIGS's built in set of routines which are collectively known as the Toolbox.
For example, the Toolbox contains the software necessary to draw graphical objects on the screen
(QuickDraw) and for menus, windows, and sound. The Toolbox supports the Apple desktop user
interface and makes developing new and powerful applications much easier to accomplish.

If you intend to develop applications which take advantage of the Toolbox, then you will find that
these two volumes are absolutely necessary. It will be nearly impossible to program the Toolbox
effectively without this documentation.

Pascal User's Guide 5 Introduction

Apple IIGS ProDOS 16 Reference documents the operating system of the Apple IIG8. The details
of the System Loader and file manipulation operations are covered in this text.

Human Interface Guidelines: The Apple Desktop Interface. This book documents Apple's
standards for the desktop user interface to any program that runs on an Apple IIG8 or a Macintosh. If
you are writing an application which is to use the desktop user interface, you should study this
manual so that you conform to the standards set forth by Apple Computer.

Apple N11merics Manual is the reference for the Standard Apple Numeric Environment (SANE), a
full implementation of the IEEE standard for floating-point arithmetic.

In addition to these texts, Apple Computer puslishs a series of Technical Notes for the Apple IIGS on a
periodic basis. These notes discuss often asked technical questions and other mysteries about the Apple
IIG8. The technical notes are available on a subscription basis from the Apple Programmer's and
Developer's Association. Below is the address for the Apple Programmer's and Developer's Association.

Apple Programmer's and Developer's Association
290 SW 43rd Street
Renton, WA 98055
(206) 251-6548

Please note that in order to purchase products from APDA you must first be a member. There is a nominal
fee for membership in APDA.

In addition to technical documentation on the Apple IIG8, you should also be familar with the Apple
Programmer's Workshop (APW) since this version of TML Pascal will only function within the APW as a
language tool. For information regarding the operation of APW, consult the Apple IIGS Programmer's
Workshop Reference Manual, and for programming in 65816 assembler using APW consult the Apple
IIGS Programmer's Workshop Assembler Reference.

Where to go for more information

In addition to technical documentation from Apple Computer, you may find one or more of the following
texts useful in your development efforts.

The following two books document the Apple IIG8 Toolbox. While neither of the books uses TML Pascal
for its examples, they still provide a wealth of useful information. In particular, the Apple IIGS Technical
Reference by Michael Fischer provides exhaustive coverage of the Toolbox, but in a much more readable
fashion than Apple Computer's Apple IIGS Toolbox Reference volumes.

Apple IIGS Technical Reference, Michael Fischer, Osborne/McGraw-Hili, 1987.

The Apple IIGS Toolbox Revealed, Danny Goodman, Bantam Computer Books,
Prentice Hall Press 1986.

The following texts provide an exellent introduction and tutorial to the Pascallangauge.

Oh! Pascal! Michael Clancy and Doug Cooper, W.W. Norton and Company, 1982.

Programming in Pascal, Peter Grogono, Addison-Wesley, 1978.

Pascal User's Guide 6 Introduction

The three documents listed below are technical references for the Pascal language.

Pascal User Manual and Report, Kathleen Jensen and Nicklaus Wirth, Springer-Verlag, 1985.

The American Pascal Standard (with Annotations), Henry Ledgard, Springer-Verlag, 1985.

American National Standard Pascal Computer Programming Language, ANSI/IEEE
770X2.97 -1983, I EEE/Wiley-interscience, 1983.

And finally, for programmer's integrating 65816 assembly language routines with TML Pascal or just
interested in the 65816 processor will find the following two texts outstanding references for the 65816
microprocessor.

Programming the 65816, Including the 6502, 65C02 and 65802, David Eyes and Ron Lichty,
A Brady Book, Prentice Hall Press, 1986.

65816165802 Assembly Language Programming, Michael Fischer, Osborne/McGraw-Hili, 1986.

Ac/mowlegments

TML Pascal is a trademark of TML Systems, Inc.

Apple is a registered trademark of Apple Computer, Inc.
Apple IIGS and Macintosh are trademarks of Apple Computer, Inc.
ProDOS is a registered trademark of Apple Computer, Inc.

Pascal User's Guide 7 Introduction

(gW@[pJrJ@if' ~

Setting Up TML Pascal

Before you begin using TML Pascal you should take some precautions to ensure that you protect your
software. Since it is impossible to use the TML Pascal distribution disk directly (it does not contain
ProDOS16 or APW) it may be sufficient to merely write protect the disk while you use it to install TML
Pascal into your copy of APW. However, it is probably wise to make a backup copy of the distribution disk
and then place your master distribution disk in a safe place.

Please remember that TML Systems' philosophy of selling quality software at an affordable price with NO
COPY PROTECTION can only work if you make it work. As stated in the license agreement, you are
permitted to make backup copies of the software for your own archival purposes, but copies of the
software may not be given to or used by anyone else.

In order to format a new disk and make a backup copy of the distribution disk, you may use the
SYSUTIL. SYSTEM program on your Apple IIGS System Disk that came with your Apple IiGS or by using the
INIT and copy commands available in APW. If you are unfamilar with using either of these tools for
making a copy of a disk, then consult their respective manuals. If you are unfamilar with APW and its
commands, then you should take some time now to become familar with APW before proceeding. A brief
review of APW is given in Chapter 3 of this manual, however, it is in no way a substitute for the APW
documentation itself.

Files on the Distribution Disk

The TML Pascal distribution disk contains all files that you will need to build your Pascal development
environment. Also included are several example programs to get you well on your way to writing your own
applications and desk accessories.

The following is a quick rundown of the files and directories you will find on your TML Pascal distribution
disk. As stated above, the TML Pascal distribution disk can not be used alone, you must first install TML
Pascal as a language into your copy of APW. The process of installing TML Pascal into APW is detailed in
the next section of this chapter and is followed by several sections describing typical system
configurations.

Pascal User's Guide 9 Setting Up TML Pascal

/TML/

TMLPASCAL

TMLPASCALLIB

SYSCMND

SYSTABS

TOOLINTF/
RECOMPILE

QDINTF.PAS
GSINTF.PAS
MISCTOOLS.PAS
SCHEDULER. PAS
SOUND.PAS
NOTESYN.PAS
TEXTTOOLS.PAS
APW.PAS
PRODOS16.PAS
INTMATH.PAS
SANE.PAS
PRINTMGR.PAS
LISTMGR.PAS
CONSOLEIO.PAS

QDINTF.USYM
GSINTF.USYM
MISCTOOLS.USYM
SCHEDULER.USYM
SOUND.USYM
NOTESYN.USYM
TEXTTOOLS.USYM
APW.USYM
PRODOS16.USYM
INTMATH.USYM
SANE.USYM
PRINTMGR.USYM
LISTMGR.USYM
CONSOLEIO.USYM

EXAMPLES/

FIRSTPROG/

MAKE

FIRSTPROG.PAS
FIRSTPROG.ROOT
FIRSTPROG

Pascal User's Guide

The TML Pascal compiler

The TML Pascal runtime libraries

An APW System Command File

An APW System Tabs File

The TML Pascal Apple IIGS Tool Interfaces
An EXEC file to recompile all interfaces

Pascal Units for the GS tools

TML Pascal unit symbol files for each
of the above units

TML Pascal Source Code Examples

The "Hello World" program

10 Setting Up TML Pascal

BENCHMARK/

MAKE

BENCHMARK. PAS
BENCHMARK. ROOT
BENCHMARK

CONSDEMO/

MAKE
CONSDEMO.PAS
CONSDEMO.ROOT
CONS DEMO

TURTLE/

MAKE

TURTLE.PAS
TURTLE.ROOT
TURTLE.USYM
TURTLEDEMO.PAS
TURTLEDEMO.ROOT
TURTLEDEMO

GSDEMO/

MAKE

GSDEMO.PAS
GSDEMO.ROOT
GSDEMO

CLOCKNDA/

MAKE
CLOCKNDA.PAS
CLOCKNDA.ROOT
CLOCKNDA

System Configurations

Simple demo showing Sieve & Selection Sort

Show use of "Plain Vanilla" console mode

Implementation of Apple Pascal's Turtle
graphics and demo program.

Simple desktop multi-window demo

A New Desk Accessory in TML Pascal

As we have stated before, the TML Pascal distribution disk is not a runnable disk configuration, but rather it
contains all the files needed to install TML Pascal into a running copy of the Apple Programmer's
Workshop. An Apple IIGS development system using TML Pascal and APW may be configured in
numerous ways, however, in the following sections we will address the most likely of configurations - a
single BOOK floppy disk, two BOOK floppy disks, and a hard disk.

If you are already using APW in a configuration you are happy with, then feel free to skip this section and
read the section Installing TML Pascal into APW below for instructions on how to install TML Pascal into
your APW development system.

Pascal User's Guide 11 Setting Up TML Pascal

To build a development environment based upon TML Pascal you will need three different sets of
software - TML Pascal software, APW software, and system software from you Apple IIGS System Disk.
The following paragraphs outline exactly what software is needed, and how you should install the APW
and System software onto your development disk(s). The discussion of how to install TML Pascal is left to
the next section. Please note that the sections below will discuss only the minimal software requirements.
If you have a hard disk for example, you may wish to configure your system with additional tools and utilities
that will not be discussed here.

Minimal Software Requirments for TML Pascal development

System Software: From your Apple IIGS System disk.

Note that the APW distribution disk also contains ProDOS16 and other system software, but does
not contain all the RAM based tools, fonts, and other files found on the System Disk. It is usually
best to obtain the latest version of the System Disk and use that software.

The following is the minimal set of software from the Apple IIGS System Disk that you will need.

/SYSTEM.DISK/
PRODOS
SYSTEM/

P16
SYSTEM. SETUP/

TOOL. SETUP
TOOLS/

TOOL014
TOOL015
TOOL016
TOOL020
TOOL021
TOOL022
TOOL023
other tool files as they become available

FONTS/
any font files that you need

Apple Programmer's Workshop Software: From your APW disk.

The following is the minimal set of software from the APW Disk that you will need.

/APW/
APW.SYS16
SYSTEM/

LOGIN
SYSCMND
SYSTABS
EDITOR

LANGUAGES/
LINKED

Pascal User's Guide 12 Setting Up TML Pascal

TML Pascal Software:

See the Section Installing TML Pascal below

One BOOK Floppy Disk

A single SOOK floppy disk is the minimal development configuration possible. While this configuration
might prove to be a little cramped for disk space, it still allows for a complete and powerful development
system using TML Pascal.

A single SOOK floppy disk development system only contains the minimal software as outlined above. With
this configuration, you will have approximately 100K of disk space available for developing your
applications, however, it will be impossible to develop with both TML Pascal and the APW Assembler from
the same disk since there is not enough space for all the files you would need. If you need to develop an
application using both Pascal and assembly, then you will need to create two development disks - one for
each language, and copy the resultant object code from one disk to the other for linking the application.

In order to create a single SOOK development disk, first initialize a new disk and give it the name / APWWORK.

Then copy the APW and system software exactly as outlined above onto your disk. After doing this you
should have a disk with the following contents.

(1) Initialize a new SOOK floppy disk and give it the name /APWWORK.

(2) Copy the minimal system software outlined above from the Apple fiGS System Disk onto the
/APWWORK disk.

(3) Copy the minimal APW software outlined above from the APW distribution disk onto the
/APWWORK disk.

(4) Create the LIBRARIES/ and UTILITIES/ directories that APW requires. This can be done
using the APW command CREATE.

CREATE /APWWORK/LIBRARIES

CREATE /APWWORK/UTILITIES

(5) Review the /APWWORK disk to ensure its contents match the listing below, and then proceed to
the section Installing TML Pascal into APW

Pascal User's Guide 13 Setting Up TML Pascal

/APWWORK/
PRODOS
APW.SYS16
SYSTEM/

P16
LOGIN
SYSCMND
SYSTABS
EDITOR
SYSTEM. SETUP/

TOOL. SETUP
TOOLS/

TOOL014
TOOL015
TOOL016
TOOL020
TOOL021
TOOL022
TOOL023
other tool files as they become available

FONTS/
any font files that you need

LANGUAGES/
LINKED

LIBRARIES/
UTILITIES/

Two BOOK Floppy Disks

With two SOOK floppy disks it is quite reasonable to configure the / APWWORK disk just as above, and use
second floppy disk for the storing the source code to the applications you are developing. Alternatively,
you may wish to configure the /APWWORK disk to contain both TML Pascal and the APW Assembler. In this
case, it is necessary to install the TML Pascal TOOLINTF / directory (discussed in Installing TML Pascal
into APW) on the second floppy disk so that there is sufficient disk space for the APW Assembler and its
associated files.

A Hal'dDisk

A hard disk development system of course offers the greatest amount of flexibility. In this case, we would
recommend installing all of the Apple IIGS System Disk and the APW software on the hard disk. However,
be sure to use the latest version of the system software from the Apple IIGS System Disk rather than the
subset of system software found on the APW disk.

Installing TML Pascal into APW

Now that you have created a development disk containing the necessary system and APW software we will
outline the steps necessary to install TML Pascal into the Apple Programmer's Workshop environment as a
langauge.

Pascal User's Guide 14 Setting Up TML Pascal

The following instructions assume that you have volume named /APWWORK and that it already contains the
necessary System and APW files and directories applicable to your particular system configuration as
outlined in the System Configurations section above. They also assume that you have booted your Apple
IIGS using your properly configured system and are in the APW shell. If your volume is not named
/ APWWORK, then replace / APWWORK with the name of your volume in the instructions below.

(1) Copy the file TMLPASCAL from the distribution disk into the /APWWORK/LANGUAGES/ directory of
your APW development disk. This can be done using the COpy command of APW. For
example,

COPY /TML/TMLPASCAL /APWWORK/LANGUAGES/

(2) Copy the file TMLPASCALLIB from the distribution disk into the / APWWORK/LIBRARIES /

directory of your APW development disk. Again, this can be done using the COpy command of
APW. For example,

COPY /TML/TMLPASCALLIB /APWWORK/LIBRARIES/

(3) Create a directory named TOOLINTF on you APW disk in the same directory as the LANGUAGES/
and LIBRARIES/ directories are located. For example,

CREATE /APWWORK/TOOLINTF

Now copy all the files in the /TML/TOOLINTF / directory that end with the suffix. USYM into the
/APWWORK/TOOLINTF directory you just created. This can be done with the following APW
command.

COPY /TML/TOOLINTF/=.USYM /APWWORK/TOOLINTF/

If you have sufficient disk space on your APW disk (i.e. you are not using a single 800K disk
configuration) then you may choose to copy all the files in the /TML/TOOLINTF / directory onto
your APW disk. These remaining files are the Pascal source code files to the units represented
by the files ending in . USYM. It is not necessary to recompile these file, however, you may wish
to have them readily available for reference. To copy the entire directory, you could use the APW
command.

COpy /TML/TOOLINTF/= /APWWORK/TOOLINTF/

Please remember that the Pascal source code files in this directory may not be reproduced
without written permission from TML Systems, Inc.

(4) The SYSCMND file in the /APWWORK/SYSTEM/ directory of your APW disk must be modified to
include the new language TMLPASCAL. If you have not made any changes to the SYSCMND file
that was delivered on your APW distribution disk, then you may merely replace it with the
SYSCMND file on your TML Pascal distribution disk. .

Pascal User's Guide 15 Setting Up TML Pascal

If you have made other changes to this file then, you will want to add the following line to the file
/APWWORK/SYSTEM/SYSCMND. To do so, you will need to enter the APW editor to edit this file
and insert the following line somewhere in the file (usually in alphabetical order).

TMLPASCAL *L 30 The TML Pascal compiler

If you do not want TML Pascal to be restartable then you should only enter an L instead of *L.

(5) The SYSTABS file in the /APWWORK/SYSTEM/ directory of your APW disk must be modified to
include tabs settings for files which will have the new langauge subtype TMLPASCAL. If you have
not made any changes to the SYSTABS file that was delivered on your APW distribution disk,
then you may merely replace it with the SYSTABS file on your TML Pascal distributiori disk.

If you have made other changes to this file, then you will want to add the following 3 lines to the
file /APWWORK/SYSTEM/SYSTABS. To do so, you will need to enter the APW editor to edit this
file and insert the following line somewhere in the file (usually in numerical order by language
number). TML Systems recommends the following 3 lines.

30
000
000100010001000100010001 00010002

(6) Modify the LOGIN exec file in the /APWWORK/SYSTEM/ directory of your APW disk to include the
following line. To do this, you will again have to enter the APW editor.

PREFIX 7 /APWWORK/TOOLINF

As discussed in Chapter 3, TML Pascal uses the ProDOS 16 prefix 7 to search for unit symbol
files required for a USES clause when the appropriate file can not be found in prefix specified by
the compiler's $P directive. Remember the default prefix for the $P directive is "O/" for the
ProDOS16 prefix 0 (the current prefix). If you are not familiar with this terminology, add the line to
your LOGIN exec file for now and then study Chapter 3 of the User's Guide and Appendix B of the
Reference Manual.

This step is not absolutely required. However, if you do not use this convention you will need to
add the compiler's $P directive to all of the examples on your TML Pascal distribution disk before
they will compile successfully.

(7) Copy the EXAMPLES / directory onto your / APWWORK disk or some other work disk.

(8) Reboot the Apple IIGS. Since we have changed (or replaced) the SYSCMND file, it is necessary to
reboot the machine in order for the changes to the SYSCMND file to take effect.

You have now successfully installed TML Pascal into your copy of the Apple Programmer's Workshop.
The remaining chapters of this manual are intended to show you how to use TML Pascal to develop
applications and desk accessories.

Pascal User's Guide 16 Setting Up TML Pascal

~rm@[pJ(]@[f $J
Getting Started

This chapter reviews the use of TML Pascal within the Apple Programmer's Workshop environment. It
assumes that you have successfully created a development environment as discussed in Chapter 2.

Writing your first TML Pascal Program

In this section we provide a brief overview of the Apple Programmer's Workshop and the steps necessary
to write our first program - the infamous "Hello World".

The following picture illustrates the relationship between the various components of your Apple IIGS
development system. The APW is a application which executes under ProDOS16 and provides
numerous built in commands as well as providing for a shell environment in which language compilers,
utilities, and other tools may execute such as the APW Editor, the APW Linker, and of course TML Pascal.
In order to access the commands and other tools in APW, a command line interpreter is provided for
interacting with the APW user. The command line interpreter accepts commands from the user and then
invokes the appropriate tool to carry out the operation indicated by the command. If several commands
must be repeated often, APW allows you to create EXEC files which automate the process of entering
several commands, one after the other.

Apple JIGS Hardware and Firmware

ProDOS 16

APW Shell

APW Command Interpreter

Pascal User's Guide

Other. ..)

17

AppJeUGS
Program Launcher

Other Sl6 ($B3)
applications

Getting Started

Thus, the process of writing, compiling, and executing a program developed in TML Pascal merely
requires that you instruct APW to perform certain operations.

In the following paragraphs we show how to write our first TML Pascal program - "Hello World". For those
who would rather not type in this program, it can be found on the TML Pascal distribution disk as the file
FIRSTPROG. PAS.

Before creating the FIRSTPROG. PAS source code file, the APW current language must be set to TML
Pascal. This is done by typing the command TMLPASCAL. APW uses the current language to set the
subtype field of a source code file created by the editor so that when the COMP ILE command is issued,
APW can detemine which compiler to invoke.

Once the current language type has been set, enter the APW editor so that the source code for
FIRSTPROG. PAS can be entered. This is done by entering the command EDIT FIRSTPROG. PAS. From
within the editor type in the following five line program.

PROGRAM FirstProg(Input,Output);
BEGIN

Writeln('Hello World');
Readln;

END.

To exit the editor, press the COMMAND and Q keys simultaneously which returns you to the Editor's main
menu. From here save the file and then exit.

In order to compile our first Pascal program, you merely need to enter the command:

COMPILE FIRSTPROG.PAS

This command will invoke the TML Pascal compiler since the language subtype for this file is TMLPASCAL.
The TML Pascal compiler does not directly create a stand-alone application, but rather object code. The
APW Linker must be used to link the object code generated by the compiler with any runtime libraries that
are needed from the TMLPASCALLIB library. To invoke the linker to link our application enter the
command:

LINK FIRSTPROG KEEP=FIRSTPROG

After the link is complete, your disk should contain the application FIRSTPROG as specified by tIJe KEEP
parameter to the linker. To run our first TML Pascal program merely type its name.

FIRSTPROG

Note that the linker has created the application with the ProDOS 16 filetype of EXE ($B5). This fije type
indicates that the application is a Shell Load file. If you would like to be able to run this application other
environments, for example the Apple IIGS Program Launcher, you must change its filetype to be S16 ($B3)
indicating that it is a standard Loadfile. This is accomplished by using the APW command FILETYPE as
shown below.

FILETYPE FIRSTPROG S16

Pascal User's Guide 18 Getting Started

The following table reviews the steps taken to Edit/Compile/Link and run an application developed in TML
Pascal.

APWCommand

TMLPASCAL

EDIT FirstProg.Pas

COMPILE FirstPtog.Pas

LINK FirstProg Keep=FirstProg

FILETYPE FirstProg S16

FirstProg

A Lesson on Stacks

Comments

Set the current APW language to TMLP AS CAL.

Create a new file FirstPtog.Pas whose language is TMLP ASCAL
since the current language is TMLP ASCAL and enter the Editor.

Invoke the TML Pascal compiler to compile the file FirstProg.Pas.
The compiler creates the object code output file FirstProg.Root.

Invoke the APW Linker to link the file FirstProg.Root with any
necessary runtime library routines and create the application shell load
file FirstProg whose filetype is EXE ($B5)

Optional step to change the load file's filetype to S16 ($B3) for a
stand-alone ProDOS 16 application or to $B9 for a new desk
accessory.

Run the newly created application.

Pascal is a recursive language. By recursive, we mean that Pascal procedures and functions may call
themselves (ie. there can be more than one activation of a procedure or function at any given time).
Because there can be more than one activation of a procedure or function, there must be multiple copies
of a procedure's or function's local variables. To accomplish this, Pascal uses a runtime stack to allocate
storage for local variables as well as other infomation.

The stack does not have an unlimited size. In fact, the default stack size allocated by TML Pascal for
applications is only 8K bytes. Thus, a procedure which declares a single array requiring 10,000 bytes of
storage will not execute since there would be insufficient space on the stack to allocate storage for the
array.

TML Pascal does, however, provide a mechanism for changing the size of the runtime stack with the
$StackSz directive (see Appendix B of the Reference Manual). The $StackSz directive has a single
argument which is an integer value specifying the number of bytes to allocate for the runtime stack. For
example,

{$StackSz 10240 }

causes the runtime stack to be created with 10K bytes. There are two restrictions on the use of the
$StackSz directive. First, the directive must appear before the keyword PROGRAM, and second the
amount of memory that can be requested for the stack is not unlimited. The Pascal runtime stack is
allocated in Bank a of the Apple IiGS memory which has approximately 40K bytes of storage available for
use by an application. Since this memory is required for other uses as well, it is wise not to attempt to
allocate all of this memory. If an application requires a large amount of storage, it may have to allocate it by

Pascal User's Guide 19 Getting Started

using global variables instead of local variables.

The following two examples demonstrate the use of the $StackSz directive. The first exmple fails to run
correctly since it does not have sufficient stack space, while the second example will run correctly.

PROGRAM Test1;

PROCEDURE BigStack;
VAR I: Integer;

{ uses default stack size of 8K bytes

Arr: array[1 .. 5000] of Integer; { requires 10,000 bytes of storage)
BEGIN

FOR I := 1 TO 5000 DO
Arr[I] := I;

END;

BEGIN
BigStack;

END.

{$StackSz 11264
PROGRAM Test2;

PROCEDURE BigStack;
VAR I: Integer;

{ an 11K stack)

Arr: array[1 .. 5000] of Integer;
BEGIN

FOR I := 1 TO 5000 DO
Arr[I] := I;

END;

BEGIN
BigStack;

END.

File Naming Conventions

requires 10,000 bytes of storage)

Many diffent files are created and used by TML Pascal and the other APW tools. Thus, a file naming
convention has been adopted to help identify the creator and/or contents of otherwise similar files by
reading their names. The convention defines a set of file name extensions - a period followed by a few
letters - appended to the end of the main part of a file name. Thus, different yet related files are logically
associated because they have the same base name.

The following table lists each of the file name extensions that are encountered in developing with TML
Pascal and the APW 65816 assembler, what creates the file, and a brief comment about its contents.

Pascal User's Guide 20 Getting Started

File Name Created by File Contents

EXAMPLE.P AS Editor is the recommended extension for Pascal source programs.

EXAMPLE.USYM TML Pascal is the unit symbol file created by the TML Pascal compiler when
compiling a Pascal unit. The file saves the symbol table information
about this unit so that when the unit is named in a USES clause its
symbol table can be restored.

EXAMPLE.ROOT TML Pascal is the object code file. Unlike the APW 65816 assembler, TML Pascal
generates all code to the single file ending with the .ROOT SuffIX.

EXAMPLE.ASM Editor is the recommended extension for 65816 assembly source programs.

EXAMPLE.ROOT Assembler are the object code files created by the APW 65816 assembler.
EXAMPLE.A The fIrst module in a assembly source file is assembled to the file

EXAMPLE.ROOT, all subsequent modules are assembled to the
file EXAMPLE.A.

EXAMPLE Linker is the name of the fmal application or desk accessory.

ProDOS16 File Types used by APW

The following table lists the various ProDOS 16 filetypes used by files created and manipulated with the
Apple Programmer's Workshop and TML Pascal. For a complete list of ProDOS 16 file types consult the
Apple fiGS ProDOS 16 Reference.

Hex Named Meaning Comments
FiletvDe FiletvPe

$00 Binary File For TML Pascal's unit symbol files (. USYM files).

$04 TXT Text File Standard ASCII text files.

$BO SRC Source Source code files for an assembler or compiler.

$BI OBI Object Object code output from an assembler or compiler and input to
the Linker.

$B2 LIB Library Library of object code modules grouped by the MAKELIB
utility. These are usually placed in the LIBRARIES/ directory.

$B3 S16 Load Stand-alone ProDOS16 application

$B4 RTL Run Time Library Code segments that represent general utilites that can be shared
by applications.

$B5 EXE Shell Load Stand-alone ProDOS 16 application intended to run within a shell
(such as APW)

$B6 STR Startup Load A load file which is meant to be executed once at system

Pascal User's Guide 21 Getting Started

$B7 Startup Load

$B8 CDA Classic DA

$B9 NDA NewDA

$BA Tool

Where to go from here

start-up, returning to the system when it is done, but whose code
remains resident in memory.

A load file which is meant to be executed once at system
start-up, returning to the system when it is done, and whose code
is removed from memory when completed.

Code for a Classic Desk Accessory

Code for a New Desk Accessory

A RAM based tool such as the Menu or Window Manager.

Now that you have written your first program in TML Pascal you should continue through the rest of this
User's Guide to discover more about writing Plain Vanilla programs, Apple IIGS event-driven applications,
and of course desk accessories. And even if you already know how to program Pascal, you should also
spend some time reading the TML Pascal Reference Manual. You will discover that TML Pascal is full of
interesting features that will help you write better and more powerful applications. For example, TML
Pascal includes such things as static and univ parameters, type casting, unit bodies, and much more.

Pascal User's Guide 22 Getting Started

Introduction to Plain Vanilla

©rm@ffJfl@~ ~

Writing "Plain Vanilla" Applications

Programming the Apple IIGS can sometimes prove to be an intimidating endeavor. For this reason, not
only has the TML Pascal compiler been designed for developing Apple IIGS applications and desk
accessories using the desktop interface, but it has also been designed to provide for a more traditional
Pascal programming environment. That is, the ability to write useful applications without dealing with
Windows, Menus, Controls, etc.

This type of application is called a plain vanilla or textbook application. Plain vanilla applications are still
stand-alone ProDOS 16 applications, but they represent the more typical standard Pascal program one
might find in a textbook or from more "traditional" computer environments. These programs make little or
no use of the Apple IIGS Toolbox and thus allow one to quickly port Pascal programs to the Apple JIGS.

A plain vanilla program executes in the Apple IiGS Super HiRes 640 mode. The compiler generates code
which initializes appropriate Apple JIGS tools and creates a single window on the screen which behaves just
as a standard CRT monitor with a 20 row by 80 column display. Within this window, you will be able to use
the standard Pascal Readln and Writeln operations, and because it is a Apple JIGS window you will also be
able to use Quickdraw graphics.

Plain vanilla programming is especially useful for programmers just learning the Pascal language and then
exploring the fascinating features of the Apple JIGS. Advanced programmers will also enjoy this feature of
TML Pascal, as well, for building "quick and dirty" tools or testing a new piece of code without having to go
through the details of using the Apple IIGS tools.

The Source File

The structure of a plain vanilla program is very simple and straightforward. In fact, the only requirement for
programming a plain vanilla program is to include the file parameters (Input,Output) in the program
heading. The compiler uses the presence or absence of these file parameters to distinguish between
plain vanilla programs and Apple JIGS applications and desk accessories.

The FIRSTPROG example from Chapter 3 is a plain vanilla program.

PROGRAM FirstProg(Input,Output);
BEGIN

Writeln('Hello World');
Readln;

END.

Pascal User's Guide 23 Writing "Plain Vanilla" Applications

Note the presence of (Input,Output) in the program header. If these file parameters had not appeared in
the program heading, then the compiler would not have generated code to initialize the Apple IIGS and
create the plain vanilla window for displaying the message 'Hello World'. Thus, this program would fail to
execute properly as a non-plain vanilla program.

If we modify the above program to include a for loop as shown below you will discover that as lines are
written to the bottom of the window the content of the window is scrolled up to make room for each
subsequent line.

PROGRAM FirstProg(Input,Output);
VAR I: Integer
BEGIN

FOR I := 1 TO 50 DO
Writeln('Hello World');

Readln;
END.

As you might expect, if your program is writing a lot of output, much of it could scroll past the top of the
window before you had the opportunity to read it. To help solve this problem, TML Pascal allows you to
stop screen output at any time by pressing the mouse button and holding it down. As soon as the mouse
button is released, output will resume.

Plain vanilla programs are not actually completely stand-alone programs. Because the implementation of
the plain vanilla window is created in the Apple IIGS Super HiRes mode using the Window Manager, the
window manager RAM based Apple IIGS tool must be in the SYSTEM/TOOLS/ directory of your boot disk
(see Chapter 2). If the RAM based Window Manager tool is not available then plain vanilla programs will fail
to execute.

See the Technical Details section below for more information regarding the implementation of plain vanilla
programs in TML Pascal.

Using ConsolelO

In addtion to providing simple Writeln and Readln operations in the plain vanilla window, TML Pascal also
provides a special unit named ConsolelO for implementing the traditional UCSD Pascal screen control
operations. These include the following operations:

FUNCTION KeyPressed: Boolean;
FUNCTION ReadChar: Char;
PROCEDURE GotoXY(x,y: Integer);
PROCEDURE EraseScreen;
PROCEDURE ClearEOL;
PROCEDURE InsertLine;
PROCEDURE DeleteLine;

Pascal User's Guide 24 Writing "Plain Vanilla" Applications

In order to use these operations in your program, you merely specify the name ConsolelO in the program's .
uses clause. For example,

PROGRAM Test(Input,Output);
USES ConsoleIO;
BEGIN

{ Your code goes here }
END.

In addition to these operations, the ConsolelO unit also provides for string to number and number to string
conversions and a special routine for using dithered colors. For more information about the ConsolelO
unit, see Chapter 5.

Adding Graphics to Plain Vanilla

Because plain vanilla programs actually run in the Apple IIGS Super HiRes 640 mode using QuickDraw and
the Window Manager to create the plain vanilla window, it is possible to use QuickDraw graphics in your
plain vanilla programs.

In order to use QuickDraw, merely include the unit name QDlntf in your program's USES clause. When
your plain vanilla program begins, QuickDraw has already been intialized and ready to use. For example,

PROGRAM Test(Input,Output);
USES QDIntf;
BEGIN

{ Your code goes here including use of QuickDraw operations }
END.

Some Examples

Your TML Pascal distribution disk contains two additional plain vanilla applications besides the FIRSTPROG
demo discussed in Chapter 3. These are BENCHMARK and CONSDEMO. The BENCHMARK example program
performs the classical Sieve of Erastothenes and Selection Sort compiler benchmarks which tests a
compiler's code generation capability. The CONS DEMO is a more advanced example which shows the
use of the ConsolelO unit and the use of QuickDraw gra,phics using the QDlntf unit.

Technical Details

This section is for more advanced programmers who would like to know exactly what code is executed to
create the plain vanilla environment. After performing the standard initialization required for all Pascal
programs and before control is given to the main program of a plain vanilla application, the compiler
generates a call to the subroutine _PASTASTART which performs the necessary operations to create the
plain vanilla environment.

The following is a source code fragment in Pascal which shows the functionality of the PASTAS TART
routine. -

Pascal User's Guide 25 Writing "Plain Vanilla" Applications

TLStartUp;
MyMemoryID := MMStartUp;

init Tool Locator }
init Memory Manager

Allocate 4 pages of memory in bank 0 for use by GS Tools.
3 pages for QuickDraw,
1 page for Event Manager }

ToolsZeroPage :=
NewHandle(4 * 256,

MyMemoryID,
fixedBank+fixedblk+locked,
ptr(O));

QDStartUp
(LoWord(ToolsZeroPage A

),

$80,
160,
MyMemoryID);

EMStartUp
(LoWord(ToolsZeroPage A

) + $300,

20,
0,
640,
0,
200,
MyMemoryID);

allocate 4 pages }
User ID for memory blocks }
Attributes }
start in bank 0 }

low address of the first
3 zero pages }
640 mode }
max size of scan line }
Memory user ID }

low address of the
4th zero page
event queue size
X min clamp
X max clamp
Y min clamp
Y max clamp
Memory user ID

Now load RAM based tools (and RAM patches to ROM tools!)
ToolRec.NumTools := 3;
ToolRec.Tools[l] . TSNum := 4;
ToolRec.Tools[l] .MinVersion := 1;
ToolRec.Tools[2] . TSNum := 6;
ToolRec.Tools[2] .MinVersion := 1;
ToolRec.Tools[3] . TSNum := 14;
ToolRec.Tools[3] .MinVersion .- 0;
LoadTools(ToolRec);

WindStartUp(MyMemoryID);
Refresh(nil);

P1ainVanillaWndPtr := NewWindow(NewWindRec);

SetPort(GrafPtr(PlainVanillaWndPtr));

SetForeColor(O);
SetBackColor(15);
GotoXY(l,l);
ShowCursor

Pascal User's Guide 26

QuickDraw II }

Event Manager }

Window Manager

Load the tools I need

init Window Manager }

NewWindRec is defined
appropriately. }

Writing "Plain Vanilla" Applications

©!ifJ&1[pJIl@!l ~
The Apple IIGS Toolbox Interfaces

This chapter outlines TML Pascal's access to and use of the Apple IiGS Toolbox which is of course the
basis for developing event-driven, desktop based applications and desk accessories. The Toolbox is a
large collection of software organized into several different functional components called Tool Sets or
Managers. Within each tool set is a collection of routines which provide for the functionality of the tool set.
Each tool set is assigned a unique tool number and each routine within a tool set is assigned a unique
function number.

TML Pascal provides access to the Apple JIGS Toolbox via a collection of Pascal units. Each unit defines an
assortment of Constant, Type, Procedure, and Function declarations which correspond to one or more of
the Apple IIGS tool sets. Thus, whenever an application requires access to any of the Toolbox it merely
includes a USES clause which specifies the appropriate Pascal unit which defines the interfaces to the
required Toolbox routines. These Pascal units are in the TOOLINTF / directory of the TML Pascal
distribution disk. For example, the following USES clause makes the QuickDraw II tool set available.

USES QDlntf;

In addition to the Toolbox interfaces, TML Pascal provides three additional units in its TOOLINTF /
directory. These are the PRODOS16, APW, and CONSOLEIO units. These units provide access to the
ProDOS16 file system calls, the APW shell calis, and the special TML Pascal plain vanilla calls respectively.
Each of these units are discussed in the section Other TML Pascal Units at the end of this chapter.

Review of the Apple IIGS Tools

With the release of the Apple IIGS System Disk version 1.1, 28 different tool sets have been defined as
part of the Apple JIGS Toolbox. Each of these tool sets is listed in the table below together with the TML
Pascal unit which defines its interface. Also indicated in the table is whether or not the particular tool set
resides in the Apple IIGS's Read Only Memory (ROM) or on disk as a tool file and thus must be loaded into
Random Access Memory (RAM) before it may be used.

If a tool set is to reside in RAM, then its corresponding tool file must be available in the SYSTEM/TOOLS/
directory of the boot disk. The name of a tool file is TOOLxxx, where xxx is a three digit number
corresponding to the tool set's assigned tool number. For example, the Window Manager's tool file has
the name TOOL014.

Pascal User's Guide 27 The Apple IIGS Toolbox Interfaces

Tool Number Tool Name Pascal Unit RAM ROM

1 Tool Locator GSIntf X
2 Memory Manager GSIntf X
3 Miscellaneous Tools MiscTools X
4 QuickDraw II QDIntf X
5 Desk Manager GSIntf X
6 Event Manager GSIntf X
7 Scheduler Scheduler X
8 Sound Manager Sound X
9 Apple Desktop Bus n/a X

10 SANE SANE X
11 Integer Math IntMath X
12 Text Tools TextTools X
13 Reserved for System Use
14 Window Manager GSIntf X
15 Menu Manager GSIntf X
16 Control Manager GSIntf X
17 System Loader Loader X
18 QuickDraw Auxilary Routines QDIntf X
19 Print Manager PrintMgr X
20 Line Edit GSIntf X
21 Dialog Manager GSIntf X
22 Scrap Manager GSIntf X
23 Standard File GSIntf X
24 Disk Utilities n/a X
25 Note Synthesizer NoteSyn X
26 Note Sequencer n/a X
27 Font Manager GSIntf X
28 List Manager ListMgr X

Release version 1.0 of TML Pascal does not provide the interfaces to three of the Apple ilGS tool sets.
These are indicated above by the nla in the Pascal Unit column of the table. Also, note that while the
interfaces to some RAM based tools are provided, they are not available with the Apple IIGS System Disk
version 1.1. For example, the interfaces to the Print Manager and List Manager are provided, but their tool
files will not be available until a subsequent release of the Apple IIGS System Disk. Contact you Apple
Dealer for the latest released system software.

What do the Tools Do?

The following paragraphs provide a very brief synopsis of the functionality of each of the Apple IIGS tool
sets. This synopsis is intended only as a very brief introduction to each of the tool sets, and you should
consult the Apple IIGS Toolbox Reference, Volumes 1 and 2 for a detailed discussion of each tool set.

Tool locator

Pascal User's Guide

The Tool Locator is the most important of the Apple IiGS tool sets.
Without the Tool Locator, it would be impossible to access any
other tool sets. The Tool Locator allows you to load tool sets from
disk into RAM and invoke a tool routine as described above without
knowing where in memory the routine's code is actually located.

28 The Apple IIGS Toolbox Interfaces

Memory Manager

Miscellaneous Tools

QuickDraw Ii

Desk Manager

Event Manager

Scheduler

Sound Manager

Apple Desktop Bus

SANE

integer Math

Text Tools

Window Manager

Menu Manager

Pascal User's Guide

The Memory Manager is the second most important tool set after
the Tool Locator. This tool is entirely responsible for the allocation,
deallocation, and repositioning of memory blocks on the Apple IIGS.
The manager keeps track of how much memory is free and what
parts are allocated and to whom.

The Miscellaneous Tools consists mostly of system-level routines
that must be available to most other tool sets.

OuickDraw II is the tool set that controls the graphics environment of
the Apple IIGS and draws simple objects and text. All other tools
which create graphical objects such as the Window Manager call the
OuickDraw II tool set.

The Desk Manager is the tool which enables an application to
support desk accessories, both classic desk accessories and new
desk accessories.

The Event Manager allows applications to monitor and react to a
user's actions, such as those involving the mouse and keyboard.

The Scheduler delays the activation of a desk accessory or other
task until the resources that the task/desk accessory requires
become available.

The Sound Manager provides access to the Apple JIGS's sound
hardware for creating basic sounds.

The Apple Desktop Bus is a method and a protocol for connecting
input devices, such as keyboards and mice with the Apple JIGS. The
routines in this tool set are used to send commands and data
between the Apple Desktop Bus Microcontroller and the rest of the
system.

SANE implements Apple's Standard Apple Numeric Environment.
It is an extended-precision IEEE 754 and 854 conformant
implementation of floating point arithmetic.

This tool set consists of a varied collection of operations for
integers. These include multiplication, division, conversions, etc.

The Text Tools provides an interface between Apple II character
device drivers, which must be executed in emulation mode, and
applications running in native mode.

The Window Manager creates the desktop environment and is
responsible for the creation and manipulation of windowS'.

The Menu Manager controls and maintains the use of pull-down
menus and the items in the menus for an application.

29 The Apple IIGS Toolbox Interfaces

Control Manager

System Loader

QuickDraw Auxilary Routines

Print Manager

Line Edit

Dialog Manager

Scrap Manager

Standard File

Note Synthesizer

Font Manager

List Manager

The Control Manager consists of all the routines necessary to
manipulate controls. Controls are such things as scroll bars, radio
buttons, check boxes, etc.

The System Loader is responsible for loading and relocating code
such as applications and desk accessories to memory.

This tool contains additional routines which complement the
QuickDraw tool set.

The Print Manager allows an application to use QuickDraw routines
to print text and graphics to an Imagewriter or LaserWriter.

Line Edit allows a program to present text on the screen and allows
a user to edit that text.

The Dialog Manager provides the routines which allow an
application to create and use dialog boxes and alerts as a means of
communication between a user and your program.

The Scrap Manager implements the desk scrap, which implements
the Cut, Copy, and Paste operations of an application.

The Standard File tool set implements the standard user interface
for specifiying a file to be opend or saved.

The Note Synthsesizer is used to create complex musical sounds
using the Apple IIGS's sound hardware.

The Font Manager is the tool set which allows your application to
make use of different text fonts, font styles, etc.

The List Manager is used to create lists which are used to display
and allow selection of a variable amount of similar data.

How Calling a Tool Routine Works

This section is intended for advanced programmers who want to understand how a tool routine is actually
invoked from Pascal. If you are content with the fact that everything works and that the tool routines are
essentially additional built in routines then feel free to skip this section.

As discussed above, TML Pascal provides access to the Apple IIGS Toolbox via a collection of Pascal units
which defines the appropriate Pascal interface to each of the routines of a particular tool set. Each tool
routine is defined as a either a procedure or function depending upon whether or not the routine returns a
value on the stack and may have zero or more parameters. Finally, the procedure or function declaration is
completed with the Tool Directive (see Chapter 7 of the Reference Manual). The tool directive is a special
extension to TML Pascal for the Apple IIGS for the specific purpose of defining interfaces to the Toolbox.

Pascal User's Guide 30 The Apple IIGS Toolbox Interfaces

The following procedure declaration is taken from the QDlntf.Pas unit, and is the interface to the MoveTo
procedure in the QuickDraw tool set.

PROCEDURE MoveTo(h,v: Integer); Tool 4,58;

As you can see, the procedure declaration is completed with the tool directive Tool 4,58. The first integer
in the tool directive specifies the tool set to which the the routine belongs. In this case, it is tool set
number 4 which is the QuickDraw tool set. The second integer is the function number of the routine within
the tool set. Every routine within a tool set is assigned a unique function number. The MoveTo routine is
assigned number 58. Together, these two integers uniquely identify the MoveTo procedure in the entire
Apple IIGS Toolbox.

The Apple IIGS defines a consistent mechanisim for invoking a Toolbox routine. To invoke a Toolbox
routine, space for any function result value must first be reserved on the stack followed by pushing the
values of any parameters. Then the 65816 X-register must be loaded with the desired Toolbox routine's
function number and tool set number such that X-register = 256 • function number + toolset number.
Finally, a jump subroutine long instruction is made to the address $E1 0000 which then contains a jump
into the tool locator which finds the code associated with the desired Toolbox routine and passes control
to it. Upon returning from the Toolbox routine, all parameters have been removed from the stack leaving
the function result value (if any) on the top of the stack. In addition, the 65816 processor's carry flag is set
if an error occured during the execution of the Toolbox routine, and if so the 65816 accumulator register
contains an error code.

By using TML Pascal's tool directive with a procedure or function declaration, the preceeding conventions
are obeyed. In addition, TML Pascal will generate a store accumulator instruction to the Pascal global
variable ToolErrorNum (see Chapter 10 of the Reference Manual) so that potential error codes returned by
a Toolbox routine can be examined.

Thus, an invocation of MoveTo(16,20) would generate the following 65816 instructions.

pea $0010
pea $0014
ldx $3A04
jsl $E10000
sta ToolErrorNum

58 * 256 + 4

In order to allow programs written in TML Pascal to perform error checking on calls to Toolbox routines,
TML Pascal has defined the special function IsToolError (see Chapter 10 of the Reference Manual) which
examines the current state of the processor's carry flag. The IsToolError function should only be used
IMMEDIATELY after a call to a Toolbox routine to ensure that the state of the processor's carry flag has not
been corrupted by any intervening operations.

Thus, a program written in TML Pascal might use the following code to detect from an error which occurs in
the Toolbox routine MoveTo.

MoveTo(16,20);
if IsToolError then

Temp := ToolErrorNum;
Writeln('Error occurred in MoveTo, #',Temp);
end;

Pascal User's Guide 31 The Apple IIGS Toolbox Interfaces

Note that the value of ToolErrorNum was first saved to the temporary variable Temp before the call to
Writeln. This is because Writeln itself makes tool calls that would destroy the value of ToolErrorNum

. associated with the error condition returned by MoveTo.

There are at least three cases where the compiler's generation of the STA ToolErrorNurn instruction is
not required. These are the following:

(1) Many Toolbox routines do not return errors (this is the case in the above example).

(2) An application has otherwise guaranteed that all possible error conditions do not exist.

(3) An application is not effected if an error occurs, proceed regardless (usually poor
programming style, but sometimes appropriate).

If these reasons occur often enough in an application, then the generation of the STA ToolErrorNum
instruction can potentially increase the size of an application unnecessarily. To avoid this possibility, TML
Pascal provides the $ToolErrorChk directive to turn off and on the generation of this instruction (see
Appendix B of the Reference Manual).

For example, the following call to the Toolbox routine MoveTo would not generate the STA
ToolErrorNum instruction.

{$ToolErrorChk-}
MoveTo (16, 20);

While use of the $ToolErrorChk directive can save a considerable amount of code, the programmer must
be very careful of its use in order to avoid erroneously checking the value of ToolErrorNum when the
directive is turned off, and therefore ToolErrorNum has not been assigned an error code.

Other TML Pascal Units

In addition to providing interfaces to the Apple IIGS Toolbox, TML Pascal provides an additional three units
which provide interfaces to the ProDOS 16 operating system of the Apple IIGS, interfaces to the shell
environment calls of the Apple Programmer's Workshop, and a collection of utilities for Plain Vanilla
programs and a set of string to number conversion routines.

Each of these three units is discussed in the following sections.

The ProDOS16 Unit

ProDOS 16 is the operating system of the Apple IIGS. As such it provides for the manipulation of volumes,
files, prefixes and other system services. The Pascal unit ProDOS16 provides the interfaces to each of
the routines available in ProDOS 16.

If you examine this unit, you will discover that the procedures and functions delcared there are not
declared using the TML Pascal Tool directive. This is becuase the ProDOS 16 routines are not
implemented as a tool set in the Apple IiGS Toolbox. Instead, the ProDOS 16 procedures and functions
are accessed in a very special way and therefore are declared with the External directive. That is, each of
these routines is implemented with glue code which changes the call into the proper form from the

Pascal User's Guide 32 The Apple fiGS Toolbox Interfaces

standard Pascal calling convention. These glue code routines are provided in the TMLPASCALLIB runtime
library.

For more information regarding ProDOS 16 and its routines consult the Apple fiGS ProDOS 16 Reference.

The APWUnit

The APW unit defines the interface to the Apple IIGS Programmer's Workshop shell calls. APW is a shell
environment in which other programs may execute (such as the TML Pascal compiler), and therefore these
programs must interact with the shell. For example, a language tool which operates from within APW must
be able to communicate with APW in order to determine which file to compile. APW defines a set of
routines for providing this interaction for which the Pascal interfaces are given in the APW unit:

As with the ProDOS16 unit, each of the routines are declared using the compiler's External directive
where the corresponding code is in the TMLPASCALLIB runtime library.

For more information regarding APW and its routines consult the Apple fiGS Programmer's Workshop
Reference.

The Conso/elO Unit

The ConsolelO unit is a special unit provided with TML Pascal for the purpose of providing a collection of
standard utilities for all TML Pascal programs. The ConsolelO unit provides three classes of utilities. These
are

(1) The traditional UCSD Pascal screen control operations,

(2) Setting a dithered color, and

(3) Pascal string to number and number to Pascal string conversion routines.

The following are the screen control operations provided by ConsolelO. While these routines are typically
used by Plain Vanilla programs, they are implemented so that they work correctly in any window of an
Apple IIGS program using Super HiRes 640 mode.

FUNCTION KeyPressed: boolean;
FUNCTION ReadChar: char;
PROCEDURE GotoXY(x, y : integer);
PROCEDURE EraseScreen;
PROCEDURE ClearEOL;
PROCEDURE InsertLine;
PROCEDURE DeleteLine;

The following routine is provided in the ConsolelO unit in order to change the color of the QuickDraw pen
while in Super HiRes 640 mode. Actually, the routine sets the pattern of the pen, but the patterns used
cause an effect called dithering which appears to have changed the color of the pen. See the CONSDEMO
example on the TML Pascal distribution disk to see the effects of this routine. The reason for providing
this routine is to make up to 16 colors available at one time in 640 mode which normally displays only 4
colors. The value of the Color parameter must be between 0 an-d 15.

PROCEDURE SetDithColor(Color: Integer);

Pascal User's Guide 33 The Apple fiGS Toolbox Interfaces

Finally, the following six routines are provided as utilities for convertig between Pascal string and binary
representations of real and integer numbers.

FUNCTION IntToString(i: integer): string;
FUNCTION LongIntToString(l: LongInt): string;
FUNCTION RealToString(r: real): string;

FUNCTION StringToInt(str: string): integer;
FUNCTION StringToLongInt(str: string): LongInt;
FUNCTION StringToReal(str: string): real;

Pascal User's Guide 34 The Apple IIGS Toolbox Interfaces

@[}iJ@[pJ(J@!l ®
Writing Apple IIGS Applications

In this chapter, we move on to show you how to develop event-driven Apple IIGS applications which take
advantage of the Apple IIGS Toolbox and present the user of your application with the desktop metaphor.
Although this chapter covers all the basic principles involved in developing Apple IIGS applications, it is by
no means an attempt to discuss how each of the Toolbox routines is used. Apple Computer's
documentation of the Toolbox, the Apple fiGS Toolbox Reference, spans two large volumes, so you can
see we don't have room to discuss every Toolbox routine here.

Throughout this chapter, the example program GSDEMO.PAS from the TML Pascal distribution disk will be
referenced. While reading this chapter, you might find it useful to have a listing of the program, and have
used the program to see what features it supports.

Event-Driven Programming

The concept of event-driven programming is a somewhat different approach to programming than you may
be acustomed. Conventional programming strategies usually has an application consist of a linear
sequence of actions which are executed one after the other. Action 1 is executed first, followed by action
2 and then action 3, etc. Event-driven programming is the opposite of this approach. Instead, all actions
are possible at a given time, and the next action depends upon some event, usually in response to a
user's interaction with the program.

Given this strategy, the basic structure of every Apple ilGS application is nearly identical. The main program
usually consists of the following statements.

BEGIN
StartUpGSTools;
{ routines to initialize menus, windows, etc. }
MainEventLoop;
ShutDownGSTools;

END.

The StartUpGSTools and ShutDownGSTools procedures are responsible for loading and initializing the
tool sets from the Apple IIGS Toolbox which are to be used in the application, and then shutting them
down before program termination (see Using the Apple fiGS Toolbox below). The MainEventLoop
procedure is responsible for detecting and then responding to events. The typical structure of this
procedure is as follows:

Pascal User's Guide 35 Writing Apple fiGS Applications

procedure MainEventLoop;
var Event: EventRecord;

code: integer;
begin

Event. TaskMask
Done := false;
repeat

$lFFF; { allow TaskMaster to do everything }

code := TaskMaster(-l, Event);
case code of

Event Manager Events }
NullEvent:
mouseDown:
mouseUp:
keyDown:
autoKey:
updateEvt:
activateEvt:
switchEvt:
deskaccEvt:

{ Task Master Events
wInDesk:
wInMenuBar:
wInContent:
wInDrag:
wInGrow:
wInGoAway:
wInZoom:
wInInfo:
wInFrame:

ProcessMenu(Event.TaskData);

end;
until Done;

end; { of MainEventLoop

Each of the alternatives in the MainEventLoop case statement represents an event that TaskMastercan
detect. Depending on the features of your application, some of these events mayor may not occur. For a
complete discussion of these events and how to respond to them you should read the Event Manager
and Window Manager chapters of the Apple fiGS Toolbox Reference. The TML Pascal Source Code
Library is also an excellent source of Apple IIGS example applications showing the use of the Toolbox.

While this chapter does not show how to respond to each of the possible events, we will discuss how an
application should respond to a wInMenuBar event. The wInMenuBar is retuned by TaskMaster
whenever the mouse has been pressed down over the menu bar and then released over an item of a
pull-down menu.

As you can see from the ProcessMenu procedure below the long integer codeWord contains the Menu
Number in the high order word and the Item Number in the low order word. The procedure uses the item
number to determine which menu item was selected and then performs the appropriate action. The menu
number is used at the end of the procedure to unhilight the menu in the me.nu bar.

Pascal User's Guide 36 Writing Apple fiGS Applications

procedure ProcessMenu(codeWord
var menuNum:

itemNum:
Integer;
Integer;

begin
men uNum
itemNum

HiWord(codeWord);
LoWord(codeWord);

Longint) ;

if itemNum AboutItem then begin
{ code to display About Box }
end

else if itemNum = QuitItem then
Done := true;

HiliteMenu(false,menuNum);
end; { of ProcessMenu }

Using the Apple IIGS Toolbox

As discussed above, every Apple IIGS application must have the procedures StartUpGSTools and
ShutDownGSTools for the purpose of initializing the Apple IIGS tool sets used by the application and then
shutting them down. Every tool set used by the application must be loaded and started and then shut
down, tool sets which are not used by the application do not need to be loaded or started.

The order of loading and starting as well as shutting down the tool sets used in an application is well
defined and must be followed. The following StartUpGSTools procedure from the GSDEMO.PAS
application shows the required order of initialization. If additional tool sets besides those shown-are used,
then they should be specified in the ToolRec and started up after the Desk Manager routine
DeskStartUp.

procedure StartUpGSTools;
{ This routine initializes each of the //GS Tools required for every

application.

var ToolRec: ToolTable;
begin

TLStartUp;
MyMemoryID .- MMStartUp;
MTStartUp;

init Tool Locator }
init Memory Manager
init Misc Tools }

Allocate 7 pages of memory in bank 0 for use by GS Tools.
3 pages for QuickDraw,
1 page for Event Manager,
1 page for Menu Manager,
1 page for Control Manager,
1 page for Line Edit }

Pascal User's Guide 37 Writing Apple fiGS Applications

ToolsZeroPage :=
NewHandle(6 * 256, allocate 7 pages }

MyMemoryID,
fixedBank+fixedblk+locked,
ptr(O));

User ID for memory blocks }
Attributes }

QDStartUp
(LoWord(ToolsZeroPage~),

ScreenMode,
160,
MyMemoryID);

EMStartUp
(LoWord(ToolsZeroPage~) + $300,
20,
0,
MaxX,
0,
200,
MyMemoryID);

start iti bank ° }

low address of the first
3 zero pages }
640 mode }
max size of scan line }
User ID for memory blocks

low address of 4th zero page
event queue size }

X min clamp
X max clamp
y min clamp
y max clamp
User ID for memory blocks }

Now load RAM based tools (and RAM patches to ROM tools!)
ToolRec.NumTools := 9;
ToolRec.Tools[l] . TSNum := 4;
ToolRec.Tools[l] .MinVersion := 1;
ToolRec.Tools[2] . TSNum := 5;
ToolRec.Tools[2] .MinVersion := 1;
ToolRec.Tools[3] . TSNum := 6;
ToolRec.Tools[3] .Minversion := 1;
ToolRec.Tools[4] . TSNum := 14;
ToolRec.Tools[4] .MinVersion := 0;
ToolRec.Tools[5] . TSNum := 15;
ToolRec.Tools[5] .MinVersion := 1;
ToolRec.Tools[6] . TSNum := 16;
ToolRec.Tools[6] .MinVersion := 1;
ToolRec.Tools[7] . TSNum := 21;
ToolRec.Tools[7] .MinVersion := 0;
ToolRec.Tools[8] . TSNum := 20;
ToolRec.Tools[8] .MinVersion := 0;
ToolRec.Tools[9] . TSNum := 22;
ToolRec.Tools[9] .MinVersion
LoadTools(ToolRec);

if isToolError then begin

0;

QuickDraw II

Desk Manager

Event Manager }

Window Manager

Menu Manager }

Control Manager

Dialog Manager

Line Edit }

Scrap Manager

Load the tools I need }

{ add code to ask for Boot disk to be inserted ... }
end;

WindStartUp(MyMemoryID);
Refresh(nil);

Pascal User's Guide 38

{ init Window Manager }

Writing Apple /lGS Applications

}

CtlStartUp
(MyMemoryID,
LoWord(ToolsZeroPage~) + $400);

MenuStartUp
(MyMemoryID,
LoWord(ToolsZeroPage~) + $500);

ScrapStartUp;
{ init Scrap Manager }

LEStartUp
(LoWord(ToolsZeroPage~) + $600,
MyMemoryID);

DialogStartUp
(MyMemoryID) ;

DeskStartUp;

end; { of StartUpGSTools}

init Control Manager }
User ID for memory blocks
low address of 5th zero page

init Menu Manager }
UserID for memory blocks
low address of 6th zero page

init Line Edit }
low address of 6th zero page
User ID for memory blocks }

init Dialog Manager }
User ID for memory blocks

init Desk Manager }

Just as there is a required order for loading and initializing the tool sets used in an application, there is a
required order to shut the tools down as well. The ShutDownGSTools procedure from the
GSDEMO.PAS application shows the required order of initialization. If additional tool sets besides those
shown were started, then they should be shut down in the reverse order of start up before the Desk
Manager is shut down.

procedure ShutDownGSTools;
{ Shut down each of the IIGS Tools initialized previously before exitting

this application.

begin
GrafOff;
DeskShutDown;
DialogShutDown;
LEShutDown;
ScrapShutDown;
MenuShutDown;
WindShutDown;
CtlShutDown;
EMShutDown;
QDShutDown;
MTShutDown;
MMShutDown(MyMemoryID);
TLShutDown;

end; { of ShutDownGSTools}

Pascal User's Guide 39 Writing Apple IIGS Applications

Supporting Desk Accessories

Apple IIGS applications should also support New Desk Accessories (see Chapter 7) by way of the Apple
Menu. New desk accessories are "mini-applications" which run from within a window of an Apple IiGS
application. As you might expect, the Toolbox contains a tool set which does most all the work necessary
to support desk accessories in an application - the Desk Manager. The following paragraphs outline the
responsibilities of an Apple IIGS application supporting desk accessories.

In order for an application to support desk accessories, it must first ensure that the following Apple IiGS tool
sets have been loaded and started.

QuickDraw II
Event Manager
Window Manager
Menu Manager
Control Manager
Scrap Manager
Line Edit
Dialog Manager

The reason for these particular tool sets is that desk accessories, by convention, are permitted to assume
that all of these tool sets are initialized and available for use. If a desk accessory requires any other tool set,
it must load and startup the tool set itself. The Desk Manager tool set must also be started so that its calls
are available in the application.

In order to add the set of currently installed desk accessories to the apple menu of an application, the
application's SetUpMenus procedure should call the FixAppleMenu Menu Manager routine before the
FixMenuBar routine. Consider the following code fragment from GSDEMO. PAS.

AppleMenuStr := '»@\N300\O==About GSDemo ... \N301\O==-\N302D\O .. ';
InsertMenu(NewMenu(@AppleMenuStr[l]),O);
FixAppleMenu(300);

The technique for opening, closing, and running of desk accessories during the execution of your
application depends upon whether or not your application is using TaskMaster (a Window Manager
routine). If your application is using TaskMaster, then your application needs no additional code to
support the full functionality of desk accessories. However, if your application is not using TaskMaster, but
instead is using GetNextEvent and processing all events on its own, then your application must perform
the following operations.

(1) Call OpenNDA when the user selects a desk accessory in the apple menu.

(2) Call System Task frequently (at least every time through the event loop).

(3) Call System Click when a mouse down event occurs in a system window.

(4) Call SystemEdit when a desk accessory is active and the user selects Undo, Gut, Copy, Paste,
or Clear from the application's Edit Menu.

(5) Call CloseNDA or CloseNDAbyWinPtr when the user selects Close from the application's File
Menu.

Pascal User's Guide 40 Writing Apple fiGS Applications

Definition Procedures (DefProcs)

Often times, the Apple IIGS Toolbox routines must call a procedure which is actually part of your
application. These types of procedures (and sometimes functions) are given the name Definition
Procedures or DefProcs for short. The reason for the name definition procedure is that these routines
are generally used to allow the application to provide a custom definition of some generic operation. For
example, there are Menu Definition Procedures which allows an application to provide customized drawing
procedures for drawing the representation of menus - perhaps a menu that contains a palatte of colors
rather than a list of items. As you might expect, the Toolbox also allows for definition procedures of
windows, controls, lists, etc.

Another component of the Toolbox where an application must use definition procedures (and the most
likely), is with the NewWindowtool routine of the Window Manager. The NewWindow routine has a single
record parameter which is the NewWindowParamBlk. This record defines all the information the Window
Manager needs to draw and maintain the new window. Three of the fields of the record require definition
procedures. The following Pascal record declaration shows the fields of the NewWindowParamBlk that
require definition procedures.

NewWindowParamBlk
record

wFrameDefProc: Procptr;
wlnfoDefProc: Procptr;
wContDefProc: Procptr;

end;

The wContDefProc routine, for example, is called by the Window Manager whenever it detects that the
display of the content of the window must be updated due to a region of the window, which was previously
hidden, becoming visible.

As you might expect, the procedure calling conventions for a Toolbox routine to a definition procedure are
different than normal Pascal procedures. Therefore, it is necessary for the application to signal to the TML
Pascal compiler that a particular procedure is in fact a definition procedure and should use the calling
conventions of Toolbox routines. To accomplish this, the compiler's $DefProc directive is used. The
directive must appear immediately before every procedure which is a definition procedure. >

There is one additional consideration that must be addressed for definition procedures - the addressing
of global variables. Typically, global variables are addressed using the 65816's absolute addressing mode
versus the less efficient absolute long addressing mode since TML Pascal ensures that the 65816's Data
Bank Register points to the memory bank containing the program's global variables. However, in the case
of definition procedures, TML Pascal's convetion may not be obeyed by a particular Toolbox routine (ie.
the Toolbox routine has changed the value of the Data Bank register). Thus, it is necessary to force TML
Pascal to use absolute long addressing mode for addressing global variables in a definition procedure to
ensure they are referenced correctly.

Pascal User's Guide 41 Writing Apple IIGS Applications

The following is the definition procedure Window2Content from GSDEMO. PAS.

{$DefProc }
{$LongGlobals+}

signal the following is a defproc
force absolute long addressing of globals

PROCEDURE Window2Content;
VAR i: Integer;
BEGIN

for i := 1 to 10 do begin
MoveTo(i*11+20,i*9+10);
DrawString('TML Pascal is Great!');
end;

END;

{$LongGlobals-} { retore to absolute addressing of globals }

Large Programs and Segmentation

The Apple IIGS limits the size of a program's code and data segments to 64K bytes. Code segments
contain the application's code, while data segments contain the storage required for the application's
global variables. The reason for this size restriction is that a segment must not cross the boundries of a
bank of memory. On the Apple IiGS, a bank of memory is 64K bytes. Thus, in order to develop
applications which have more than 64K bytes of code or 64K bytes of data, the program must be
segmented. Normally, TML Pascal creates one code segment and one data segment for an application.
To obtain more than one segment, the compiler's $CSeg and $DSeg directives must be used.

Code Segmentation

Code segments are named so that the Linker can organize the different pieces of code together based on
their code segment names. The default code segment name is main. In order to change the name of the
current code segment, the TML Pascal {$CSeg segname} compiler directive is used. When a {$CSeg
segname} directive appears in a program or unit, the code for all subsequent procedures and functions is
placed in the new code segment. To restore code segmentation back to the default segment, merely
place the {$CSeg main} directive in your program.

For more information regarding the use of the {$CSeg segname} directive see Appendicies Band C of
the Reference Manual.

Data Segmentation

Data segments are named just as code segments are so that the Linker can organize the different pieces
of data together based on their data segment names. The default code segment name is -global. In order
to change the name of the current data segment, the TML Pascal {$DSeg segname} compiler directive is
used. When a {$DSeg segname} directive appears in a program or unit, the data for all subsequent global
variable declarations is placed in the new data segment. To restore data segmentation back to the default
segment, merely place the {$DSeg -global} directive in your program.

Unless a program absolutely requires a large amount of global storage, the {$DSeg segname} should not
be used. The reason for this is that all global storage allocated outside of the -global data segment is

Pascal User's Guide 42 Writing Apple fiGS Applications

addressed using less efficient addressing modes than data allocated in the -global data segment.

For more information regarding the use of the {$DSeg segname} directive see Appendicies Band C of
the Reference Manual.

Pascal User's Guide 43 Writing Apple fiGS Applications

Introduction

([;!ifJ&1!fJI1@!1 II

Writing Desk Accessories

Desk Accessories are "mini-applications" which can be run from within Apple IIGS applications. There are
actually two types of desk accessories - Classic Desk Accessories and New Desk Accessories.

Classic desk accessories (COA's) are desk accessoires designed to execute in a non-desktop, non-event
based environment. Unlike new desk accessories, a COA gets full control of the machine during what is
basically an interrupt state. Classic desk accessories are invoked by pressing the APPLE, CONTROL, and
ESCAPE keys simultaneously. TML Pascal provides no direct means of writing classic desk accessories,
although an enthusiastic developer could easily do so.

New desk accessories (NOA's) are desk accessories designed to execute in a desktop, event-driven
envrionment. NOA's run in a window and get control when that window is the frontmost window on the
desktop. New desk accessories are made available by applications which support them via the Apple
Menu. TML Pascal provides direct support for implementing new desk accessories in Pascal, and is the
topic of this chapter.

Getting Started

Since NOA's operate in the desktop environment of Apple IIGS applications, you may assume that the
following Apple IIGS tools have been loaded and initialized:

QuickOraw
Event Manager
Window Manager
Menu Manager
Control Manager
Scrap Manager
LineEdit
Dialog Manager

Other tools may also be available, but you can not assume that they have been loaded and initialized. If a
new desk accessory requires other tools, it must load and initialized them itself.

The Source File

The source code for a new desk accessory is quite different than a normal program. In particular, a NOA
does not have a main program, but rather contains four special procedures - OAOpen, OAClose,

Pascal User's Guide 45 Writing Desk Accessories

DAAction, and DAlnit.

In addition to the four special procedures that every NDA must have, three additional pieces of information
must also be provided - the service period, the event mask, and its menu name. This information is
specified in TML Pascal with the $DeskAcc compiler directive.

{$DeskAcc period eventMask menuName

The service period defines how often the NDA should be "called" with the DARun action code (see below)
in order to service the NDA's functionality. A period of 1 is 1/60th of a second, a period of 2 is 1/30th of a
second, etc. A period of $FFFF is never. If a NDA displays the current time, then it would specify a service
period of 60 so that it could update its display every second.

The event mask defines which events should be handled by the desk accessory. These values are a
subset of those used by Apple IIGS applications using GetNextEvent or TaskMaster, and are listed below
for reference from the GSlntf unit. Of the six listed below, the update and activate events are always
passed to the desk accessory regardless of the event mask, however, the remaining four event types
must be specified explicitly. If all events should be handled by the desk accessory then an event mask of
-1 (or $FFFF) should be specified.

CaNST MDownMask 2;
MUpMask 4;
KeyDownMask 8;
AutoKeyMask 32;
UpdateMask 64;
ActivMask 256;

EveryEvent -1; { $FFFF }

Finally, the menu name is the name for the desk accessory which should appear in the apple menu of an
application supporting desk accessories.

As mentioned above, this information is specified with the compiler's $DeskAcc compiler directive. This
directive must appear as the first line of the program before the keyword PROGRAM. For example, the
following direcitve specifies a service period of 1 second, that all events should be handled by the desk
accessory and the menu name for the desk accessory is "Clock".

{$DeskAcc 60 -1 Clock}

Desk accessories also function differently than normal applications with respect to addressing global
variables. TML Pascal allocates the storage necessary for global variables in a data segment. A data
segment is loaded to memory just as the code for a desk accessory is loaded to memory. However, the
65816 Data Bank'Register is not set to point to the bank of memory which contains the desk accessory's
data segment for its global variables. Since the compiler can not be sure where the storage for a desk
accessory's globals variables will be allocated, it must always use the 65816'sabsolute long addressing
mode when referencing global variables. Since this is not the normal case for TML Pascal programs, the
compiler must be instructed to do so with its $LongGlobals+ direcitve.

Thus, we arrive at the basic structure for a new desk accessory written in TML Pascal.

{$DeskAcc 60 -1 Clock}

Pascal. User's Guide· 46 Writing Desk Accessories

{$LongGlobals+}
PROGRAM MyClockNDA;

FUNCTION DAOpen: WindowPtr;
BEGIN

{ Code for DAOpen }
END;

PROCEDURE DAClose;
BEGIN

{ Code for DAClose
END;

PROCEDURE DAAction(Code: Integer; Param: LongInt);
BEGIN

{ Code for DAAction }
END;

PROCEDURE DAInit(Code: Integer);
BEGIN

{ Code for DAInit }
END;

BEGIN
{ No main program allowed }

END.

The following sections defines each of the four required desk accessory routines and outlines each of
their responsibilites. The TML Pascal distribution disk contains the source code to a simple Clock desk
accessory.

The DAOpen Function

This function is called as the result of an application calling the Desk Manager routine OpenNDA. This
routine should check if the desk accessory has already been opened, and if it has then return without
performing any action. Otherwise, the function should create the window for the desk accessory, making it
a system window and return the window pointer to the created windows as the function's result.

The following is a source code fragement showing the basic structure of the DAOpen function.

FUNCTION DAOpen: Windowptr;
{ The variables my Wind Open , myWindPtr, and my Wind are globals }
BEGIN

if not my Wind Open then begin
my Wind Open := true;
myWindPtr := NewWindow(myWind);
SetSysWindow(myWindPtr);
DAOpen .- myWindPtr;
end;

END;

Pascal User's Guide 47 Writing Desk Accessories

The DAClose Procedure

The DAClose procedure should shut down the desk accessory when it is open. It should also work,
without creating an error situation, if it is called when the desk accessory is not actually open.

PROCEDURE DAClose;
{ The variables my Wind Open and myWindPtr are globals }
BEGIN

if my Wind Open then begin
CloseWindow(myWindPtr);
my Wind Open .= false;
end;

END;

The DAAction Procedure

The DAAction procedure is the routine which does all the work associated with the desk accessory
betweeri the time that it has been opened until it is closed. The DAAction procedure has two parameters -
a Code which indicates what type of action to perform and a Param whose meaning depends upon the
Code parameter. There are nine potential values for the Code parameter, each of which must be
implemented by the DAAction procedure. These operations are summarized in the following table
together with the meaning of the Param parameter in each case.

DAEvent

DARun

DACursor

DAMenu

DAUndo
DACut
DACopy
DAPaste
DAClear

Description

An event relevant to the desk accessory has occured. Param points to the event
record describing the event.

The time period specified as the service period has expired. Param has no meaning.

This code is passed to a desk accessory if it is the frontmost window each time
SystemTask is called. The purpose is to allow the desk accessory to change the
cursor when it is over the NDA's window. Param has no meaning.

This is passed to a desk accessory if an item from a system menu is selected.
LoWord(Param) is the Menu ID and HiWord(Param) is the Item ID.

Each of the following 5 codes are passed to a desk accessory if the application
determines that the user has selected one of these edit commands from the Edit
menu. The DAAction procedure should assign the value of 1 in the Code parameter
if the action was handled, otherwise a value of 0 should be assigned.

The following source code fragement shows the basic structure of a DAAction procedure.

PROCEDURE DAAction(Code: Integer; Param: Longint);
{ The variable myWindPtr is globals }
VAR currPort: GrafPtr;
BEGIN

case Code of

Pascal User's Guide 48 Writing Desk Accessories

DAEvent: begin
if EventRecordPtr(param)A.what

BeginUpdate(myWindPtr);
updateEvt then begin

END;

{ code to update window
EndUpdate(myWindPtr);
end

end;
DARun: begin

currPort := GetPort;
SetPort(GrafPtr(myWindPtr));
{ code to "run" the DA }
SetPort(currPort);
end;

DACursor: begin
{ code to update the cursor }
end;

DAMenu: begin
{ code to respond to a menu selection }
end;

DAUndo: begin
{ code to perform an Undo for the DA }
Code := 1;
end;

DACut: begin
{ code to perform a Cut for the DA }
Code := 1;
end;

DACopy: begin
{ code to perform a Copy for the DA }
Code := 1;
end;

DAPaste: begin
{ code to perform a Paste for the DA }
Code := 1;
end;

DAClear: begin
{ code to perform a Clear for the DA }
Code 1;
end;

The DAlnit Procedure

The DAlnit procedure is called when the Desk Manager routines DeskStartUp and DeskShutDown are
called by an application to initialize and shut down all NDAs. The value of the Code paramter indicates
under which circumstance the routine is being called. If Code = 0 then DAlnit is being called due to a
DeskShutDown call, otherwise the call is due to a DeskStartUp call. In either case, this routine should
contain the necessary initialization and shutdown code for Jhe desk accessory.

PROCEDURE DAInit(Code: Integer);
{ The variable my Wind Open is global

Pascal User's Guide 49 Writing Desk Accessories

BEGIN
if Code = 0 then begin

{ A DeskShutDown Call, check that the DA window is closed }
end

else begin
{ a DeskStartUp Call, init the my Wind Open flag }
my Wind Open .- false
end

END;

Installing a Desk Accessory

Now that you have successfully created a desk accessory it must be properly installed in the
SYSTEM/DESK.ACCS/ directory of the boot disk so that desktop based applications supporting desk
accessories may access it. The installation of a new desk accessory is basically a three step process as
outlined below.

(1) New desk accessories are programs (ProDOS16 load files) defined to have the file type of $88.
Thus, the file type of the newly created desk accessory must be changed to $88 using the APW
command FILE TYPE. For example,

FILE TYPE MYCLOCKNDA $BS

(2) The Apple IIGS Desk Manager requires that all desk accessories be placed in the special system
directory SYSTEM/DESK .ACCS/. Thus, it is necessary to copy the desk accessory load file into
this directory using the APW copy command.

COpy MYCLOCKNDA /APWWORK/SYSTEM/DESK.ACCS/

(3) Finally, the Apple IIGS must be rebooted. During the boot process of the Apple IIGS, the special
directory SYSTEM/DESK.ACCS/ is searched for the currently installed desk accessories. Since
this process is only done at boot time it is necessary to reboot the machine in order for it to
recogniz~ the new desk accessory.

Pascal User's Guide 50 Writing Desk Accessories

TMLPascal
Reference Manual

Chapter 1 Tokens

Special Symbols
Identifiers
Directives
Numbers
Labels
Character Strings
Constant Declarations

Table of Contents

Comments and Compiler Directives

Chapter 2 Blocks, Scope, and Activations

Definition of a Block
Rules of Scope

Scope of a Declaration
Redeciaration in an Enclosed Block
Position of Declaration within its Block
Redeciaration within a Block
Identifiers of Standard Objects
Scope of Unit Interface and Unit Specification Indentifiers

Activations

Chapter 3 Types

Simple Types
Ordinal Types
Standard Ordinal Types
Enumerated Types
Subrange Types
Real Types

Structured Types
Array Types
Record Types
Set Types
File Types

StringTypes
Pointer Types
Identical and Compatible Types

Type Identity
Compatibility of Types
Assignment Compatibility

3

3
3
4
4
5
5
5
6

7

7
8
8
8
8
9
9
9
9

11

11
11
12
13
13
14
15
15
16
17
18
18
19
19
19
19
20

Chapter 4 Variables

Variable Declarations
Variable References
Qualifiers

Arrays, Strings, and Indexes
Records and Field Designators
Pointers and Dynamic Variables
Variable Type Casts

Chapter 5 Expressions

Operators
Arithmetic Operators
Boolean Operators
Set Operators
Relational Operators
Comparing Ordinals
Comparing Strings
Comparing Packed Strings
Comparing Sets
Comparing Pointers
Testing Set Membership
The @ Operator

Function Call
Set Constructors
Value Type Casts

Chapter 6 Statements

Simple Statements
Assignment Statement
Procedure Statement
Goto Statement

Structured Statements
Compound Statement
Conditional Statement
If Statement
Case Statement
Repetitive Statement
Repeat Statement
While Statement
For Statement
With Statement

Chapter 7 Procedures and Functions

Procedure Declarations
Forward Declarations
External Declarations
Inline Declarations
Tool Declarations

Function Declarations

21

21
21
21
22
22
23
23

25

27
27
29
29
29
30
30
30
30
31
31
31
32
32
33

35

35
35
36
36
37
37
37
37
38
39
39
40
40
41

43

43
44
45
45
45
45

Parameters
Value Parameters
Variable Parameters
Static Parameters
UNIV Parameters

Chapter 8 Programs and Units

Programs
Uses Clause
Code Segmentation
Data Segmentation
Units
Separate Unit Specifications and Bodies

The Unit Specification
The Unit Body

Chapter 9 Input and Output

Introduction to I/O in TML Pascal
Using the Standard 110 Routines
Disk Files
Devices in TML Pascal

Standard Procedures and Functions for All Files
The Reset Procedure
The Rewrite Procedure
The Close Procedure
The Rename Procedure
The Erase Procedure
The 10Resuit Function

Standard Procedures and Functions for Typed Files
The Read Procedure
The Write Procedure
The Seek Procedure
The FilePos Function
The Eof Function

Standard Procedures and Functions for Textfiles
The Read Procedure
The Readln Procedure
The Write Procedure
The Writeln Procedure
The Eof Function
The Eoln Function
The Page Procedure

Chapter 10 Standard Procedures and Functions

The Flow of Control Procedures
The Exit Procedure
The Halt Procedure
The Cycle Procedure
The Leave Procedure

46
47
47
48
48

49

49
50
50
51
51
52
52
53

55

55
55
56
56
57
57
57
57
57
57
58
58
58
58
58
59
59
59
59
60
60
60
60
61
61

63

63
63
63
63
63

Dynamic Allocation Procedures
The New Procedure
The Dispose Procedure

Transfer Procedures and Functions
The Trunc Function
The Round Function
The Ord4 Function
The Pointer Function

Arithmetic Procedures and Functions
The Inc Procedure
The Dec Procedure
The Abs Function
The Sqrt Function
The Sin Function
The Cos Function
The Exp Function
The Ln Function
The Arctan Function

Ordinal Functions
I The Odd Function

The Ord Function
The Chr Function
The Succ Function
The Pred Function

String Procedures and Functions
The Length Function
The Pos Function
The Concat Function
The Copy Function
The Delete Procedure
The Insert Procedure

Logical Bit Functions and Procedures
The BitAnd Function
The Bitar Function
The BitXor Function
The BitNot Function
The BitSL Function
The Bit SR Function
The BitRotL Function
The BitRotR Function
The HiWord Function
The LoWord Function

Miscellaneous Functions
The SizeOf Function
The Card Function

Apple IIGS ROM Tool Error Handling
The IsToolError Function
The ToolErrorNum Variable

Appendix A Compiler Error Messages and IOResult Codes

TML Pascal Compiler Errors
Error Reporting
Error Messages

64
64
64
64
64
64
65
65
65
65
65
65
65
66
66
66
66
66
66
66
67
67
67
67
67
67
67
68
68
68
68
68
68
68
69
69
69
69
69
69
69
70
70
70
70
70
70
71

73

73
73
73

ProDOS16 Error Codes
General Errors
Device Call Errors
File Call Errors
TML Pascal Specific Errors

Appendix B Compiler Directives

Write Source to .ASM File
Set Code Segment
DefProc Subprogram
Desk Accessory
Set Data Segment
Include File
Long Globals
Stacksize
External Referenced Variable

Appendix C Inside TML Pascal

TML Pascal Memory Model
The Application Code
The Application Globals
The Runtime Stack
The Application Heap

Data Representation
Calling Conventions

Calling a Subprogram
Variable Parameters
Value Parameters
Static Parameters
Function Results
Entry/Exit Code(Normal Subprograms)
Entry/Exit Code(DefProcs)

Linking with Assembly Code
Subprograms
Variables
Processor Mode
Register Saving Conventions

Appendix D Comparing TML Pascal with ANS Pascal

Exceptions to ANS Pascal Requirements
Extensions to ANS Pascal
Implementation Dependent Features

76
76
76
76
'77

79

79
79
80
80
81
81
81
82
82

83

83
83
83
84
85
85
87
87
88
89
89
89
89
90
91
91
92
92
92

93

93
94
96

About this Manual

This Reference Manual is a complete description of the implementation of the Pascal language provided
by the TML Pascal compiler. The manual is not a tutorial on programming Pascal, but rather it is intended
for programmers who have some knowledge of the Pascal language.

The implementation very nearly follows the ANS specification of the Pascal language with some omissions
and several extensions to conform with other popular variations of Pascal. Most notable these include
TML Pascal v2.0 for the Apple Macintosh, and Apple Computer's MPW Pascal.

The manual is organized in 10 chapters and 4 appendicies. The 10 chapters dicuss in detail each of the
language features implemented in TML Pascal in nearly the same organization as the ANS standard, thus it
should be easy to compare the two documents. The appendicies discuss the details of the TML Pascal
implementation, error messages, compiler directives, and a comparison of TML Pascal to the ANS
standard.

Throughout the manual are syntax diagrams for each of the Pascal language constructs. For example, the
following diagram shows the syntax of the if statement.

expression statement

statement

The diagram begins on the left, then following the arrows through the diagram shows the sequence of
syntactic elements which make up the if statement. Elements in an oval or a circle denote Pascal
special-symbols, and elements in rectangular boxes denote syntactic constructs which are described in
another diagram.

([;Uu&1@)a@fl 11

Tokens

Lexical tokens are the smallest units of text in a Pascal program. The tokens of Pascal are classified into
special-symbols, identifiers, directives, unsigned-numbers, labels, and character-strings. Aside from
character-strings the representation of any letter (upper-case, lower-case, font, etc.) is insignificant to the
meaning of the program.

The text of a Pascal program consists of tokens and separators, where a separator is either a blank (the
space or tab characters) or a comment. Two adjacent tokens must be separated by one or more separators
if each token is an identifier, number, or word-symbol.

Special Symbols

Special-symbols are tokens having special meanings and are used to delimit the syntactic units of the
language.

The following single characters are special-symbols:

+_*/=<>[].,():;II@{}

The follwing character-pairs are special-symbols:

<><=>=:= .. (**)

The following word-symbols (or reserved-words) are special-symbols:

and else interface program until
array end label record uses
begin file mod repeat var
body for not set while
case function of string with
const goto or then
div if otherwise to
do implementation packed type
downto in procedure unit

Identifiers

Identifiers serve to denote constants, types, variables, procedures, functions, programs, units and fields in
records. An identifier can be of any length so long as it fits on a single line, however, only the first 255
characters are significant. Corresponding upper- and lower-case letters are equivalent in identifiers. No

identifier can have the same spelling as a word-symbol.

Pascal Reference Manual 3 Tokens

identifier
------------P'I letter

Examples of standard identifiers in TML Pascal:

Succ Exit Maxlnt Writeln

Directives

letter 1"1""'-11---.... 1

digit

underscore

Directives are identifiers that have special meanings in the context of a procedure declaration or function
declaration. They can otherwise be used as identifiers in all other contexts.

The directives available in TML Pascal are:

EXTERNAL FORWARD INLINE TOOL

Numbers

Unsigned-integers in decimal or hexidecimal (hexidecimal integers have the $ character as a prefix)
notation represent constants of the data types integer and longint. Unsigned-reals in decimal notation
represent constants of the data type Extended. The letter 'E' or 'e' preceding a scale factor meanstimes
ten to the power of.

unsigned-numher

unsigned-integer

unsigned-real

digit -sequence

~,-_u_n_S_i_g_n_ed_-_i_n_te_g_e_r_I-~-=_~ __ --" ______ •

Y unsigned-real - ..

~~quenoe I
$ hex-dlglt-sequence t----J

digit -sequence

scale-factor

scale-factor ~: ____ ~ -)-----.----~-7'"""~~~ ~igit-sequence

sign

Pascal Reference Manual 4 Tokens

Examples of Numbers:

+100 -0.1 $A05D 5.329E4

Labels

A label is a digit-sequence whose value may be any of the integers. Leading zeroes in a label are
insignificant, e.g. the labels 1 and 0001 are considered equivalent. Labels are used with goto
statements, described in Chapter 6.

Character-Strings

A character-string is a sequence of zero or more printing characters all on the same line in a program and
enclosed by apostrophes. The maximum number of characters that can be in a character-string is 255. A
character-string with nothing between the apostrophes denotes a null-string value.

character-string

.a Y-s-tn-:-.n-g---C-h-ar-a-c-te-r---'p ·0

string-character
any printable char except o orCR

A character-string represents a value of a string type. As a string type, a character-string is compatible not
only with other string types, but also char types and packed.string types.

All string-type values have a length attribute. In the case of a character-string, the length is fixed; it is
equal to the actual number of characters in the string as enclosed within apostrophes. A pair of adjacent
apostrophes within a character-string is regarded as a single apostrophe and thus counts as a single
character in the string's length.

Examples of character-strings:

;4' ';' 'Pascal' THIS ISA STRING' 'Don"tworryf' ""

Constant Declarations

A constant-declaration defines an identifier to denote a constant, within the block that contains the
declaration.

constant-declaration
---------I.~I identifier

Pascal Reference Manual

~constant ~

5 Tokens

constant

I -r------o- (

"-1 sign f.I

..

''--~-1 signed-number

character-string

A signed-number may be an integer or real number.

Comments and Compiler Directives

The constructs:

{ any text not containing right-brace}

constant-identifier

(* any text not containing star-right-parenthesis *)

are called comments.

...

The substitution of a blank for a comment or a comment for a blank does not alter the meaning of the
program. That is, a comment, as a separator, may appear anywhere in a program where a blank may appear.

Comments of the form { ... } may be nested within comments of the form (* ... *), and vice versa, however, no
other nesting of comments is available. The occurrence of the special symbol} within a { ... } comment, or
the special symbol *) within a (* ... *) comment always terminates the comment.

A compiler directive is a comment that contains a $ (dollar-sign) character immediately after the { or (* that
begins a comment. The $ character is then followed by one or more letters which represent a specific
compiler directive. Compiler directives serve to affect the behavior of the compiler. Each of the compiler
directives and their affects are described in Appendix B.

Examples of compiler directives:

{$DefProcj {$LongGlobalstj (*StackSize 10240*)

Pascal Reference Manual 6 Tokens

©!JiJ&1(jJii@fl ~

Blocks, Scope, and Activations

Definition of a Block

The block is the fundamental unit of Pascal source code. A block consists of a declaration part and a
statement part. The declaration part consists of zero or more declarations which may appear in any order.
The statement part is a compound statement and follows the declarations. Every block is part of a
procedure declaration, a function declaration, a program, or a unit. All identifiers and labels that are
declared in the declaration part of a block are local to that block. The program block contains all other
blocks; therefore, declarations in the program block are termed global.

block
compound-statement j----.-

~'--d-e-c-Iar-at-io-n-fJ

declaration .. .------------,
---..,--II1II label-declaration-part 1-----,

~ constant-declaration-part

~ type-declaration-part

~ variable-declaration-part 1-----....1

procedure-and-declaration-part ..
The label declaration part declares labels that mark statements in the corresponding statement part. Each
label must mark exactly one statement in the statement part.

label-declaration-part

~ (.1 digit-"'Iu,"" 1
O·

)
The constant declaration part contains constant declarations (see "Constant Declarations" in Chapter 1)
local to the block.

Pascal Reference Manual 7 Blocks, Scope, and Activations

constant-declaration-part

~ ('1L_c_o_n_st_a_nt_-_de_c_l_ar_a_ti_o_n--,).

'-----------------------~

The type declaration part contains type declarations (see Chapter 3) local to the block.

type-dec'laration-part

~ C ·LI_ty_p_e_-d_e_c_lar_a_ti_o_n---l)

'----. --
The variable declaration part contains variable declarations (see Chapter 4) local to the block.

variable-declaration-part

.~ (.LI _v_an_'a_h_le_-_de_c_lar_at_io_nJ-1 "",,)---1.~

The procedure and function declaration part contains all procedure and function declarations local to the
block (see Chapter 7).

procedure-and-function-declaration-pal1

I ~L procedure-declaration

4 function-declaration

Rules of Scope

Scope of a Declaration

..

The appearance of an identifier or label in a declaration defines the identifier or label, that is, the identifier
or label is associated with its meaning at the point of declaration. All other applied occurrences of the
identifier or label must be within the scope of this declaration. The scope of a declaration is the block that
contains the declaration, and all blocks enclosed by that block except as explained in the sections below.

Redeciaration in an Enclosed Block

Suppose that outer is a block" and that inner is another block declared within outer. If an identifier
declared in block outer has the same spelling as an identifier declared in block inner, then block inner and
all blocks enclosed by inner are excluded from the scope of the declaration in block outer.

Position of Declaration within Its Block

The declaration of an identifier or label must precede all applied occurrences of that identifier or label in the
program text. That is, identifiers and labels cannot be used until they are declared.

Pascal Reference Manual 8 Blocks, Scope, and Activations

There is one exception to this rule: in a type declaration, the domain type of a pointer type can be an
identifier that has not yet been declared. In this case, the identifier must be declared somewhere in the
same declaration part as the pointer type.

Redeciaration Within a Block

An identifier or label cannot be declared more than once within a block, unless it is declared within a
contained block, or it if it appears in the field-list of a record declaration.

A record field identifier is declared within a record type. It is meaningful only in combination with a
reference to a variable of that record type. Therefore, a field identifier can be declared within the same
block as another identifier with the same spelling, as long as it has not been declared previously in the
same field-list. An identifier that has been declared can be used again as a field identifier in the same
block.

Identifiers of Standard Objects

TML Pascal provides a set of standard (predeclared) constants, types, procedures, and functions that
behave as if they were declared in a block that contains the entire program. Their scope is the entire
program or unit (See Chapters 9 and 10, where each of TML Pascal's standard identifiers are
documented).

Scope of Unit Interface and Unit Specification Identifiers

Programs, Units, Unit Specifications, and Unit Bodies containing a uses clause are provided the identifiers
belonging to each of the units in the uses clauses. These identifiers act if as if they were declared in the
same block where the uses clause appears.

Activations

The execution of a block is referred to as an activation of a block. At any given time, a block can have zero
or more activations. If a block is not currently being executed, then it has zero activations. If a block is
being executed, then there is at least one activation. When a block has more than one activation, it is said
to be recursive.

Pascal Reference Manual 9 Blocks, Scope, and Activations

C(J!ifJ&1ffJ(]@[l $J

Types

When you declare a variable, you must give its type. The type of a variable determines the set of values
that the variable can assume and the operations that can be performed upon it. A type declaration
introduces an identifier to denote a type.

type-declaration
------------tl~"" identifier

type
-------.---l1li"" simple-type Jt---------..,.

'----III"!' structured-type

----r string-type

pointer-type ..
When an identifier occurs on the left side of a type declaration, it is declared as a type identifier for the
block in which the type declaration occurs. A type identifier's scope does not include itself, except for
pointer types.

Simple Types

All the simple types define ordered sets of values.

simple-type o om;rull-typ, 1
y real-type 1-1--------"-----iII.~

An integer type identifier is one of the standard identifiers Integer or Longlnt. A real type identifier is one
of the standard identifiers Real, Single, Qauble, Camp orExtended. See "Numbers" in Chapter 1 for how
to denote constant integer and real type values.

Ordinal Types

Ordinal types are the subset of the simple types that have the following special characteristic:

Pascal Reference Manual 11 Types

The possible values of an ordinal type are an ordered set and every value has an ordinality,

which is an integral value. Except for integer types, the first value of every ordinal type has
ordinality 0, the next has ordinality 1, etc. For integer types, the ordinality of a value is the value
itself. Every value of an ordinal type except the first has a predecessor based on the ordering
of the type, and every value of an ordinal type except the last has a successor based on the
ordering of the type.

The standard function ord and ord 4 can be applied to any value of an ordinal type, and it
returns the ordinality of the value.

The standard function pred can be applied to any value of an ordinal type, and it returns the
ordinality of the value.

The standard function succ can be applied to any value of an ordinal type, and it returns the
ordinality of the value.

ordinal-type
subrange-type

~ enumerated-type

ordinal-type-identifier

TML Pascal has four predefined ordinal types: Integer, Longlnt, Boolean, and Char. In addition, there are
two classes of user defined ordinal types: enumerated types and subrange types.

Standard Ordinal Types

Integer Integer type values are a subset of the whole numbers. An integer type variable can have
a value within the range -maxint-1 .. maxint, that is, -32,768 to 32,767. The standard Integer
constant maxint is defined as 32,767. The range encompasses 16-bit, two's complement
integers.

Longlnt Longlnt type values are also a subset of the whole numbers. A longint type variable can
have a value within the range -maxlongint-1 .. maxlongint. The standard Longlnt constant
maxlongint is defined as 2,147,483,647. The range encompasses the 32-bit, two's
complement integers.

Arithmetic operations with integer type operands use Integer (16-bit) or Longlnt (32-bit)
precision according to the following rules:

Integer constants in the range of type Integer are considered to be of type Integer.
Other integer constants are considered to be of type Longlnt.

When both operands of an operator (or the single operand of a unary operator) are
of type Integer, 16-bit precision is used, and the result is of type Integer (truncated
to 16-bits if necessary). Similarly, if both operands are of type Longlnt, 32-bit
precision is used, and the result is of type Longlnt.

Pascal Reference Manual 12 Types

When one operand is of type Longlnt, and the other is of type Integer, the Integer
operand is first converted to Longlnt, 32-bit precision is used for the operator, and
the result is of type Longlnt

The expression on the right side of an assignment statement is evaluated
independently of the left side.

An Integer value may be explicitly converted to a Longlnt by using the standard function
ord4 described in Chapter 10.

Boolean Boolean type values are denoted by the predefined constant identifiers false and true,
where ord(false) = 0, and ord(true) = 1. Values of type Boolean are required by the Pascal
if statement, repeat statement, and while statement.

Char The char type has a set of values that are the ASCII characters. The function call Ord(Ch),
where. Ch is a Char value, returns the ordinality of Ch. A string constant of length 1 may
be used to denote a constant Char value Any value of type Char may be generated via
the standard function Chr.

Enumerated Types

An enumerated type defines an ordered set of values by enumerating a collection of identifiers that
denote these values. The ordering of these values is determined by the sequence in which the identifiers
are listed. That is, for two enumeration identifiers x and y, if x precedes y then the ordinal value of x is less
than the ordinal value of y.

enumerated-type CD
---------~ .. (I---~ .. ~I identifier-list

When an identifier occurs within the identifier list of an enumerated type, it is declared as a constant for the
block in which the enumerated type is declared. The type of this constant is the enumerated type in which
it is declared. The ordinality of an enumerated constant is its position in the identifier list, where the
ordinality of the first enumerated constant in the list is always O.

Examples of enumerated types:

suit = (club, diamond, heart, spade)
color = (red, yellow, green, blue)

Given these declarations, yellow is an enumerated constant of type color with ordinality 1, spade is an
enumerated constant of type suit with ordinality 3, and so on.

Subrange Types

A subrange type defines a subset of the values of some ordinal type called the host type. The definition of
a subrange type specifies the least and the largest value in the subrange.

subrange-type ~
----------~ .. I constant ~ constant r-----.-

Both constants in a subrange type must be of the same ordinal type. Subrange types of the form a .. b
require that a is less than or equal to b.

Pascal Reference Manual 13 Types

A variable of subrange type possesses all the properties of variables of the host type, with the restriction
that its value must always be one of the values in the range defined by the subrange type.

Examples of subrange types:

1 .. 100
-128 .. 127
spade .. heart

Rea/Types

The real types have sets of values that are subsets of the real numbers, which can be represented in
floating point notation using a fixed number of digits. In general, a floating point notation of a value n is
comprised of a set of three values m, b, and e such that m * be = n, where b is always 2 and both m and e
are integral values within the real type's range. These m and e values further prescribe the real types's
range and precision.

There 'are four standard real types in TML Pascal: Single, Double, Camp and Extended. In addition, the
standard identifier Real is defined to be equivalent to the type Extended. The real types differ in the
range and precision of values they can represent.

Table 3-1
Real Types

Type identifier Memory size Magnitude

Single 4 bytes approx 1.4E-45 to 3.4E38

Double 8 bytes approx 5.0E-324 to l.7E308

Real, Extended . 10 bytes approx 1.9E-4951 to l.lE4932

The Camp type holds only integral values within the range -263+ 1 to 263 - , which is approximately -9.2E18
to 9.2E18.

All real type values are converted to Extended before any operations are performed on them, and the
results of such operations are always of type Extended. An Extended value may always be used were a
Single, Double, orComp value is required, provided that the value falls withing the required range.

IMPLEMENTATION NOTE

All real values are converted to the type Extended by the compiler before calculations are performed so
that maximum accuracy can be obtained. Thus, calculations on data stored as the type Extended result in
faster and more compact code that calculations on data stored in other representations. The smaller
representations should be used when data storage space is more critical than execution speed.

Pascal Reference Manual 14 Types

Structured Types

A structured type is characterized by its structuring method and by the type(s) of its components. The
type of a component may itself be structured. There is no inherent limit on the number of levels to which
types can be structured.

structured-type
array-type

set-type

file-type

record-type

The use of the word pac~ed in the declaration of a structured type indicates that storage organization of all
values of that type should be compressed to economize storage, even if this causes the access of the
component of a variable of this type to be less efficient. Note that you cannot use components of packed
variables as actual variable parameters to procedures and functions.

IMPLEMENTATION NOTE

TML Pascal only supports packing to byte boundries. Bit level packing is not implemented. For more
information regarding storage allocation and data representation see Appendix C.

Array Types

An array type defines a structured type which has a fixed number of components that are all of the same
type.

array-type

~_in_d_ex_-t_yp_e_---J~_typ_e---,~

'-------iO)-<lll41----~

index-type
----------t .. ~1 ordinal-type

The type that follows the word of is the component type of the array. The number of elements is
determined by one or more index types, one for each dimension of the array. The index type must be an
ordinal type. There is no inherent limit on the number of dimensions an array type can have.

IMPLEMENTATION NOTE

TML Pascal restricts the size of an array to 32,767 bytes of storage.

Pascal Reference Manual 15 Types

An array type of the form

packed array [1 .. n] of char

is referred to as a packed string type. A packed string type has certain properties not shared by other array
types (see "Identical and Compatible Types" later in this chapter).

Examples of array types:

array [1 .. 1 OOJ of real
packed array [colorJof boolean

Record Types

A record type consists of a fixed collection of components called fields, each of which may be a different
type. For each component, the record type specifies the type of the field and an identifier that names it.

record-type .-----.., ~
------4!.~(record)1----4!~~ field-list I-----II .. ~~

field-list ~ L l "LI _fi_Ix_e_d-_p_art_-'r-0),--v_an_'a_n_t-__ part ___ T0J J ..
fixed-part

field-declaration)

('------IO~.-----'·
field-declaration

----------I.~I identifier-list

The fixed part of a record type specifies a field list that is always accessible in a variable of the record type,
giving an identifier and a type for each field. Each of these fields contains data that is always accessed in
the same way.

Exampleof a record type:

record
year:
month:
day:

end

integer;
1 .. 12;
1 .. 31;

A variant part consists of several alternative field lists which are allocated in the same memory space of a
record variable, thus allowing data in this space to be accessed in more than one way. Each of the lists of
fields is called a variant. The variants "overlay" each other in memory, and all fields of all variants are
accessible at all times.

Pascal Reference Manual 16 Types

variant-part

~_id_e_n_ti_fi_er--,e:or tag-fiold-type ~

variant

-C_c_on_s_tan_t--'~I...-fi_le_ld_-_li_st---l~

- O~ .. --~
tag-field-type ~

"1 ordinal-type-identifier
~--------~

Each variant is introduced by one or more constants. All of the constants must be distinct and must be of
an ordinal type that is compatible with the tag field type. The variant part allows for an optional identifier that
denotes a tag field. If a tag field is present, it is considered a field of the previous fixed part.

Examples of record types with variants:

record
name, firstName: string [SO};
age: 0 .. 99;
case married: boolean of

record

true: (spousesName: string [SO});
false: 0

x,y: Real;
case kind: figure of

rectangle: (height, width: real);
triangle: (side1,side2,angle: real);
circle: (radius: realj;

Set Types

A set type has a range of values that is the powerset of some ordinal type, called the base type. Each
possible value of a set type is a subset of the possible values of the base type.

set-type ~
------~ ordinal-type

Pascal Reference Manual 17

iMPLEMENTATiON NOTE

TML Pascal restricts the base type to not more than 256 possible values. If the base type is a subrange of
integer, it must be in the limits 0 .. 255. For more information regarding storage allocation and data
representation see Appendix C.

Every set type can hold the value [j, called the empty set.

File Types

A file type is a structured type consisting of a linear sequence of components that are all of one type, the
component type. The component type may be any type that is not a file type or a structured type that
contains a file type component. The number of components is not fixed by the file type declaration.

file-type ~
-----""""".~~ type

The standard file type Text denotes a special packed file of characters organized into lines. Files of type
Text are supported by special 1/0 procedures discussed in Chapter 9.

iMPLEMENTATiON NOTE

Due to the representations of types in TML Pascal a file of char accesses file components which are 16-bit
words, whereas a packed file of char (or Text) accesses file components which are a-bit bytes. For more
information regarding storage allocation and data representation see Appendix C.

String Types

A string type value is a sequence of characters with a dynamic length attribute and a constant siz€ attribute
from 1 to 255. The constant size is a maximum limit on the length of any value of this type. If an explicit size
attribute is not given for a string type, then it is given a size of 255 by default.

The current value of the length attribute of a string type value is returned by the standard function Length.
A null string is a string type value with a dynamic length of zero.

size-attribute

string-type-identifier

size-attribute ---------I.1IiI"I1 unsigned-integer

The ordering relationship between any two string values is determined by lexical comparison based on the
ordering relationship between character values in corresponding positions in the two strings. When the
two strings are of unequal lengths, each character in the longer string that does not correspond to a

Pascal Reference Manual 18 Types

character in the shorter one compares "higher"; thus the string value 'attribute' is greater than the value 'at'.
Two strings must always have the same lengths to be equal.

Pointer Types

A pointer type defines a set of values that point to dynamic variables of a specified type called the base
type. A pointer type variable contains the memory address of a dynamic variable.

pointer-type f:\
-------'ilI.I>I\.Vt----'II.1I>I1 type-identifier t-1----111 .. ~

If the base type is an undeclared identifier, it must be declared in the same type declaration part as the
pointer type.

You can assign a value to a pointer variable with the New procedure, the @ operator, or the Pointer
function. The New procedure allocates a new memory area in the heap for a dynamic variable and stores
the address of that area of memory in the pointer value. The @ operator directs the pointer variable to the
memory area containing any existing variable. The Pointer function points the pointer variable to a specific
memory address.

The predeclared constant identifier Nil represents a pointer valued constant that is a possible value of
every pointer type. Conceptually, Nil is a pointer that does not point to anything.

Identical and Compatible Types

Two types mayor may not be identical, and identity is required in some contexts. Other times, even if not
identical, two types need only be compatible, and other times assignment compatibility is required.

Type Identity

Identical types are required only in the following contexts:

Between actual and formal variable parameters.

Between actual and formal result types of functional parameters.

Two types, t1 and t2, are identical if one of the following is true:

t 1 and t2 are the same type identifier.

t1 is declared to be equivalent to a type identical to t2.

Compatibility of Types

Compatibility is required in most contexts where two or more entities are used together. Specific instances
where type compatibility is required are noted elsewhere in this manual.

Two types are compatible if any of the following are true:

Pascal Reference Manual 19 Types

Both are identical.

One is a subrange of the other.

Both are subranges of identical types.

Both types are set types with compatible base types.

Both are string types.

Both are of type packed string type and have the same number of components.

Assignment Compatibility

Assignment compatibility is required whenever a value is assigned to something, either explicitly (as in an
assignment statement) or implicitly (as in passing value parameters).

A value of type t2 is assignment compatible with a type t1 if any of the following are true:

t1 and t2 are identical types and neither is a file type nor a structured type that contains a

file type component.

t1 is a real type and t2 is an integer type.

t1 and t2 are compatible ordinal types, and the value of type t2 is within the range of possible

values of t1'

t1 and t2 are compatible set types, and all the members of the value of type t2 are within the

range of possible values of the base type of t1'

t1 is a string type or a char type and t2 is a string type of a quoted character constant

t1 is a packed string type with n components and the value of type t2 is a string type

of a quoted character constant and has a length of n.
I

It is an error if assignment compatibility is required and none of the above is true.

Pascal Reference Manual 20 Types

Variable Declarations

@W@(fJI1@[f 4J
Variables

A variable declaration is used to allocate and associate a piece of storage with a particular type. A variable is
an entity in which value(s) are stored. Each identifier in the indentifier Jist of a variable declaration denotes
a distinct variable possessing the type of the variable declaration.

variable-declaration
---------~.~I identifier-list ~type~

The occurrence of an identifier within the identifier list of a variable declaration declares it as a variable
identifier for the block in which the declaration occurs. The variable can then be referred to throughout the
block, unless the identifier is redeclared in an enclosed block. Redeclaration creates a new variable using
the same identifier, without affecting the value of the original variable.

Examples of variable declarations:

x, y, z: real;
c: color;
p1,p2: person;
today: date;
operator: (plus, minus, times);
digit: 0 .. 9;
coord: polar;
done, error: boolean

Variable References

A variable reference denotes either an entire variable, a component of a structured or string type variable, a
dynamic-variable pointed to by a pointer type variable, or a variable reached through a function call.

variable-reference

0--:----:-identifi ___ " ~ r,-------,~
L...! function-call ~ "--1 qualifier ~

Qualifiers

A variable reference is a variable identifier followed by zero or more qualifiers which modify the meaning of
the varialbe reference.

Pascal Reference Manual 21 Variables

qualifier

I----{
Arrays, Strings, and Indexes

A specific component of an array variable is denoted by a variable reference that refers to the array variable,
followed by an index qualifier that specifies the component. A specific character within a string variable is
denoted by a variable reference that refers to the string variable, followed by an index qualifier that
specifies the character position.

index
------II{D~ [r---r---l~~ ~xpression 1-----..):----1t{D~] I------<.~

('-------IO~. ----'.
Examples of indexed arrays:

m[i,j]
a[i+jJ

Each expression in the index selects a component in the corresponding dimension of the array. The
number of expressions must not exceed the number of index types in the array declaration. The index
expression must be assignment compatible with the corresponding index type.

When indexing a multi-dimension array, multiple indexes or multiple expressions within an index can be
used interchangeably. For example,

MyMatrix [I] [J]

has the same meaning as

MyMatrix [I,J]

A string variable can be indexed with a single index expression, whose value must be within the range
O .. n, where n is the declared size of the string. Indexing a string accesses one character of the string
value. The first character of a string variable (index 0) contains the dynamic length of the string.

Records and Field Designators

A specific field of a record variable is denoted by a variable reference that refers to the record variable,
followed by a field designator that specifies the field.

field-designator .J.\
---------~.,-01-----1.""1 identifier

Pascal Reference Manual 22 Variables

Examples of field designc~tors:

today.year
p2".pregnant

In a statement within a with statement, a field designator does not have to be preceded by a variable
reference to its containing record.

Pointers and Dynamic Variables

The value of a pointer variable is either nil, or a value that points to a dynamic variable.

The dynamic variable pointed to by a pointer variable is referenced by writing the pointer symbol A after the
pointer variable.

Dynamic variables and pOinter values that point to them are created by the standard procedure New.
Additionally, the @ operator and the standard procedure Pointer may be used to create pointer values
that are not in fact pointers to dynamic variables, but are treated as such.

The constant nil does not point to any variable. It is an error if you access a dynamic variable when the
pointer's value is nil or undefined.

Examples of references to dynamic variables:

pt"
P t ".sibling"

Variable Type Casts

A variable reference of one type can be changed into a variable reference of another type through a
mechanism called a variable type cast.

variable-type-cast

----t.~I-ty-p-e--i-d-en-tifi-· -le-r-'~ variable-reference~

When a varaible type cast is applied to a variable reference, the variable reference is treated as an instance
of the type specified by the type identifier. The size of the variable (that is, the number of bytes of storage
it occupies) must be the same as the size of the type denoted by the type identifier. A variable type cast
may be followed by one or more qualifiers just as a variable reference.

Pascal Reference Manual 23 Variables

Examples of variable type casts:

type point = record
v,h: integer;

end;
\Ia' p: point;

I: longint;
begin

p := point(/);
1:= longint(p);
longint(p) := longint(p) + $00020002;

end;

Pascal Reference Manual 24 Variables

©UiJ&1(fJ(j@if ~

Expressions

Expressions denote values. The simplest expression is merely a variable reference, however, most
expressions consist of operators and operands. Most Pascal operators are binary, that is, they have two
operands. The remaining operators are unary and have only one operand. When more than one operator
appears in an expression, precedence rules are applied to determine which operands are associated with
which operators. For example, the expression:

a+b*c

can be interpreted as either (a+b)*c or a+(b*c). The precedence rules make the interpretation
unambiguous:

When an operand appears between two operators of different precedence, it is bound to the
operator with the higher precedence.

When an operand is written between two operators of the same precedence, it is bound to the
operator to the left.

A parenthesized expression is always evaluated before it is applied as an operand.

Table 5-1
Precedence of Operators

Unary operators @, not

Multiplying operators *, I, div, mod, and

Adding operators +, -, or

Relational operators =, <>, <, >, <=, >=, in

Thus, a+b*c is interpreted as a+(b*c), since * has a higher precedence than +. Note that a+b-c is
interpreted as (a+b)-c, since + and - have the same precedence.

The precedence rules follow from the syntax of expressions, which are built from factors, terms, and simple
expressions.

The syntax of an expression is made up of relational operators applied to simple expressions:

Pascal Reference Manual 25 Expressions

expression
...-:----::-----:-----,

---iII"t simple-expression

Example of expressions:

x = 1.5
cinhue1
done <> error
p::;q

simple-expression

The syntax of a simple expression is made up of adding operators and signs applied to terms:

simple-expression
--..-------r--~~.I tenn

~,-------,'i~ ~ [

Examples of simple expressions:

x+y
-x
hue1 + hue2
bor c

The syntax of a term is made up of multiplying operators applied to factors:

term

--[~~., factor

Examples of terms:

x*y
e/(1 - e)
done and error

Pascal Reference Manual 26 Expressions

The syntax for a factor is made up of the following basic constructs:

factor
variable-reference

procedure-identifier

function-identifier

expression

factor

An unsigned constant has the following syntax:

unsigned-constant
unsigned-number

Examples of factors:

x
@X
15
'hello world'
(x+y+z)
sin (X/2)
notq
[~ ' .. 'F: 'a' .. 'fj

Operators

1'---I 1W1 quoted-string-constant

~ constant-identifier

nil

(variable reference)
(pointer to a variable)
(unsigned constant)
(unsigned constant)
(sub expression)
(function cal/)
(negation of a boolean)
(set construction)

The operators are classified as arithmetic operators, boolean operators, set operators, relational operators,
and the @ operator.

Arithmetic Operators

The following two tables show the types of operands and results for the binary and unary arithmetic

Pascal Reference Manual 27 Expressions

operators respectively.

Table 5-2
Binary Arithmetic Operations

Operator Operation Operand type Result type

+ addition integer or real type same integer or real type (1)

subtraction integer or real type same integer or real type (1)

multiplication integer or real type same integer or real type (1)

division integer or real type real type (2)

div integer division integer type same integer type

mod modulo integer type same integer type

(1) If mixed integer and real type operands then integer operand is converted to
real and result type is real.

(2) Integer operands are always converted to real even if both operands are integer.

Table 5-3
Unary Arithmetic Operations

Operator Operation Operand type Result type

+ identity integer or real type same integer or real type

sign-negation integer or real type same integer or real type

If both operands of the +, -, *, diy, or mod operators are of the same integer type (Integer or Longlnt), the
result is always of the same integer type. If one of the operands is type Longlnt and the other is type
Integer, then the integer operand is first converted to Longlnt and the result type is Longlnt. In either
case, the resultant value is determined by the normal mathematical rules for integer arithmetic. It is an error
if the value of the result is outside the range -maxint-1 .. maxint or -maxlongint-1 .. maxlongint. for Integer
and Longlnt result types respectively.

If one of the operands of the +, -, or * operators is of any real type, the result is always of type Extended,
and has a value that is an approximation of the normal mathematical result. The result of the / operator is
always type Extended.

If the operand of the identity or sign negation operator is of an integer type, the result is always of the same
integer type and the absolute value of the result is always identical to the absolute value of the operand.

Pascal Reference Manual 28 Expressions

If the operand of the identity or sign negation operator is of a real type, the result is always of type real and
the absolute value of the result is always identical to the absolute value of the operand.

Boolean Operators

The types of operands and results for Boolean operations are shown in the following table.

Table 5-4
Boolean Operations

Operator Operation Operand type Result type

or disjunction boolean boolean

and conjunction boolean boolean

not negation boolean boolean

The result of a boolean operation is determined by the normal rules of boolean logic, e.g. a and b
evaluates to true if and only if both a and bare true.

Set Operators

The types of operands and results for set operations are shown in Table 5-5.

Operator Operation

+ union

difference

intersection

Table 5-5
Set Operations

Operand type Result type

compatible set types if identical operands types
then same type as operands,

compatible set types else an anonymous set
type defined by

compatible set types min-set-value .. max-set"value

The results of the set operations are determined by the normal rules of set logic. Le.

An ordinal value c is in the set a+b if and only if c is in a or in b.

An ordinal value c is in the set a-b if and only if c is in a and not in b.

An ordinal value c is in the set a*b if and only if c is in a and in b.

Relational Operators

The types of operands and results for relational operations are shown in the following table.

Pascal Reference Manual 29 Expressions

Table 5-6
Relational Operations

Operator Operand type Result type

= <> compatible simple, pointer, set, boolean
string or packed-string types

< > compatible simple, string or boolean
packed-string types

<= => compatible simple, set, string or boolean
packed-string types

in left operand: any ordinal type T boolean
right operand: a set-of-T type

Comparing Ordinals

When the operands of =, <>, <, >, >=, or <= are of an ordinal type, they must be of compatible types unless
one of the operands is a real type then the other is allowed to be an integer type. The result is the'
mathematical relation of their ordinalities. When comparing real types, the results may not be as expected
since the representation of a real value is only an approximation.

Comparing Strings

When the relational operators =, <>, <, >, <=, or >= are used to compare strings, they are compared
according to their lexicographic ordering. Note that any two string values can be compared since all string
values are compatible. Additionally, a Char value is compatible with a string type value, and when the two
are compared, the Char value is treated as a string type value with length one. When a packed string type
value with n components is compared with a string type value, it is treated as a string type value with length
n.

Comparing Packed Strings

The relational operators =, <>, <, >, <=, and >= can also be used to compare two values of a packed string
type if both have the same number of components. If that number is n, then the result is the same as if the
values were string type with each having a length of n.

Comparing Sets

If a and b are set operands then

a=b is true if and only if every member of a is a member of b and every member of b is a member
of a; otherwise, a<>b.

a<=b is true if and only if every member of a is also a member of b .

. a>=b is true if and only if every member of b is also a member of a.

Pascal Reference Manual 30 Expressions

Thus, a=b, and a<>b denote the equivalence and non-equivalence of the sets a andb respectively, and
a<=b and a>=b denote the inclusion of a in b and the inclusion of b in a respectively.

Comparing Pointers

The relational operators = and <> may be applied to compatible pointer type operands. Two pointers are
equal if and only if they denote the same object.

Testing Set Membership

The in operator returns true if the value of the ordinal type operand is a member of the set type operand;
otherwise it yields the value false. The type of the left operand must be compatible with the base type of
the right operand.

The @ Operator

A pointer value that points to a variable, procedure, or function can be created with the @ operator. The
operand and result types are shown in Table 5-7.

@ is a unary operator taking a single variable reference or a procedure or function identifier as its operand
and computing the value of its pointer. If the operand to the @ operator is a variable reference, then the
pointer value is the address in memory where the variable is stored. If the operand to the @ operator is a
procedure or function identifier, then the pointer value is the procedure or function'sentry point. The type
of the value is equivalent to the anonymous pointer type of the pointer constant nil, i.e. it can be assigned
to any pointer variable.

Operator

@

Operation

pointer formation

Table 5-7
Pointer Operations

Operand type

variable-reference, or
procedure or function
identifier

IMPLEMENTATION NOTE

Result type

the anonymous pointer
type of the constant nil

The @ operator should only be used in conjunction with procedures and functions declared in the
declaration part of the program or unit (global declarations) when the resulting pointer value is passed to an
Apple IIGS ROM routine. Procedures and functions declared in the declaration part of another procedure
or function (nested declarations) have a different calling convention than those in the declaration part of
the program which is not compatible with the Apple IIGS ROM routines. Furthermore,TML Pascal's
DefProc compiler option should be used when the resulting pointer value is passed to an Apple IIGS ROM
routine. See the Appendix "Inside TML Pascal" for a discussion of Pascal calling conventions and the use
of the DefProc compiler option.

Pascal Reference Manual 31 Expressions

Function Call

A function call specifies the activation of the block associated with the function identifier. The result
returned by the function activation is subsequently used as an expression value. If the function has any
formal parameters, then the function designator must contain a corresponding list of actual parameters.
Each actual parameter is substituted for the corresponding formal parameter.

function-call

----i~~Ir--fun-c-tJ.-·o-n--i-d-en-t-ifi-le-r--'I-~o:----===========~~~~~-~--r--.~

'---1 acrual-parameter-list ~

actual-parameter-list

actual-parameter

Examples of functions calls:

sum(a,63)
sin (x+y)
eof(f)
ord(,,')

Set Constructors

~_ac_ru_al_-_par_am_e_te_r_-,) ~Q)--+

~------~()~.~--~

~r-e_x_p_re_s_s_io_n __________ ~I-_____)~ ______ ~
~ variable-reference ~ ~

A set constructor denotes a value of a set type, and is formed by writing expressions within [brackets].
Each expression denotes a value of the set.

set-constructor

~l J~0 •
~I member-group

J (
O~

member-group
..j expression ~

\CH ~ expression

Pascal Reference Manual 32 Expressions

The notation [J denotes the empty set, which is assignment compatible to every set type. Any member
group x .. y denotes as set members all values in the range x .. y. If the value of x is greater than the value of
y, then x .. y denotes no members and [x .. yJ denotes the empty set.

All expression values in the member groups of a particualr set constructor must be of compatible ordinal
types. If a is the smallest ordinal value in the resulting set, and if b is the largest ordinal value in the
resulting set, then the base type of the resulting set is a .. b.

Examples of set constructors:

[red, c, greenJ
[1, 5, to .. k mod 12, 23J
['A' .. Z', 'a' .. z', chr(xcode)J

Value Type Casts

'The type of an expression can be changed to another type through a value type cast.

value-type-cast

-----tl.~I-typ-e---id-e-n-ti-fi-e-r..,~ expression ~

The expression argument must be of an ordinal type or· pointer type. The result of the type cast is of the
specified type, and its ordinal value is obtained by converting the expression. The syntax of a value type
cast is almost identical to that of a variable type cast. However, value type casts operate on values, not
varaibles, and can therefore not participate in variable references. That is, a value type cast may not have
qualifiers appear on the left side of an assignment statement, or as an actual parameter where the formal

, parameter is declared as a V AR parameter.

Examples of value type casts:

Integer('c'}
Ptr($89F2)
Boolean(O)

Pascal Reference Manual 33 Expressions

©Uu&1{fJIl@ff @)

Statements

Statements describe algorithmic actions that can be executed. There are two classes of statements -
simple statements and structured statements. Statements may be prefixed by a label and a labeled
statement can be referenced by goto statements.

simple-statement

structured-statement

A label is a non-negative integer constant, and must first be declared in a label declaration.

label

----li~~ digit-sequence

Simple Statements

A simple statement is a statement that does not contain any other statement. The empty statement is a
simple statement which contains no symbols and denotes no action.

t t simp e-s a emen .. assignment-statement

procedure-statement

.. goto-statement

empty-statement

empty-statement

Assignment Statement

The assignment statement can be used to perform either of two actions:

To replace the current value of a variable by a new value as specified by an expression.

To specify an expression whose value is to be returned by a function.

Pascal Reference Manual 35 Statements

assignment-statement
r-~~--~------~

variable-reference

function-identifier expression

The expression must be assignment compatible with the type of the variable or the result type of the
function. The function identifier must be the function identifier of the enclosing function block.

Examples of assignment statements:

x:= y+z
p := (1<=i) and (i<100);
i := sqr(k) - (i*j);
hue1 := [blue,succ (c)]

Procedure Statement

A procedure statement specifies the activation of the procedure block denoted by the procedure
identifier. If the procedure has any formal parameters, then the procedure statement must contain a
matching list of actual parameters. Each actual parameter is substituted for the cprresponding formal
parameter as part of the procedure call.

procedure-statement

---'--~ procedure-identifier

Examples of procedure statements:

PrintHeading;
Tr:anspose (a,n,m);
Find (name, address)

Gata Statement

actual-parameter -list

A goto statement causes the statement prefixed by the label that is referenced in the goto statement to be
the next statement executed. The following is the syntax of a goto statement.

goto-statement
-------------1~~ goto I-----i~~ label

The following rules must be observed when using a goto statement.

The label referenced by a goto statement must be in the same block as the goto statement. In other
words, it is not possible to jump into or out of a procedure or function.

Jumping into a structured statement from outside that structured statement can have undefined
effects and is illegal. However, TML Pascal does not detect the occurrence of such a goto
statement.

Pascal Reference Manual 36 Statements

Structured Statements

Structured statements are made up of other statements that are to be executed either conditionally
(conditional statements), repeatedly (repetitive statements), or in sequence (compound statement or with
statement).

structured-statement
------------..,.---'iIII'I""1 compound-statement It-----.

--., conditional-statement I-----,

~ repetitive-statement

with-statement

Compound Statements

The compound statement specifies the execution of a sequence of statements in the order in which they
are written. The compound statement is treated as one statement in contexts where only a statement is
allowed.

compound-statement

--;.~C§Bl---(7--Jj.~1 statement) .@

~.------~~~.------~.
Exampleof a compound statement:

begin

end

z := x;
x:= y;
y:= z

Conditional Statements

A conditional statement selects one or none of its component statements for execution.

conditional-statement

If Statements

0_if-_state_me_nt -~

Y case-statement P

The syntax of an if statement is as follows:

Pascal Reference Manual 37 Statements

~xpression statemenf

statement

The expression of the if statement must yield a result of the standard type Boolean. If the expression
yields the value True, then the statement following the then is executed. If the expression yields False,
and the else part is present, the statement following the else is executed; if the else part is not present,
then execution proceeds with the next statement following the if statement.

This syntax for the if statement allows for the following ambiguity.

if expression1 then if expression2 then statement1 else statement2

In this case, the else is always associated with the closest if that is not already associated with an else.

Examples of if statements:

if x < 1.5then
z':= x+y

else
z := 1.5

if p1 <> nil then
p1 := pV'.father;

Case Statements

The case statement consists of an expression (the selector) and a list of statements. Each statement is
prefixed with one or more constants (called case constants), or with the reserved word otherwise. All the
case constants must be distinct and must be of an ordinal type that is compatible with the type of the
selector expression.

case-statement
------------------~ case expression

otherwise-clause

case

(
.1L.._c_on_s_tan_t---');:-----;O-t1 statement

. O~-4 ---

Pascal Reference Manual 38 Statements

othelwise-clause

----Il~~a----.c otherwise H statement

The case statement executes the statement prefixed with the case constant that equals the value of the
selector. If no such case constant exists and an otherwise clause is present, the statement following the
word otherwise is executed; if no otherwise clause is present then execution continues with
the statement following the case statement.

Examples of case statements:

case operator of

end

plus: x := x+y;
minus: x:= x-y;
times: x:= x*y

caseiof
1 : x x:= sin(x);
2 : x x:= cos{x);
3,4,5: x := exp(x);

otherwise
x := In(x)

end

Repetitive Statements

Repetitive statements specifies a group of statements to be executed repeatedly.

repetitive-statement ... repeat-statement

~ while-statement

for-statement

If the number of repetitions is known beforehand, the for statement is an appropriate statement to use,
otherwise the while or repeat statements are used.

Repeat Statements

A repeat statement contains an expression that controls the repeated execution of a sequence of
statements contained within the repeat statement.

repeat-statement

-----tIl{ repeat

Pascal Reference Manual

M_s_ta_t_em_e_n_t_-,

l,-__ ·-(O}-<llll.I--~

39

expression

Statements

The expression must yield a result of the standard type Boolean. The statements between the symbols
repeat and until are repeatedly executed in sequence until, at the end of a sequence, the expression
yields the value True. The sequence of statements is executed at least once, because the expression is
evaluated after the execution of each sequence.

Examples of repeat statements:

repeat
k := i mod j;
i := j;
j:= k

until j = 0

repeat
process (fll);
get(f)

until eof(f)

While Statements

A while statement contains an expression that controls the repeated execution of a statement.

while-statement

---i~P~ expression ~ statement ~

The expression must yield a result of the standard type Boolean. The expression is evaluated before the
contained statement is executed. The contained statement is repeatedly executed as long as the
expression yields the value True. If the expression yields False at the beginning, the statement is not
executed.

Examples of while statements:

while a[i 1 <> x do
i := i+1

while i>O do
begin

if odd[i 1 then
z := z*x;

i := idiv2;
x := sqr (x)

end

For Statements

The for statement causes a statement to be repeatedly executed while a progression of values is assigned
to a variable call the control variable.

Pascal Reference Manual 40 Statements

expression

expression

The control variable must be a variable identifier (without any qualifier) denoting a variable that is declared
either in the declaration part of a program or unit (global) or in the declaration part of the block containing
the for statement (local). The control variable must be of an ordinal type, and the initial-value and final-value
must be of a type assignment compatible with this type. On entering a for statement, the initial-value and
the final-value are determined once (and only once) for the remainder of the execution of the for
statement.

It is illegal for the control variable to appear as a variable reference of an assignment statement or the
control variable of another for statment in the statement of the for statement. After a for statement is
executed, the value of the control variable is equal to the final value, unless the execution of the for
statement was terminated by a goto out of the for statement.

Examples of for statements:

for i:=2to63do
ita[i] > max then

max := a[i]

tor C := red to blue do Check(C);

With Statements

The with statement is a shorthand method for specifing the fields of a record. Within a with statement, the
fields of one or more specific record variables can be referenced using only their field identifiers. The'
syntax of a with statement is as follows:

with-statement

~_sta_te_m_e_nt_...J~

The occurrence of a variable in the with statement must denote a record variable. Within a with statement,
each variable reference is first checked whether it can be interpreted as a field of the record variable. If so,
it is always interpreted as such, even if a variable with the same name is accessible .•

Pascal Reference Manual 41 Statements

Examples of a with statement:

with date do
if month = 12 then

begin

else

month := 1;
year := year +

end

month := month +

This is equivalent to:

if date. month = 12 then
begin

else

date. month := 1;
date.year := date.year +

end

date.month := date. month + 1

When more than one record variable reference appears in a with statement as follows

with var1, var2, ... yarn do

statement

it is considered equivalent to following sequence of nested with statements:

with var1 do

with var2 do

with yarn do

statement

Thus, ifvarn in the above statements is a field of both var1 and var2, it is interpreted to mean var2.varn anc

not var1.varn.

Pascal Reference Manual 42 Statements

©rm@[pJ(J@!l II
Procedures and Functions

Procedures and functions allow you to nest additional blocks in the main program block or define blocks
within a unit. Procedures and functions are also known together as subprograms. Each procedure or
function has a heading followed by a block or a special directive. A procedure is activated by a procedure
statement, and a function is activated by the evaulation of an expression that contains a function call.

This chapter describes the different types of procedures and functions and their parameters.

Procedure Declarations

A procedure declaration associates an identifier with a block as a procedure so that it can be activated by a
procedure statement.

procedure-declaration

-----11.11>11 procedure-heading ~ procedure-body ~

procedure-body
--=.----~-~ block

forward

external

unsigned-integer 1--''''''---.

The procedure heading specifies the identifier for the procedure, and the formal parameters (if any).

procedure-heading

procedure

Pascal Reference Manual

identifier

fonnal-parameter -list

43 Procedures and Functions

A procedure is activated by a proce$l.ure statement, which gives the procedure's identifier and any actual
parameters required by the procedure. The statements to be executed upon activation of the procedure
are specified by the statement part of the procedure's block. If the procedure's identifier is used in a
procedure statement within the procedure's block, the procedure is executed recursively. That is, it calls
itself while it is executing.

Example of a procedure declaration:

procedure Num2String (N: Integer; var 5: string);
1/a"

V: Integer;
begin

V:= Abs(N);
5:= '~
repeat

5 := Concat(Chr (N mod 10 + Ord ('O?) ,5);
N := N div 10;

until N = 0;
if N < 0 then 5 := Concat('-' ,5);

end;

Instead or the block in a procedure or function declaration, a forward, external, inline, or tool directive may
be given in its place.

Forward Declarations

A procedure declaration that has the directive forward instead of a block is called a forward declaration.
Somewhere after the forward declaration, the procedure is actually defined by a defining declaration - a
procedure declaration that uses the same procedure identifier and includes a block. The defining
declaration may repeat the formal parameter list, but if the formal parameter list is repeated it must be
identical to the forward declaration. The forward declaration and the defining declaration must be in the
same declaration part, but need not be contiguous; that is, other procedures, functions, types, variables,
etc. can be declared between them and can call the procedurEl that has been declared forward.

The forward declaration and the defining declaration constitute a complete declaration of the procedure.
The procedure is considered to be declared at the place of the forward declaration.

Example of a forward declaration:

procedure Proc2 (m,n : integer);

procedure Proc1 (x, y : real);
begin

Proc2 (4, 5);
end;

procedure Proc2 (m,n : integer);
begin

Proc1 (8.3, 2.4);
end;

Pascal Reference Manual

forward;

44 Procedures and Functions

External Declarations

A procedure declaration, whose body is declared external, defines the Pascal interface to routines
assembled or compiled in a language other than TML Pascal. The external code for the procedure must
be available at link time. For more information regarding external procedures and developing in another
language see the Appendix "Inside TML Pascal".

Example of an external declaration:

procedure GotoXY (x,y: integer); external;

Inline Declarations

The inline directive allows you to write machine code in place of a procedure's block. The code may only
consist of a sequencE;t of integer constants which each represent a single byte of machine code. When
the procedure is called, the compiler generates the machine code specified by the in line directive. If the
procedure has any parameters, they are pushed onto the stack before the code is generated.

Procedures are usually declared inline to implement very small amounts of code. For example, the
following procedure would clear the 65816 Interrupt Disable flag by generating the eLi instruction.

Example of an inline declaration:

procedure GenCLI; inline$58;

Tool Declarations

The tool directive is used to define the body of a procedure to be one of the Apple IIGS ROM tool routines.
The Apple IIGS ROM tools are divided into several toolsets and then into individual tool routines. Each
toolset is identified by a unique tool-number, and each tool routine within a given toolset is assigned a
unique function number. Using this special method of describing an Apple IIGS ROM routine provides
TML Pascal with the information needed to generate a call into the ROM. For example, the MoveTo
procedure in the QuickDraw toolset (tool-number 4) is assigned the function numer 58. Thus, the tool
declaration is a follows:

Example of a tool declaration:

procedure MoveTo(h,v: integer); Tool 4,58;

Function Declarations

A function declaration associates an identifier with a block as a function so that it can be activated by a
function call to compute and return a value of some type.

function-declaration

---'l~1iPI function-heading ~ function-body

Pascal Reference Manual 45 Procedures and Functions

function-body
block

forward

unsigned-integer f-'~.

The function heading specifies the identifier for the function, the formal parameters (if any), and the type of
the function result. The function result type may be any simple or structured type.

function-heading

--0(function)}------t.~L ___ --'

type-identifier

fonnal-parameter-list

A function is activated by the evaluation of a function call, which gives the function's identifier and any
actual parameters required by the function. The function call appears as an operand in an expression. The
expression is evaluated by executing the function and, in effect, replacing the function call with the value
returned by the function. .

The statements to be executed upon activation of the function are specified by the statement part of the
function's block. The block should normally contain at least one assignment statement that assigns a value
to the function identifier. The result of the function is the last value assigned. If no such assignment
statement exists, or if it exists but is not executed, the value returned by the function is undefined.

If the function's identifier is used in a function call within the function's block, the function is executed
recursively.

t;. function can be declared forward, external, inline, or tool in same manner as a procedure as described
above.

Parameters

The declaration of a procedure or function specifies a formal parameter list. Each parameter declared in a
formal parameter list is local to the procedure or function being declared, and can be referred to by its
identifier in the block associated with the procedure or function.

Pascal Reference Manual 46 Procedures and Functions

Jormal-parameter-list

---I~~ (1---C""'--I~Pi parameter-declaration) .~

'--------tOl-------
parameter-declaration

identifier-list type-identifier

There are three kinds or parameters: value parameters, variable parameters, and static parameters. They
are distinguished as follows:

A parameter group without a preceding var or static is a list of value parameters.

A parameter group preceded by var is a list of variable parameters.

A parameter group preceded by static is a list of static parameters.

Note that the type of a formal parameter must be a type identifer or the reserved word string, a new
anonymous type declaration is not allowed.

Value Parameters

A formal value parameter acts like a variable local to the procedure or function, except that it gets its initial
value from the corresponding actual parameter upon activation of the procedure or function. Changes
made to a value parameter do not affect the value of the actual parameter.

A value parameter's corresponding actual parameter in a procedure statement or function call must be an
expression, and its value must not be of a file type or of any structured type containing a file type.

The actual parameter must be assignment compatible with the type of the formal value parameter. If the
parameter type is string, then the formal parameter is given a static size attribute of 255.

IMPLEMENTATION NOTE

If the size of the formal parameter (in bytes of storage) is greater than 4 bytes, then the actual parameter is
passed by address and then the value of the actual parameter is copied into local storage for the formal
parameter so that assignments to the formal parameter do not affect the value of the actual parameter. See
Static Parameters below and the Appendix "Inside TML Pascal" for more information.

Variable Parameters

A variable parameter is used when the value of a parameter must be passed back from a procedure or
function to the caller. The corresponding actual parameter in a procedure statement or function call must
be a variable reference. The formal variable parameter represents the actual variable during the activation

Pascal Reference Manual 47 Procedures and Functions

of the procedure or function, so any changes to the value of the formal parameter are immediately
reflected in the actual parameter.

Within the procedure or function, any reference to the formal variable parameter accesses the actual
parameter itself. The type of the actual parameter must be identical to the type of the formal variable
parameter (this can be bypassed by using UNIV described below). If the formal parameter is string, it is
given the length,attribute 255, and the actual variable parameter must be a string type with a length of 255.

File types can only be passed as variable parameters.

Components of variables of any packed structured type cannot be used as actual variable parameters.

If the reference to an actual variable parameter involves indexing an array or finding the object of a pointer,
these actions are executed before the activation of the procedure or function.

Static Parameters

Static parameters are a special extension to TML Pascal for the Apple fiGS for the specific purpose of
obtaining improved code generation. Static parameters are treated exactly like value parameters
described above except for the restriction that a static formal parameter should not be assigned a new
value within the procedure or function.

, Value parameters whose formal type requires more than 4 bytes of storage are passed by address and
then copied into local storage for the formal parameter so that assigning new values to the formal value
parameter does not affect the actual parameter. However, there are cases when the formal parameter is
only read from and never written to. In these cases, it is not necessary to copy the actual parameter value
into local storage for the formal parameter, the formal parameter may access the actual parameter directly.

Static parameters reduce the amount of stack space required by an application, and reduce execution time
by not having to copy the value of an actual parameter into local storage for the formal parameter.

WARNING

TML Pascal DOES NOT check that a static parameter is never written to, it is the responsibility of the
programmer to ensure the correct usage of static parameters.

UNIV Parameter Types

When the word UNIV appears before the type identifier in the formal parameter list, the restriction that the
actual parameter and formal parameter must be assignment compatible in the case of value and static
parameters, and identical in the case of variable parameters is not enforced. When UNIV is used the actual
parameter may be ·of any type so long as the number of bytes required to . store a value of the actual
parameter's type is the same as that of the formal parameter.

Pascal Reference Manual 48 Procedures and Functions

([;W&1flJ(J@[f fjJ

Programs and Units

TML Pascal provides four basic constructs which are the fundamental units of a piece of Pascal source
code. These are programs, units, unit specifications, and unit bodies. The main difference between a
program and any of the units, is that a program represents a complete application which can be compiled
and executed. A unit, however, can not be executed by itself, it is merely a construct in which parts of a
program can be defined and compiled independently of a program.

Each of the four basic constructs are compiled separately to produce object code. The object code from a
program or unit is then pieced together by the Linker inorder to create a standalone ProDOS16 application
or Desk Accessory. You should consult the TML Pascal User's Guide for the exact details of this process.

Programs

A Pascal program has the form of a procedure declaration except for its heading and an optional uses
clause.

program

program-heading block ~

The occurrence of an identifier immediately after the word program in the program heading declares it as
the program's identifier. The program parameters, if present, are used to designate the program as a
Standard Pascal Application instead of an Apple fiGS Application. In particular, if either of the two standard
file variables Input or Output appear in the program parameters, the program is designated as a Standard
Pascal Application, otherwise it is an Apple fiGS Application. The occurrence of any other names in the
program parameter list are ignored, and have no affect on the program.

For more information regarding Standard Pascal Applications and Apple fiGS Applications consult the TML
Pascal User's Guide. .

program-heading

-.c program H identifier
I~(__ ~)
~ program-parameters ~

p,_·o_g_r_am_-p_a_r:_a_m_e_t_a_s __ • .j~ ~dentifier-list

Pascal Reference Manual 49 Programs

Uses Clause

The uses clause is used to identify those units which are required by a program or unit in order to compile
sucessfully.

uses-clause
-------1~~@-----.j identifier-list I ~

When the name of a unit appears in a uses clause, the declarations of that unit's interface part or unit
specification (described below) are considered to have been declared in place of the uses clause. In order
to use a unit in a uses clause, the unit must have already been compiled. When TML Pascal encounters a
unit's name in a uses clause, it searches for a file having the name of the unit with the suffix ".USYM". This
file contains the declarations found in the unit's interface part or unit specification encoded in the
compiler's internal symbol table format.

Example of a Uses Clause:

uses QDlntf, GSlntf;

When a unit named in a uses clause uses other units itself, the names of those units must also appear in
the uses clause, and they must appear before the unit is named. Consider the following example:

Unit UnitA;
interface

const a = 1;
impl.ementation
end.

Unit UnitB;
uses UnitA;
interface

const b = a;
impl.ementation
end.

Program MyProg;
uses UnitA, UnitB;
const Myconst = b;

begin
end.

In this example, the program MyProg declares a constant MyC.onst be have the value b ,which is declared
in unit UnitB. Therefore, a uses clause is used to name UnitB. However, UnitB has a uses clause which
names UnitA. Thus, the uses clause in the program MyProg must name UnitA in its uses clause, and
further it must appear before UnitB.

When a unit or unit specification is compiled, TML Pascal creates a special Unit Symbol file which contains
the declarations from the unit's interface part or unit specification in TML Pascal's symbol table format. This
file has the same name as the unit with the suffix ".USYM". Also encoded in the file is the unit's uses
clause. This information lets TML Pascal check to see if all the units a particular unit requires have already
been named in a uses clause and that they have not been recompiled since the last compilation of this
unit.

If a unit or unit specification has been recompiled, then all units which use it must also be recompiled. For
instance, in the example above, if UnitB is recompiled, then the MyProg must also be recompiled, but
UnitA need not be recompiled. And if UnitA is recompiled then both UnitB and MyProg must be
recompiled.

Code Segmentation

An Apple IIGS application may consist of one or more code segments. Small programs are usually made up
of only a single code segment, but larger programs are divided into several code segments because the
Apple IiGS limits the size of an individual code segment to 64K bytes. The reason for the size restriction is
that a code segment must not cross the boundries of a bank of memory. On the Apple IiGS, a bank of

Pascal Reference Manual 50 Programs

memory is 64K bytes.

Code segments are named so that the Linker can oraganize the different pieces of code together based
on their code segment names. The default code segment name is main. In order to change the name of
the current code segment, the TML Pascal {$CSeg segname} compiler directive is used. When a {$CSeg
segname} directive appears in a program or unit, the code for all subsequent procedures and functions is
placed in the new code segment. To restore code segmentation back to the default segment, merely
place the {$CSeg main} directive in your program.

For more information regarding the use of the {$CSeg segname} directive see Appendicies Band C.

Data Segmentation

An Apple IiG8 application may consist of one or more data segments for allocating storage for global
variables. Programs are usually made up of only a single data segment, but programs which require a large
amount of global storage are divided into several code segments because the Apple IiG8 limits the size of
an individual data segment to 64K bytes. The reason for the size restriction is that a data segment must
not cross the boundries of a bank of memory. On the Apple IIG8, a bank of memory is 64K bytes.

Data segments are named just as code segments are so that the Linker can oraganize the different pieces
of data together based on their data segment names. The default code segment name is -global. In order
to change the name of the current data segment, the TML Pascal {$DSegsegname} compiler directive is
used. When a {$DSeg segname} directive appears in a program or unit, the data for all subsequent global
variable declarations is placed in the new data segment. To restore data segmentation back to the default
segment, merely place the {$DSeg -global} directive in your program.

Unless a program absolutely requires a large amount of global storage, the {$DSeg segname} should not
be used. The reason for this is that all global storage allocated outside of the -global data segment is
addressed using less efficient addressing modes than data allocated in the -global data segment.

For more information regarding the use of the {$DSeg segname} directive see Appendicies Band C.

Units

Units are the basis for modular programming in TML Pascal. Units are compiled separately from one
another and should be used to organize large programs into logically related parts. Dividing a program into
several units also reduces the amount of time necessary to recompile a piece of code.

identifier

interface-part implementation-part

The identifier following the reserved word unit is the unit's identifier. This name is used to create the
compiler's unit symbol file that will be used when this unit's identifier appears in a uses clause.

inteJface-part

-------IIiI>II>I(interface)----t1 uses-clause 1-1 -'r"--:========:~-~-.1iI>
"--1 declaration ~

Pascal Reference Manual 51 Programs

The interface part of a unit declares constants, types, variables, procedures, and functions that are public,
that is, available to the unit or program that names the unit in its uses clause. In other words, the scope of
the public declarations is the entire program or unit that uses the unit. The program or unit that uses a unit
can access the public declarations just as if they had been declared in its own block.

Label declarations are not permitted in the interface part. Procedures and functions in the interface part
are declared by giving only the procedure or function name, the formal parameters (if any), and the result
type (if a function). In other words, you give only the part that defines how the procedure or function is
called. If a procedure or function is external, inline, or tooi then this directive must be given in the interface
part, otherwise the declaration is treated as if forward had been specified.

Variables, procedures and functions which appear in the interface part are global. The entire unit is within
the scope of the block in which the uses clause that references the unit appears.

The interface part may contain a uses clause, so any unit can use another unit.

implementation-part J . .)
"'-. rrnplementatlOn .1-' -;r,..-------.--~-----.;:--I.,..

"--i declaratIon ~

The implementation part, which follows the last declaration of the interface part, declares any constants,
types, variables, procedures, or functions that are private, that is, not available to the program or unit which
uses it. Private procedures and functions are declared like procedures and functions in programs, with a
procedure or function heading and a body.

All public procedures and functions declared in the interface part are redeclared in the implementation
part. Formal parameters and result types may be omitted, but if they appear, they must be identical to the
previous declaration.

Separate Unit Specifications and Bodies

The unit structure defined in the previous section is the traditional structure of a unit found in many Pascal
compilers. That is, the interface and implementation parts are in the same file. While this style unit greatly
assists in dividing an application into logically related parts, it has two major limitations: two units can not
include each other in their uses clause, and the need for recompilation of dependant units if only the
private implementation part is changed.

TML Pascal supports a new style unit in addition to the traditional style unit to address these issues. The
new style unit splits the unit interface and implementation parts into two separate files which are the unit
specification and unit body respectively.

The Unit Specification

The unit specification syntax is nearly identical to that of a standard unit except that it does not have the
reserved words interface or implementation. The unit specification contains declarations for constants,
types, variables, procedures and functions that are public. Again, the procedures and functions only have
their headings declared, and are completed in the unit body.

Pascal Reference Manual 52 Programs

unit specification

identifier

uses-clause

declaration

The Unit Body

The unit body corresponds the the unit implementation part of the standard unit. It completes the bodies
of the procedure and function declarations made in the corresponding unit specification, as well as
declaring additional constants, types, variables, procedures and functions which are private.

The unit body has an implicit uses clause immediately before the unit body's own uses clause which
specifies all of the units given in the unit specification's uses clause as well as the unit specification itself.
Then the unit body may have its own uses clause which specifies additional units required by the unit
body.

The unit body may be recompiled without affecting the recompilation of units which use the unit
specification.

unit body

identifier

uses-clause

declaration

Note that by having unit bodies it is possible for two units to use each other in their unit bodies. For
example:

Unit UnitA;
type atype

end.
Ainteger;

Unit Body UnitA;
uses UnitB;
var a: atype;

b: btype;
end.

Pascal Reference Manual

Unit UnitB;
type btype

end.
Alongint;

Unit Body UnitB;
uses UnitA;
var a: atype;

b: btype;
end.

53 Programs

Example of a separate unit specification and unit body:

Unit IntegerStack;

. procedure Push(elt: integer);
procedure Pop(var elt: integer);
function isEmpty: boolean;

end.

'Unit"Body IntegerStack;

lIa"

stack: array[O . .20] of integer;
top: integer;

procedure Push(eltinteger);
begin

end;

procedure Pop(var elt: integer);
begin

end;

function isEmpty: Boolean;
begin

end;

end.

Pascal Reference Manual 54 Programs

r[J!fiJ&1{fJ(J@!l ®
Input / Output

This chapter describes the standard input and output procedures and functions provided by the TML
Pascal compiler for the manipulation of files. The standard 1/0 procedures and functions are predeclared.
Since predeclared entities act as if they were declared in a block surrounding the program or unit, no
conflict arises from a declaration that redeclares the same identifier within the program except that it hides
the predeclared procedure or function.

Introduction to 110 in TML Pascal

The following paragraphs outline how input and output are implemented in TML Pascal and how to use the
standard I/O routines provided by TML Pascal to manipulate files and devices.

Using the Standard 110 Routines

In Pascal, a file variable is any variable whose type has been declared as a file type. TML Pascal
distinguishes between two classes of file types: textfiles and typed-files. A textfile file variable is a file
variable which has been declared of type Text. Text is a special predeclared TML Pascal type identifier. A
Textfile is essentially a packed file of characters organized into lines. Each line is terminated by a special
end of line character (the end of line character on the Apple JIGS is the carriage return - Chr(13)). A
typed-file file variable is a file variable which has been declared of a file type using the file of construct to
define the file component type.

Before a file variable is used, it must be opened in order to associate the file variable with an external file or
device. External files are disk files which are managed using ProDOS16, Devices are special 1/0
mechanisms such as the keyboard or display. An existing file is opened using the Reset procedure, while
a new file is created and opened using the Rewrite procedure.

The standard files Input and Output are automatically opened when a program begins execution. Input is
a read-only file which is associated with the Apple JIGS keyboard, and Output is a write-only file which is
associated with the Apple JIGS display in either of the two super-hires graphics modes. When reading from
Input, the characters are echoed to Output. Standand output is not available in any of the other Apple IIGS
display modes.

A file is a linear sequence of components, all of the same type as the component type of the associated file
variable .. Each component has a component number. The first component number of a We is component
zero.

Textfiles are accessed sequentially, in either read-only or write-only mode depending upon whether they
were opened with Reset or Rewrite. Typed-files can be accessed either sequentially or randomly
regardless of which procedure was used to open the file. To access a file sequentially, the Read and Write
procedures are used, while the Seek procedure is used to access a file randomly.

Pascal Reference Manual 55 Input / Output

Once a program has completed using a file, it must be closed using the standard procedure Close.
Closing a file completely updates a file and breaks the association between the Pascal file variable and the
external disk file or device. Once a'file variable has been closed, it can be opened again with the same or
another file. Note that it is not necessary to close the standard file variables Input and Output.

TML Pascal does not support the file variable buffer together with the Get and Put procedures as defined
in Standard Pascal. Instead, the Read and Write procedures are used to achieve the same results.

For example:

fA :=1;
Put(f);

can be written as

Write(f,i);

Disk Files

01' Get(f);
i := fI';

Read(f,i);

When specifiAg an external file to any of the standard TML Pascal procedures, the file's ProDOS16
pathname must be given. A pathname -consists of a file name optionally preceded by the file's volume
name and zero or more directory names. The volume name, directory names, and file name are separated
by slashes (J). For example,

MyVolume!MyDirl! ... !MyDirN!MyFile

If a pathname which is passed to a standard TML Pascal 110 procedure does not include a volume name,
then it is assumed to reside in the default directory (also known as the default prefix). In order to change
the default directory, the ProDOS16 procedUre P16SetPrefix.must be used before calling a standard TML
Pascal procedure. The P16SetPrefixprocedure is declared in the P16Cal/s Unit.

TML Pascal creates textfiles with ProDOS16 file type $04 (text file) and typed-files with ProDOS16 file type
$00 (binary file).

For more information regarding files and ProDOS16, see the Apple documentation ProDOS16
Reference. .

Devices in TML Pascal

In addition to external disk files, TML Pascal supports a set of devices for input and output. These devices
are the keyboard, the display, and the printer. The keyboard and display devices are automatically
available to all programs using the Apple IIGS super-hires display modes when the program begins
execution with the standard file variables Input and Output respectively.

The print~r is also available as a text device, but must be explicitly opened using the Rewrite procedure
with the filename 'Printer:'. For example, -

var Printer: Text;
begin

Rewrite (Printer, 'printer: ');
Writeln(Printer, 'Hello world');
Close (Printer);

end;

Pascal Reference Manual 56 Input! Output

Standard Procedures and Functions for All Files

The Reset Procedure

Syntax: Reset (f [, title 1)

Reset opens an existing file for input or "rewinds" an open file by repositioning the current file position to
the zero component. f is a file variable of any file type. title is an optional string type expression.

If title is provided in the parameter list, then Reset attempts to open an already existing file with the name
title and then associates the file variable f with the external file. If the file can not be opened, then an error
is returned in IOResult.

If title is not provided in the parameter list, then f must already be associated with an open file. In this case,
Reset repositions the file position to the zero component of the file.

The Rewrite Procedure

Syntax: Rewrite (f [, title 1)

Rewrite creates and opens a new file or erases the contents of an already open file. f is a file variable of
any file type. title is an optional string type expression.

If title is provided in the parameter list, then Rewrite creates and opens a new external file with the name
title and then associates the file variable fwith the external file. If the file already exists, it is opened and its
entire contents erased.

If title is not provided in the parameter list, then f must already be associated with an open file. In this case,
Rewrite repositions the file position to the zero component of the file and erases the entire contents of
the file.

The Close Procedure

Syntax: Close (f)

Close closes the open file. f is a file variable of any file type. The association between fand its external file
is broken and the file system marks the external file "closed".

The Rename Procedure

Syntax: Rename (oldtitle, newtitle)

Renames an exiting file external file. oldtitle and newtitle are string type expressions. The external file
named oldtitle is renamed to newtitle. If a file with the name oldtitle can not be found then an error is
returned in IOResult.

The Erase Procedure

Syntax: Erase (title)

Erases an external file. title is a string type expression. The external file with the name title is deleted from

Pascal Reference Manual 57 Input / Output

its external storage device.

The IOResuit Function

Syntax: 10Resuit
Result type: Integer

Returns an integer value that is the status of the last 110 operation performed. A value of zero indicates
successful completion of the last 110 operation, while a non-zero value indicates an error. The error codes
are summarized in Appendix A.

Note that 10Resuit returns the status of the last I/O operation performed. Thus, the, following two
statements do not provide the anticipated results.

Reset(f, 'myfife');
Writeln('IOresult for Reset = ',fOResult);

The call to the 10Resuit function in the Writeln parameter list actually returns the status of the write
operation for the string 'IOresult for Reset = ' since that was the most recent I/O operation, and not the call
to Reset. Instead the previous two statements should be rewritten as:

Reset(f, 'myfife');
tmpint := IOResult;
Writeln(,IOresult for Reset = ',tmpint);

Standard Procedures and Functions for Typed-Files

The Read Procedure

Syntax: Read (f, v1 [, v2 ' ... , vn])

Reads a file component into a variable. f is a file variable, and each parameter v is a variable of the same
type as the component type of the file f. For each parameter v, the file component at the current file
position is read into v and the file position advanced to the next file component. If an attempt is made to
read past the end of file, then an error is returned by 10Result.

The Write Procedure

Syntax: Write (t, v1 [, v2 ' ... , vn])

Writes a variable into a file component. f is a file variable, and each parameter v is a variable of the same
type as the component type of the file f. For each parameter v the vale of v is written to the file component
at the current file position and the file position is advanced to the next file component. If the current file
position is at the end of the file, then the file is expanded to include the new file component.

The Seek Procedure

Syntax: Seek (f, n)

Changes the current file position to the file component n. f is a file variable, and n is an expression of type
Longlnt The number of the first file component is zero. If the value of n is greater than the number of
compenents in the file, then the current file position is moved to the end of the file, and Eof(f) is true.

Pascal Reference Manual 58 Input / Output

The FilePos Function

Syntax:
Result Type:

Filepos (f)
Longlnt

Returns the number of the file components at the current position of a file. fis a file variable.

The Eof Function

Syntax:
Result Type:

Eof (f)
Boolean

Returns the end of file status of a file. tis a file variable. Eof(t) returns true if the current file position is
beyond the last component of the file. otherwise it returns false.

Standard Procedures and Functions for Textfiles

The Read Procedure

Syntax,' Read ([f.Jv1 [.v2.···. vn J)

Reads one or more values from a textfile into the corresponding parameters vi. f, if specified. is a textfile

variable. If f is omitted. the standard file Input is assumed which is associated with the Apple IIGS keyboard.
Each v is a variable of an integer. longint. real. char. or string type.

Read a Char type variable. With a char type variable. Read reads one character from the file and assigns
that character to the variable. If Eof(f) was true before the read was performed. then the value Chr(O) is
returned. If Eoln(f) was true before the read was performed. then the value Chr(13) is returned. The next
read will start with the next character in the file.

Read an Integer or longlnt type variable. With an integer or longint type varaible. Read expects a
sequence of characters which form a signed whole number. All spaces. tabs. and end of lines are skipped
until the beginning of the numeric string is found. Then all characters which are not a space. tab or end of
line are assumed to be part of the numeric string. The string is then interpretted as a numeric value. If any
characters in the string do ·not represent a signed whole number. then an error is returned by IOResult.
The next read will start with the character which terminated the numeric string.

Read a Real type variable. With a real type variable. Read expects a sequence of characters which form a
signed floating point number. All spaces. tabs. and end of lines are skipped until the beginning of the
numeric string is found. Then all characters which are not a space. tab or end of line are assumed to be part
of the numeric string. The string is then interpretted as a floating point value. If any characters in the string
do not represent a real number, then an error is returned by IOResult. The next read will start with the
character which terminated the numeric string.

Read a String type variable. With a string type variable. Read reads all characters into the string variable up
to. but not including, the next end of line character. The next read will start with the end of line character
which terminated the read. Note that successive reads of a string type will not read successive lines from
the file since a read of a string type variable never advances past an end of line character.

Pascal Reference Manual 59 Input / Output

The Readln Procedure

Syntax: Readln ([f,) V1 [, V2 ' ... , Vn))

This procedure is an extension to the read procedure. After doing the same as Read for the parameter
list, it skips to the beginning of the next line of the input file by skipping all characters in the input file until
an end of line character is found and then reading that end of line character. Again, if fis omitted, then the
standard file Input is assumed.

The Write Procedure

Syntax: Write ([f,) vl [, V2' ... , vn))

Writes one or more values to a textfile. fif specified, is a textfile variable. If fis omitted, the standard file
Output is assumed which is associated with the TML Pascal standard Pascal "Plain Vanilla" environment.
Each v is an expression of an integer, longint, real, char, boolean or string type.

Each v is known as a write-parameter. Each write-parameter has the form

OutExpr [: MinWidth [: DecPlaces 1)

where OutExpr is an output expression of an allowable type. Min Width and DeeP/aces are expressions
with integer-type values.

MinWidth specifies and minimum field width. MinWidth must be greater than zero. Exactly MinWidth
characters are written (using leading spaces if necessary), except when OutExprhas a value that must be
represented in more than MinWidth characters; in this case, enough characters are written to represent the
value of OutExpr. Likewise, if MinWidth is omitted, then enough characters as necessary are written to
represent the value of OutExpr.

DecPlaces specifies the number of decimal places in a fixed-point representation of a rea/ value. It can be
specified only if OutExpr has a real-type value, and if MinWidth is also specified. If specified, it must be
greater than zero. If DeeP/aces is not specified, a floating-point representation is written.

The Writeln Procedure

Syntax: Writeln ([f,) V1 [, V2, ... , Vn))

This procedure is an extension to the Write procedure. After doing the same as Write for the parameter
list, it writes the end of line character to the file. Again, if f is omitted, then the standard file Output is
assumed.

The Eot Function

Syntax:
Result Type:

Eof[(f))
Boolean

Returns the end of file status of a file. fis a textfile variable. Eat(f) returns true if the current file position is
beyond the last component of the file, otherwise it returns false. If f is omitted then the standard file Input
is assumed.

Pascal Reference Manual 60 Input / Output

The Eoln Function

Syntax:
Result Type:

Eoln [(f) 1
Boolean

Returns the end of line status of a file. f is a textfile variable. Eoln(f) returns true if the character at the
current file position is the .end of line character or if Eof(f) is true, otherwise it returns false.

The Page Procedure

Syntax: Page [(f) 1

Writes the form feed character to a textfile. tis a textfile variable. If fis omitted then the standard file Output
is assumed.

Pascal Reference Manual 61 Input / Output

({J!ifJ&1[JJ(j@~ 11 @

Standard Procedures and Functions

This chapter describes all the standard, predeclared procedures and functions, and the single predeclared
variable, ToolErrorNum, provided in TML Pascal, except for the standard Input/Output procedures and
functions which are documented in Chapter 9.

Standard procedures and functions are predeclared. Since predeclared entities act as if they were
declared in a block surrounding the program or unit, no conflict arises from a declaration that redeclares the
same identifier within the program except that it hides the predeclared procedure or function.

The Flow of Control Procedures

The Exit Procedure

Syntax: Exit [(id) 1

The Exit procedure causes execution of a particular block to terminate immediately. Essentially, it is
equivelant to a goto statement to a label at the very end of the block identified by id. If the id parameter is
omitted then the current block is terminated.

The Halt Procedure

Syntax: Halt

The Halt procedure causes execution of a program to terminate immediately.

The Cycle Procedure

Syntax: Cycle

The Cycle procedure causes the execution of the body of a loop to skip to the end of the loop and
continue execution of the next iteration of the loop. The Cycle procedure is only meaningful in a for loop,
a while loop, and a repeat loop. If it appears outside of the context of these statements, it has no affect.

The Leave Procedure

Syntax: Leave

The Leave procedure causes the execution of the body of the loop in which it occurs to terminate and
continue execution with the first statement after the loop. The Leave procedure is only meaningful in a for
loop, a while loop, and a repeat loop. If it appears outside of the context of these statements, it has no
affect.

Pascal Reference Manual 63 Standard Procedures and Functions

Dynamic Allocation Procedures

These procedures are used to manage the heap, a memory area that is unallocated when a program
begins execution. The heap used by the dynamic allocation procedures is the Apple IIGS Application
heap, and the routines are implemented using the Apple IIGS Memory Manager.

The New Procedure

Syntax: New(p)

New(p) creates a new variable of the base type of p, and makes p point to it. The variable can be
referenced as pll. It is an error if the heap does not contain enough free space to create the new variable.
New actually calls the Memory Manager routine NewHandle to allocate a region of memory which is locked
and fixed bank, and then returns a pointer to the region of memory.

The Dispose Procedure

Syntax: Dispose(p)

Dispose(p) destroys the dynamic variable referenced by p and returns its memory region to the heap. It
must be a variable that was previously assigned by the new procedure or was assigned a meaningful value
by an assignment statement. The value of p then becomes undefined and it is an error to subsequently
make reference to pll.

Transfer Procedures and Functions

Note that the standard procedures Pack and Unpack as defined by the Pascal Standard are not
implemented in TML Pascal.

The Tronc Function

Syntax:
Result Type:

Trunc(x)
Longlnt

Trunc(x) returns a Longlnt result that is the value of the real type variable x truncated to the nearest whole
number that is between'O and x inclusive. It is an error if the result of this rounding is outside the range
-maxlongint-1 .. maxlongint.

The Round Function

Syntax:
Result Type:

Round(x)
Longlnt

Round(x) returns a Longlnt result that is the value of the real type variable x rounded to the nearest
whole number. If x is exactly halfway between two whole numbers, the result is the whole number with the
greate_st absolute magnitude. It is an error if the result of this rounding is outside the range
-maxlongint-1 ... maxlongint.

Pascal Reference Manual 64 Standard Procedures and Functions

The Ord4 Function

Syntax:
Result Type:

Ord4(x)
Longlnt

Ord4(x) returns the ordinal number of an ordinal type or pointer type value. Ord4 corresponds to Ord,
except that the type of the result is always Longlnt.

The Pointer Function

Syntax: Pointer(x)
Result Type: the anonymous pointer type

Returns a pointer value that points to whatever is at the address x as though it were a dynamic variable
created at that address. This pointer is of the same type as nil in that it is assignment compatible with any
pointer type.

Arithmetic Procedures and Functions

The Inc Procedure

Syntax: Inc(x)

Increments the Integer type variable x by 1. Note that Inc is not available for Longlnt.

The Dec Procedure

Syntax: Dec(x)

Decrements the Integer type variable x by 1. Note that Dec is not available for Longlnt.

The Abs Function

Syntax: Abs(x)
Result Type: same type as parameter.

Returns the absolute value of X; i.e. if x is negative, -x is returned; otherwise x is returned. X is an integer
or real type argument.

The Sqrt Function

Syntax:
Result Type:

Sqrt(x)
Real

Returns the positive square root of x, i.e. the positive value y such that y·y=x. It is an error if the result is a
value too small to be represented by the real type extended. X is an integer or real type argument.

Pascal Reference Manual 65 Standard Procedures and Functions

The Sin Function,

Syntax:
Result Type:

,Sin(x)
real

Returns the trigonometric sine of x in radians. X is an expression of a real type.

The Cos Function

Syntax:
Result Type:

Cos (x)
real

Returns the trigonometric cosine of x in radians. X is an expression of a real type.

The Exp Function

Syntax:
Result Type:

Exp(x)
real

Returns the value of eX, where e is the base of the natural logarithms. It is an error if the result cannot be
represented with the real type extended. X is an expression of a real type.

The Ln Function

Syntax: Ln(x)
Result Type: real

Ln(x) returns the natural logarithm (loge) of x. X is an expression of a real type.

The Arctan Function

Syntax:
Result Type:

Arctan (x)
real

Returns the principle value, in radians, of the arctangent of x. X is an expression of a real type.

Ordinal Functions

The Odd Function

Syntax:
Result Type:

Odd (x)
Boolean

Returns True if x is odd, Le. not divisible by 2 without a remainder. If x is even, it returns False. X is an
expression of an ordinal type.

Pascal Reference Manual 66 Standard Procedures and Functions

The Ord Function

Syntax: Ord(x)
Result Type: Integer or Longlnt

If x is of type Integer or Longlnt, the result type is the same as x. If x is a pointer type, the result is the
corresponding address of the dynamic variable pointed to by x, of type Longlnt. If x is of an ordinal type,
the result is of type Integer and the value is the ordinality of x. The standard procedure Ord4 should be
used if the result type Longlnt is desired, regardless of the type of x.

The ChI' Function

Syntax:
Result Type:

Chr(x)
Char

Returns the Char value whose ordinal number is x. For any Char value ch, the following is always true:
chr(ord(ch)) = ch.

The Succ Function

Syntax: Succ(x)
Result Type: same as parameter

Returns the successor of x. It is an error if x is the last value in the type of x, i.e. it has no successor.

The Pred Function

Syntax: Pred(x)
Result Type: same as parameter

Pred(x) returns the successor of x. It is an error if x is the first value in the type of x, i.e. it has no
predecessor.

String Procedures and Functions

The string procedures and functions do not accept as parameters packed string types, but rather only
string types.

The Length Function

Syntax:
Resutirype:

Length(str)
Integer

Returns the dynamic length of a string.

The Pos Function

Syntax:
Result Type:

Post substr, str)
Integer

Pos(substr, sfr) searches for substr within str, and returns an Integer value that is the index of the first
character of substr within str. If substr is not found, pos(substr, str) returns zero.

Pascal Reference Manual 67 Standard Procedures and Functions

Concat Function

Syntax:

Result Type:

Concat(str1 [, str2, ... strnJ)

anonymous string type

Concat(str1, ... , strn) concatenates all the parameters in the order in which they are written, and returns the

concatenated string. Note that the number of characters in the result cannot exceed 255.

The Copy Function

Syntax:
Result Type:

Copy(source, index, count)
string type

Copy(source, index, count) returns a string containing count characters from the string source, beginning
at source[index}.

The Delete Procedure

Syntax: Detete(dest, index, count)

Delete(dest, index, count) removes count characters from the value of the string dest, beginning at
dest[index).

The Insert Procedure

Syntax: Insert(source, dest, index)

Insert(source, dest, index) inserts the string source into the string dest. The first character of source
becomes dest[index).

Logical Bit Functions and Procedures

This section describes a set of procedures and functions for bit manipulations. These routines
correspond to a set of essentially identical machine instructions of the 65816.

The BitAnd Function

Syntax: BitAnd(arg1,arg2)
Result Type: Integer or Longlnt depending on types of arg1 and arg2

BitAnd returns the logical AND of its two arguments. arg1 and arg2 are both expressions of an ordinal
type.

The BltOr Function

Syntax: BitOr(arg1,arg2)
Result Type: Integer or Longlnt depending on types of arg1 and arg2

BitOr returns the logical OR of its two arguments. arg1 and arg2 are both expressions of an ordinal type.

Pascal Reference Manual 68 Standard Procedures and Functions

The BitXor Function

Syntax: BitXor(arg1,arg2)
Result Type: Integer or Longlnt depending on types of arg1 and arg2

BitXor returns the logical exclusive OR of its two arguments. arg1 and arg2 are both expressions of an
ordinal type.

The BItNot Function

Syntax: BitNot(arg1)
Result Type: Integer or Longlnt depending on types of arg1 and arg2

BitNot returns the logical negation (one's complement) of its argument. arg1 is an expression of an
ordinal type.

The BitSL Function

Syntax: BitSL(arg)
Result Type: Integer or Longlnt depending on types of arg1 and arg2

BitSL left shifts the bits of arg by one bit. arg is an expression of an ordinal type.

The BitSR Function

Syntax: BitSR(arg)
Result Type: Integer or Longlnt depending on type of arg

BitSR right shifts the bits of arg by one bit. arg is an expression of an ordinal type.

The BitRotL Function

Syntax: BitRotL(arg)
Result Type: Integer or Longlnt depending on type of arg

BitRotLieft rotates the bits of arg by one bit. arg is an expression of an ordinal type.

The BItRotR Function

Syntax: BitRotR(arg)
Result Type: Integer or Longlnt depending on type of arg

BitRotR right rotates the bits of arg by one bit. arg is an expression of an ordinal type.

The HiWord Function

Syntax:
Result Type:

HiWord(arg)
Integer

HiWord returns the high order word of the ordinal value arg, that is, bits 31-24 of a Longlnt. If arg is not a
Longlnt, then HiWord returns zero. When the argument is a simple variable or array access, no code is

Pascal Reference Manual 69 Standard Procedures and Functions

generated by this function because the argument is simply addressed and used as an integer.

~he toWord Function

Syntax:
Result Type:

LoWord(arg)
Integer

LoWord returns the low order word of the ordinal value arg, that is, 23-0 of a Longlnt. When the argument
is a simple variable or array access, no code is generated by this function because the argument is simply
addressed and used as an integer:. .

Miscellaneous Functions

The SizeOf Function

Syntax:
Result Type:

SizeOf(id)
Integer

Returns the number.of bytes occupied by the variable or type id.

The card Function

Syntax:
Result Type:

Card(s)
Integer

Counts the number of elements in the set s and returns an integer value which is ~he cardinality of the set,
that is, the number of members in the set.

Apple IIGS ROM Tool Error Handling

The Apple IIGS ROM tools define a convention for reporting errors that may have occured in the execution
of a ROM routine. If an error is detected during the execution of a ROM tool, then upon exiting the tool call
and returning to the application, the 65816 carry flag is set and the accumulator contains an error code
describing the error that was detected. TML Pascal provides a mechanism to obtain this information in a
Pascal program.

The IsToolError Function

Syntax:
Result Type:

IsToolError
Boolean

Returns True if the last Apple IIGS ROM tool call detected an error during its execution, otherwise it returns
False. IsToolError tests the carry flag of the 65816 processor to determine if an error exists. The function
must be called immediately after a tool call, before any other operation is performed that might affect the
65816 carry flag. In the case that the tool call is a function and the function appears in an expression, the
result of IsToolError may be incorrect since evaluation of the expression may have affected the carry flag.

Pascal Reference Manual 70 Standard Procedures and Functions

The ToolErrorNum Variable

Syntax:
Type:

ToolErrorNum
Integer

ToolErrorNum contains the error code returned by the last call to an Apple JIGS ROM tool. A non-zero
value indicates an error. The compiler generates code which stores the value of the accumulator into the
variable ToolErrorNum immediately after the tool call returns, before any other operation is performed that
might destroy the value.

Example u$age of IsToolError and ToolErrorNum:

LoadTools(TooIRec); { An Apple IIGS ROM Tool call}
if IsToolError then begin

tmpTooIErrorNum:= ToolErrorNum;
Writeln('Erroroccurred in LoadTools: ;tmpTooIErrorNum);
end;

Note that ToolErrorNum was saved to a temporary variable before calling the standard procedure Writeln.
This is necessary since the implementation of Writeln calls Apple JIGS ROM tools that would corrupt the
value of ToolErrorNum with respect to the LoadTools call.

Pascal Reference Manual 71 Standard Procedures and Functions

Syntax Errors

Error in simple type.
Identifier expected.
'PROGRAM' expected.
'r expected.
':' expected.
Unexpected symbol.
Error in parameter list.
'OF' expected.
'(' expected.
Error in type.
'[' expected.
']' expected.
'END' expected.
';' expected.
Integer constant expected.
'=' expected.
'BEGIN' expected.
Error in declaration part.
Error in field list.
',' expected.
' . .' expected.
'.' expected.
'INTERFACE' expected.
'IMPLEMENTATION' expected.
Error in constant.
':=' expected.
'THEN' expected.
'UNTIL' expected.
'DO' expected.
'TO' or 'DOWNTO' expected.
Error in factor.
Error in variable.

Semantic Errors

Duplicate identifier.
Low bound exceeds highbound.
Identifier is not of appropriate class.
Identifier not declared.
Incompatible subrange types.
File not allowed here.
Type must not be real.
T agfield type must be scalar or subrange.
Index type must not be real.
Index type must be scalar or subrange.
Base type must not be real.
Base type must be scalar or subrange.
Error in type of standard subprogram parameter.
Unsatisfied forward reference.
Repitition of parameter list is not identical to previous declaration.
File value parameter not allowed.
Missing result type in function declaration.

Pascal Reference Manual 74 Compiler Error Messages and IOResult Codes

&1[fJ[fJ@iffJ@U;X &1

Compiler Error Messages and IOResuit Codes

TML Pascal Compiler Errors

Error Reporting

Whenever the Compiler detects an error in the Pascal source an error message is generated showing the
source line in which the error was detected with line number, where in the source line the error was
detected, and a sequence-of one or more error descriptions. Note that the Compiler displays where the
error was detected, and not necessarily where the error occurred, although the two are usually coincident.
The following are example error messages.

123 Type NewArr array[l,lO] of UndeclTyp;

(1) , .. ' expected.
(2) Identifier not declared.

1055 MyStr := 'Hello World;
~l

~l ~2

(1) String constant must not exceed source line.

Errors for a single line are accumulated (up to a maximum of 10) and reported after the line has been
successfully scanned. The position at which each error was detected is indicated by the " character
followed by a digit. The digit indicates which of the subsequent numbered error messages applies to the
error.

Error Messages

The following is a complete list of the error messages generated by the TML Pascal compiler. In some
messages there is the special character"" which is substituted by the compiler with an identifier, label, or
some other value to help make the error message as meaningful as possible.

Lexical Errors

String constant must not exceed source line.
Error in numeric literal.
Illegal character in input.
Source line exceeds 255 characters.
End of input encountered before end of program.
End of file encountered while reading a comment.

Pascal Reference Manual 73 Compiler Error Messages and IOResult Codes

Fixed point formatting allowed only for real types.
Number of parameters does not agree with declaration.
Actual parameter may not be PACKED for V AR formal parameter.
Operands are not assignment compatible.
Tests on equality allowed only.
Strict inclusion not allowed.
File comparison not allowed.
Illegal type of operand(s).
Type of operand must be Boolean.
Set element type must be scalar or subrange.
Set element types not compatible.
Type of variable is not array.
Index type is not compatible with declaration.
Type of variable is not record.
Type of variable must be pointer.
Illegal parameter substitution.
Illegal type of loop control variable.
Illegal type of expression.
Assignment of files not allowed.
Label type incompatible with selecting expression.
Subrange bounds must be scalar.
No such field in this record.
Actual parameter must be a variable.
Control variable must not be declared on intermediate level.
Multidefined case label.
Again forward declared.
Multidefined label.
Multideclared label.
Undeclared label.
Error in base set.
Control variable must not be formal.
Assignment to control variable is not allowed.
Forward referenced type """ not completed in previous block.
Forward declared subprogram """ not completed in previous block.
Label" was declared but not defined in previous block.
Size of string must be between 1 and 255.
@ is not allowed for expressions or INLINE subprograms.
Type cast to a different size is not allowed.
Too many nested scopes of identifiers.
Too many nested procedures and/or functions.
Too many errors in this source line.
Index expression out of bounds.
Implementation restriction.

UnitEirors

Unit """ requires unit """.
Repitition of unit not allowed.
Dependant unit """ has been recompiled since the last compilation of """.
Unable to open USES file: ".

Pascal Reference Manual 75 Compiler Error Messages and fOResult Codes

Miscellaneous Errors

Nested include directives are not allowed.
Unable to open INCLUDE file: A.

ProDOS16 Error Codes

This section lists the possible result codes of the standard function IOResultwhich reports the success of
an I/O operation. The codes correspond to those returned by ProDOS16, except for result codes -1, -2,
and -3, which are generated by the TML Pascal runtime routines for Pascal specific errors. The ProDOS16
error codes~re provided here for reference, for full documentation regarding these error codes consult
Apple Computer's ProDOSI16 Reference manual.

General Errors

o No error.
1 Invalid call number.
S Call pointer out of range.
6 ProDOS is busy.

Device Call Errors

16 Device not found.
17 Invalid device reference number.
37 Interrupt vector table full.
39 I/O error.
40 No device connected.
43 Write protected.
46 Disk switched.

File Call Errors

64 Invalid path name syntax.
66 FCB table full.
67 Invalid file reference number.
68 Path not found.
69 Volume directory not found.
70 File not found.
71 Duplicate path name.
72 Volume full.
73 Volume directory full.
74 Version error (incompatible file format).
75 Unsupported (or incorrect) storage type.
76 End of file encountered .

. 77 Position out of range.
78 Access not allowed.
79 File is open.
81 Directory structure damaged.
82 Unsupported volume type.
83 Parameter out of range.
85 VCB table full.
87 Duplicate volume.
88 Not a block device.

Pascal Reference Manual 76 Compiler Error Messages and IOResult Codes

89 Invalid level.
90 Block number out of range.
91 Illegal path name change.
92 Not an executable system file.

TML Pascal Specific Errors

-1 Textfile is not open for reading.
-2 Textfile is not open for writing.
-3 Numeric string conversion error in textfile.

Pascal Reference Manual 77 Compiler Error Messages and IOResult Codes

i?J[fJ[fJ@fJfJ@10;x @

Compiler Directives

TML Pascal provides for several directives (or options) which affect the operation of the compiler and/or
the code generated by the compiler. These compiler directives are written within the Pascal comment
delimiters { ... } or (* ... *). A directive always begins with the symbol '$' and must appear immediately inside
the opening comment delimiter and is followed by a letter (case insensitive) which designates the particular
directive.

There are two types of directives: a switch directive and a parameter directive. A switch directive turns on
or off a particular compiler feature by specifying'+' or '-' ,respectively, immediately after the directive letter.
A parameter directive has one or more string arguments such as filenames or segment names. A string
argument is terminated by a blank, an asterisk, or a right brace. If a string argument must contain one of
these characters, then the string should be enclosed in single quotes.

Examples of compiler direcitves:

(*$A+ *)

{$I 'Filename with blanks' }

{$CSeg NewSeg }

The following sections describe each of the compiler directives available in TML Pascal.

Write Source to .Asm File

{$A+} or {$A-}

Default: {$A-}

Turn on (+) or off (-) the writing of Pascal source code lines as assembler comments to the .Asm file. This
option only has affect if the compiler has been invoked to generate 65816 assembler source output rather
than qbject code. The option is very useful when attempting to read the 65816 code generated by the
compiler.

Set Code Segment

{$CSeg segname }

Default {$CSeg main }

Pascal Reference Manual 79 Compiler Directives

The CSeg option directs the compiler as to which code segment all subsequent subprograms should be
allocated. The default code segment has the special reserved name main, for other code segment names,
any string of characters is allowable so long as it does not contain a space. See Appendix C for more
information regarding the use of code segments.

DefProc Subprogram

{$DefProc}

Default: DefProc not active

The DefProc directive directs TML Pascal to generate an alternate form of subprogram entry and exit code
which is compatible with the Apple IIGS ROM tools. Often times, it is necessary to pass the address of a
procedure of lunction in your program to an Apple IIGS ROM tool so that it may be called directly from ROM
by a tool routine. For example, the TaskMaster routine in the Window Manager toolset, must call a
DrawContent procedure in your program in order to have the content region of a window drawn or
redrawn.

These types of procedures and functions are called Definition Procedures or DefProcs. The subprogram
calling conventions required for definition procedures is different than the normal conventions used by
TML Pascal. Thus, it is necessary to inform the compiler if subprogram is to be called directly by an Apple
IIGSTool.

Because this option changes the calling conventions of a subprogram, the compiler imposes a special
restriction on its usage. This option can not be switched on and then off like most other options, but
instead MUST appear before every subprogram which is a definition procedure. Consider the following
program fragment:

{$DefProc
Procedure DrawContent;
begin

end;

{$DefProc
Procedure DrawInfoBar;
begin

end;

Note that it is still possible to call a procedure or function which has been designated as a Definition
Procedure from within your own program since TML Pascal keeps track of how each procedure or function
is defined.

Desk Accessory

{$DeskAcc period eventMask menuName }

The DeskAcc directive is used to inform the compiler that a program is actually a Desk Accessory rather
than a ProDOS16 application. The structure of a desk accessory program is somewhat different than an
application. In particular, TML Pascal must generate a special header which contains the period in 60ths of
a second in which the desk accessory needs periodic servicing, an event mask which describes what
kinds of events the desk accessory must act on, and the name for the desk accessory that should appear
in an application's Apple Menu.

Pascal Reference Manual 80 Compiler Directives

For complete information abOut writing desk accessories in TML Pascal see "Writing Desk Accessories" in
the TML Pascal User's Guide.

Because the compiler must generate special code-for desk accessories before any code in a program, the
option MUST appear before the keyword program in your source code for it to have any affect. Consider
the following source code fragment:

{$DeskAcc 60 -1 TMLC10ck
program TMLClock;
beg;Ln

end.

Set Data Segment

{$DSeg segname }

Default: {$DSeg -global }

The DSeg option directs the compiler as to which data segment all subsequent global variable declarations
should be allocated. The default data segment has the special reserved name -global, for other data
segment names, any string of characters is allowable so long as it does not contain a space, although
conventions usually have the name begin with the tilde (-) character. Remeber that the -global data
segment is the special segment in which the compiler uses the more efficient absolute addressing rather
than absolute long addressing. See Appendix C for more information regarding the use of data segments.

Include File

{$I filename }

This directive causes the compiler to temporarily suspend compiling code from the the current input file
and begin compiling from the source file specified by filename. When the compiler reaches the end of this
file it resumes compilation from the previous file at the line after the directive. Include file directives are not
allowed to appear in files which are include files themselves. That is, nesting of include files is not allowed.

Long Globals

{$LongGlobals+} or {$LongGlobals-}

Default: {$LongGlobals-}

This option directs the Compiler to either turn on (+) or off (-) the generation of absolute long addresses for
global varaibles in the -global data segment. Normally, the compile(generates code which sets the 65816
Data Bank register to the memory bank containing the global variables allocated in the -global data
segment. However, there are several occasions where a program can not rely on this assumption. Two of
these are Desk Accessories and subprograms which are definition procedures. In order to guarantee that
the compiler generates code which correctly addresses a program's global variables in the -global data
segment under the conditions stated above this option should be turned on, thus forcing absolute long
addressing for all global variables. See Appendix C for more information about addressing global variables.

Pascal Reference Manual 81 Compiler Directives

Stacksize

{$StackSize numbytes }

Default: {$StackSize 8096}

The StackSize directive is used to direct TML Pascal as to how much space (in bytes of memory) should be
allocated for the application's runtime stack. The runtime stack is used to store the return addresses of
subprogram calls made during execution of a program and for a subprogram's local variables. Thus, the
use of local variables in your program directly affects the size runtime stack your program requires.

The default size is 8K or 8096 bytes. If a program requires more or less storage, then this option should be
used, however, at least 1 K or 1024 bytes and no more than 40K or 40960 bytes may be requested,
however, TML Pascal does not check the value specified in the directive. See p-ppendix C for more
information regarding the runtime stack.

Note that this option MUST appear before the keyword program in your source code for it to have any
affect. Consider the following source code fragment:

{StackSize 10240
program myProg;
begin

end.

External Referenced Variable

{$XreNar+} or {$XreNar-}

Default: {$XrefVar-}

The External Referenced Variable directive informs TML Pascal that subsequent global variable
declarations should not have storage allocated.· Rather, the global variable declaration is treated as an
external reference to a global variable declared elsewhere.

Typically, this directive is used for Pascal to access global storage declared in 65816 assembly language.
However, it may be used with any language compatible with TML Pascal linking conventions.

Consider the following source code fragment:

var G1obVar1: integer;

{$XrefVar+ }
G1obVar2: integer;
{$XrefVar- }

G1obVar3: integer;

Pascal Reference Manual 82 Compiler Directives

TML Pascal Memory Model

51[pJ[pJ@ffiJ@U;X ([;

Inside TML Pascal

The environment in which an Apple IIGS application runs may be divided into 4 basic components: the
Application Code, the Application Globals, the Runtime Stack, and the Application Heap. All of these
components of an application coexist in the Apple IIGS's RAM memory. Memory in the Apple IIGS is
partitioned into 64K byte banks which are managed by the Apple IIGS Memory Manager. A standard Apple
IIGS comes with 4 banks of 64K byte RAM memory numbered $00, $01, $EO, and $E1. RAM expansion
cards can be added to the Apple IIGS beginning at bank $02 and may extend to bank $7F, other bank
numbers are reserved or not available.

For a thorough introduction to the architecture to the Apple IIGS see Apple Computer's Technical
Introduction to the Apple fiGS.

The Application Code

An Apple IIGS application may consist of one or more code segments. Small programs are usually made up
of only a single code segment, but larger programs are divided into several code segments because the
Apple IiGS limits the size of an individual code segment to 64K bytes. The reason for the size restriction is
that a code segment must not cross the boundries of a bank of memory.

TML· Pascal generates a separate code module for each Pascal procedure and function declared in a
program. Each of these code modules is associated with a load segment name which is used to organize
separate code segments together by the linker. The default segment name is main. When an applicaton
has grown large enough to require more than one code segment, the {$CSeg segname } directive is used
to change the segment name assigned to subsequent code modules. The compiler can be restored to
use the default code segment name by specifying {$CSeg main }.

The Application Globals

TML Pascal allocates storage for global variables in data segments. By default, the data segments are
given the load segment name "-global". The Linker uses the load segment names associated with each
data segment to group them together into load segments. Programs are usually made up of only a single
data segment, but programs which require a large amount of global stroage are divided into several data
segments because the Apple IIGS limits the size of an individual data segment to 64K bytes. The reason
for the size restriction is that a data segment must not cross the boundries of a bank of memory.

When an application requires a large amount of global storage, it should use the {$DSeg segname }
directive to instruct the compiler to allocate subsequent global variable declarations into a new data
segment. The compiler can be restored to the default data segment by specifying {$DSeg -global }.

Pascal Reference Manual B3 Inside TML Pascal

During the execution of program initialization code generated by TML Pascal, the 65816 Data Bank
Register is set to point to the bank of memory which contains the global variables declared in the -global
data segment. Because of this, refer,ences to global variables in the -global data segment can use the
Absolute Addressing Mode. Global variables in all other data segments are addressed using the less
efficient Absolute Long Addressing Mode.

In some cases, it is necessary to force the compiler to use Absolute Long Addressing for global variables
regardless of which data segment they are declared in. These two cases are Definition Procedures and
Desk Accessories. In the case of Definition procedures, the procedure or function is called directly by an
Apple IIG8 ROM tool. In this situation, it can not be guaranteed that the 65816 Data Bank Register still
references the memory bank containing the -global data segment since the ROM tools may have
temporarily changed it. Thus, absolute long addressing must always be used since it does not rely upon
the data bank register. To force TML Pascal to use absolute long addressing for a definition procedure,
use the {$LongGloba/S+} directive. After the code for a definition procedure merely return the compiler to
its normal state by specifying {$LongGloba/s- }.

In addition to definition procedures, desk accessories require absolute long addressing. Desk
accessories execute within the environment of other applications. Thus, there is no initialization code that
sets the data bank register to the memory bank containing the desk accessory's -global data segment.
Desk accessories should ALWAYS specify {$LongGloba/s+} at the beginning of the program.

The Runtime Stack

The runtime stack is a special block of memory that the application uses to maintain the return addresses of
procedures and functions, and to store parameters and local variables. During the execution of application
initialization code, a block of memory is allocated in bank $00 of the Apple IIG8. The block is allocated in
bank $00 because this is the only bank of memory in which the 65816 Stack Register is able to operate.

By default, TML Pascal allocates a stack containing 8096 bytes (8K) for an application. If an application
requires additional or less stack space, then you should specify the {$StackSize numbytes} directive in
order to change the amount of space allocated for the stack.

The {$StackSize numbytes} directive must appear before the keyword program for it to have any affect.
For example, the following code fragment would cause a 10K stack to be allocated.

{$StackSize 10240
program MyApp;

Desk Accessories do not have initialization code which allocates and initializes a runtime stack since they
run within the environment of other applications. Thus, when writing an application be sure to leave a
reasonable amount of stack space for use by desk accessories, and of course when writing a desk
accessory be sure to use as little stack space as possible (Remember the default, and typical, runtime stack
is only 8K bytes).

WARNING

Neither the Apple IIG8 nor TML Pascal has any way detect the amount of stack space actually used by an
application. If insufficient space has been reserved for the runtime stack, then execution of the application
will destroy the contents of memory.

Pascal Reference Manual 84 Inside TML Pascal

The Application Heap

The application heap is the memory still available after the application's code, global data, and runtime
stack have been allocated. This memory is available to an application via the Memory Manager routines
defined in the GSlntf.Pas unit provided with TML Pascal. Memory may also be allocated and deallocated in
the application heap using TML Pascal's New and Dispose procedures. '

Nearly every application will allocate at least one memory block in bank $00 for initializing the Apple IIGS
tools used in the application. Many of the Apple IIGS toolsets require one or more pages allocatep in bank
$00 to function. These pages are sometimes called zero pages.

Data Representation

This section shows how each of the Pascal data types is represented in memory. Note that the 65816
stores bytes of word size data in memory backwards from its representation in the accumlator. That is, the
least significant bits are in low memory while the most significant bits are in high memory. Consider the
following Pascal declaration:

type trick = packed record
case integer of

0: (int: integer);
1: (highbyte: o .. 255;

lowbyte: o .. 255);"
end;

This record type does not give the results one might expect. On the 65816, referencing highbyte would
actually return the low order byte of the integer int, and not the high order byte. The following paragraphs
should clarify the storage layout of the Pascal data types.

Integer

Longlnt

Boolean

A signed two's complement integer in the range -32,768 to 32,767 requiring 2 bytes of
storage. Bit 15 is the sign bit.

7 015 8

~I (Note: S denotes the sign bit)

A singed two's complement integer in the range -2,147,483,648 to 2,147,483,647
requiring 4 bytes of storage. Bit 31 is the sign bit.

f
An enumerated type of (False, True) requiring one byte of storage, where the boolean
value is in bit o.

Pascal Reference Manual 85 Inside TML Pascal

Char An enumerated type of the ASCII character set having 256 values. The character value
requires two bytes of storage where the value is in the lower order byte (bits 7-0).

81

Enumeration An unsigned byte or word size integer. if the enumeration type consists of 128 or fewer
enumeration constants then the a value of the type occupies a single byte of storage
otherwise it occupies a word of storage.

Subrange

Single

Double

Reali
Extended

01 <= 128 enumerations

.... 17 ____ 0...,LI1_5 ___ -I81 > 128 enumerations

A signed byte, word, or longword. If the range is within -128 .. 127 a byte is used to
represent the subrange, if the range is within -32768 .. 32767 a word is used, otherwise a
longword is used to represent the subrange. For example, the subrange types
SignedByte and Byte from the QDlntf.Pas interface are represented as a byte and a word
respectively.

17 01 -128 .. 127

[0115 81 -32768 .. 32767

17 ° 115 81 23 16
1
31 241 all others

A 32-bit real number represented in IEEE standard single precision format implemented as
the SANE Single type.

31 30 23 22 °
I S I Exponent I Signifcand

A 64-bit real number represented in IEEE standard double precision format implemented
as the SANE Double type.

63 62 52 51

I S 1 Exponent Signifcand

An 80-bit real number represented in IEEE standard extended format.
Both are implemented as the SANE Extended type.

7978 64 63

I S I Exponent Signifcand

°

°

Pascal Reference Manual 86 Inside TML Pascal

String[n]

Pointers

Sets

Files

Anays/
Records

An n+ 1 byte size Pascal String consisting of a byte containing the current string length
(not counting the length byte itself) followed by bytes containing ASCII characters.

byte 1 2 3

I length I
A 24-bit physical memory address occupying 4 bytes of storage. Only 3 bytes are needed
to store the 24-bit address value so bits 31-24 are always zero. The nil pointer is
represented as the 32-bit value zero.

A sequence of bytes up to a maximum of 32 bytes or 256 bits representing the powerset
of the base-type. The number of bytes used is the minimum number required to represent
the powerset. An ordinal value of the base-type is represented by a single bit whose bit
number is the ordinal value. If an ordinal value is a member of a set then its bit is set to 1
otherwise it is set to O. If the ordinal values of the base-type are in the range 0 .. 15 then two
bytes are used to represent the set. If the ordinal values of the base-type are in the range
0 .. 31 then four bytes are used to represent the set, etc.

A 22 byte data structure used internally by the TML Pascal runtime routines. In addition to
the file variable itself, an open file associated with an external disk file has a 512 byte
access buffer allocated in the application heap for use by ProDOS16; additionally, a
textfile has a 256 byte line buffer.

Components of unpacked arrays and records are allocated contiguously as defined above.
Arrays are stored in row order. That is, the last index varies fastest. Record components
are allocated as they textually appear in their declaration.

The implementation of TML Pascal performs data packing to byte boundries only, no bit
packing is available. A data type is represented as a byte in a packed structure if and only if
the number of bits required to store all values of the type is less than or exactly eight bits.
For example, the standard type Char or the type Byte (declared in QDlntf.Pas) require
exactly 8 bits to represent all of their values, therefore in a packed structure Char and Byte
are allocated a byte of storage, but otherwise require a word of storage.

Calling Conventions

This section outlines the TML Pascal compiler conventions for calling procedures and functions, Definition
procedures, parameter passing, and function result values. .

Calling a Subprogram

TML Pascal uses a stack-based parameter passing convention for calling subprograms. Before calling a
procedure or function, the parameters are pushed onto the stack in the same order as their declaration. If a
function is being called, the storage for the function result is allocated on the stack before pushing any
parameters. If the procedure or function is a normal subprogram (not a Definition Procedure), then after
returning from a subprogram call, all paramters are removed from the stack by the calling environment. In
the case of a Definition Procedure the parameters are removed by the procedure or function itself before
returning to the calling environment, but leaves the function result (if any) on the stack.

Pascal Reference Manual 87 Inside TML Pascal

The following is skeleton code for a normal procedure call.

Ida pppp ; Push first parameter
pha

Ida pppp Push last parameter
pha
jsl >Aproc Call the procedure
tsc Remove parameters from stack
clc
adc inn
tcs

The following is skeleton code for a normal function call.

pha
Ida
pha

Ida
pha
jsl
tsc
clc
adc
tcs
pIa

pppp

pppp

>Afunc

inn

Reserve space for result value
Push first parameter

Push last parameter

Call the function
Remove parameters from stack

Remove function result from stack
and place in accumulator

Subprograms are always called in full 65816 native mode (ie. i6-bit accumulator and index registers).
There fore, if the processor is not in full native mode before the call it is forced to full native mode before
the call is made. For example, assume that the accumulator is in 8-bit mode and the index registers are in
16-bit mode, then the following code is generated.

rep #$20
LONGA ON

jsl >ASubprog

Accumlator currently in 8-bit mode
Change accumlator to 16-bit mode

If the subprogram being called is declared at a level other than the global level (not in the program or unit
block), then a static link is pushed on the stack after all the parameters have been pushed. The static link
serves as a mechanism to address local variables in nested stackframes. Because of this static link, the
address of a nested subrogram should never be passed to an Apple IIGS ROM tool as a definition
procedure since this is not the calling convention it expects.

Variable Parameters

Actual variable parameters (var parameters) are always passed by reference to the formal parameter, that is,
as a pointer that points to the storage occupied by the actual parameter. The pointer is passed as a 32-bit
value. The high order word is pushed first followed by the low order word.

Consider the following example for a passing the global variable GlobVar as a variable parameter using the
absolue addressing mode.

Pascal Reference Manual 88 Inside TML Pascal

pea
pea

GlobVarl~16

GlobVar

Value Parameters

Push high order word first
Push low order word second

Actual value parameters are passed with their value on the stack or by reference depending on the size of
the value. If the size of the value parameter occupies 4 bytes or less, then its value is passed on the stack
and is the formal paramter. If the size of the value parameter occupies more than 4 bytes, then a 32-bit
pointer to the value is passed on the stack. The called procedure or function then copies the value into
local storage -fur the formal parameter so that changing the value of the formal parameter does not affect
the value of the actual parameter.

Static Parameters

Actual static parameters are passed on the stack exactly like actual value parameters. The difference
between static and value parameters is that if the size of the actual parameter is greater than 4 bytes the
called procedure or function DOES NOT copy the value into local storage for the formal parameter. Thus, it
is illegal to give the formal static parameter a new value since it would change the value of the actual
parameter.

Static parameters have been introduced in TML Pascal to conserve the amount of space used by the
runtime stack for storing formal parameters as well as improve the execution speed of programs since no
unnecessary copying is performed.

IMPLEMENTATION NOTE

TML Pascal does not check that a new value is never assigned into a static parameter. It is the
responsibility of the programmer to ensure that static parameters are used correctly.

Function Results

Storage for function results is reseved on the stack by the calling subprogram before any parameters are
pushed onto the stack. If the function result is of type Integer, Longlnt, Char, Boolean, or any subrange,
enumerated or pointer type, or the real type Single, 2 or 4 bytes of storage are allocated. If the result type
requires only 1 byte of storage, 2 bytes are allocated and the low memory address byte contains the value.

If the result type is of type Double, Camp, Extended, or any array, string, or record type, then the calling
subprogram allocates temporary space within its stackframe for the result value, and pushes a 4 byte
pointer to the temporary storage. The calling subprogram removes the pointer from the stack when the
function returns, and the temporary storage is deallocated when no references to the value exist.

Entry/Exit Code (Normal Subprograms)

Each Pascal procedure and function begins and ends with standard entry and exit code which creates and
removes its activation.

Pascal Reference Manual 89 Inside TML Pascal

The standard entry code is as follows:

phd Save previous frame pointer
tsc
sec
sbc #xx
tcd Establish new frame pointer
clc
adc #yy
tcs ; Allocate local storage

First, the direct page register from the previous activation is saved. The direct page register is used as a
frame pointer for an activation. The saved frame pointer is called the dynamic link, and is required to
restore the state of the previous activation.

After saving the previous frame pointer, xx bytes are subtracted from the current stack pointer to establish
the frame pointer for this activation. xx is computed so that the first word of storage in the stack activation
(ie. the function result or first parameter) is at direct page offset 254. Choosing this offset allows all
parameters and as many local variables as possible to be addressed using the very efficient direct page
addressing mode.

Once the frame pointer for the activation is established, yy bytes are added to that value to allocate the
storage needed for local variables, value parameters copied local, and compiler temporaries.

Note that no registers are saved, and it is assumed that the processor is in full native mode.

The standard exit code is as follows:

tdc
clc
adc #xx
tcs Deallocate local storage
pld Restore previous frame pointer
rtl

Local storage is first removed by adding the value xx to the frame pointer. Then the frame pointer from the
previous activation is restored and the RTL instrution is executed to return to the calling subprogram.

Entry/Exit Code (DefProcs)

Definition procedures (and functions as well) are special subprograms which are typically called by the
Apple IIGS ROM. These" subprograms have entry code which is identical to normal subprograms, but
whose exit code removes the subprogram's parameters, but not any function result value in order to
conform with the ROM calling conventions.

Pascal Reference Manual 90 Inside TML Pascal

The following is the exit code for definition procedures:

tdc
clc
adc #xx
tcs Deallocate local storage
pld Restore previous frame pointer

Ida 2, S
sta
Ida
sta
tsc
clc
adc
tcs
rtl

rom, S
1,S
rom-l,S

#rom-2

Move the return address down over
the parameters

Deallocate the parameters

The first part of the exit code is identical to that of normal subprograms - local storage is deallocated and
the previous frame pointer is restored. After that, however, the parameters are "removed" from the stack
by moving the return address down overtop of the first parameter(s) and then positioning the stack pointer
to the new location of the return address. And finally, the RTL is executed to return to the calling
subprogram (typically in the Apple JIGS ROM.

Note that a definition procedure having no parameters has exit code exactly like normal subprograms since
is no need to move the return address over the parameters.

Linking with Assembly Code

In TML Pascal it is possible to integrate code developed with Apple Computer's Apple Programmer's
Workshop (APW) with Pascal code. This section describes the conventions that should be followed when
developing assembly code to be integrated with TML Pascal.

Subprograms

Procedures and functions written in assembly language must be declared as external in a Pascal program
or unit. For example:

function MyAsmFunc(i: integer): boolean; external;

In the corresponding assembly language source file the procedure or function name must appear as a
label with the START directive and the argument to the START directive is the procedure's or function's
code segment name. For example:

MyAsmFunc START main

END

In this example, the function will be linked in the code segment having the name main. Any name can be
used here, but it should generally match the name of a code segment being used in the Pascal program.
Recall that main is the default code segment name.

It is up to the programmer to ensure that the implementation of the assembly language routine abides by
the TML Pascal calling conventions.

Pascal Reference Manual 91 Inside TML Pascal

In addtion, to Pascal programs calling assembly language routines, it is possible for assembly language
routines to call Pascal procedures and functions. When calling a Pascal procedure or function it is up to
the programmer to ensure that parameters are passed to the Pascal routine as it expects them.

Identifiers in TML Pascal are significant to 255 characters, so any length name for the procedure or
function will be correctly recognized.

Variables

Global variables declared in Pascal programs and units may be accessed in assembly language routines.
To reference a Pascal global variable merely use the identifier's name in your assembly language routine.
The variable reference is resolved by the linker to reference the Pascal declared variable.

To address the global variable, 65816 absolute addressing may be used if the Pascal global is declared in
the data segment -global, otherwise absolute long addressing should be used.

Global variables declared in assembly language may also be accessed by Pascal procedures and functions
by using the compiler's {$XRefVar} directive when declaring a global variable. For example,

var {$XRefVar+}
AsmGlobal: integer;
{$XRefVar-}

In assembly language, the variable AsmGlobal should appear in a public data segment where the label
appears with the assembly language ENTRY directive. Thus,

Globals
AsmGlobal

Processor Mode

DATA -global
ENTRY
ds 2
END

All Pascal procedures and functions rely upon and force the 65816 processor to be in full i6-bit native
mode before calling another procedure or function, and upon returning from a procedure or function. In
addtion, the processor should not have the decimal mode flag set.

Register Saving Conventions

An assembly language routine may assume that the contents of the A, X and Y registers have no meaning
to the calling environment and thus need not be saved and restored upon subprogram entry and exit.
However, the Direct Page register must be saved and restored upon subprogram entry and exit. In
addition, if the assembly language routine changes the 65816 Data Bank Register it MUST restore it to its
origional value before returning to the Pascal program. If the Data Bank Register is corrupted by the
assembly language routine, the Pascal program will not correctly address global variables.

Pascal Reference Manual 92 Inside TML Pascal

#.1[p[p@@@U;X @

Comparing TML Pascal with ANS Pascal

This appendix compares TML Pascal with the American National Standard (ANS) Pascal as defined by
ANSIIIEEE770X3.97-1983 in the book American National Standard Pascal Computer Programming
Language (ISBN 0-471-88944-X, published by The Institute of Electrical and Electronics Engineers in
New York).

Exceptions to ANS Pascal Requirements

In ANS Pascal, an identifer may be of any length and all characters are significant. In TML Pascal, an
identifier may be of any length, buy only the first 255 characters are significant. Note that most editors
restrict line lengths to at least this length.

In ANS Pascal, the @ symbol is an alternative for the A symbol. In TML Pascal, the @ symbol is an
operator.

In ANS Pascal, a comment may begin with { and end with *), or begin with (* and end with}. In TML
Pascal, comments must begin and end with the same set of symbols.

In ANS Pascal, a file variable has an associated buffer vari.able, which is referenced by writing the A

symbol after the file variable. In TML Pascal, a file variable does not have an associated buffer variable,
and writing the A symbol after a file variable is an error.

In ANS Pascal, the statement part of a function must contain at least one assignment to the function
identifier. In TML Pascal, this requirement is not enforced.

In ANS Pascal, a field that is the selector of a variant part may not be an actual variable parameter. In
TML Pascal, this requirement is not enforced.

In ANS Pascal, procedures and functions allow procedural and functional parameters; these
parameters are not implemented in TML Pascal.

In ANS Pascal, the standard procedures Reset and Rewrite take only one parameter, a file variable. In
TML Pascal, Reset and Rewrite allow an optional second parameter, a string type expression, which
names an external file. '

ANS Pascal defines the standard procedures Get and Put, which are used to read from and write to
files. These procedures are not defined in TML Pascal.

Pascal Reference Manual 93 Comparing TML Pascal with ANS Pascal

In ANS Pascal, the standard procedures Read and Write are defined in terms of Get and Put and
references to buffer variables. In TML Pascal, Read and Write function as in ANS Pascal, but they are
automatic operations.

In ANS Pascal, the syntax New(p,cI, ... ,cn) creates a dynamic variable with a specific active variant. In
TML Pascal, this variation of the New procedure is not allowed.

In ANS Pascal, the syntax Dispose(q,kl, ... km) removes a dynamic variable with a specific active variant.
In TML Pascal, this variation of the Dispose procedure is not allowed.

ANS Pascal defines the standard procedures Pack and Unpack, which are used to "pack" and
"unpack" packed variables. These procedures are not defined in TML Pascal.

In ANS Pascal, a goto statement within a block may refer to a label in an enclosing block. In TML
Pascal, this is an error.

In ANS Pascal, it is an error if the value of the selector in a case statement is not equal to any of the
case consonants. In TML Pascal, this in not an error; instead the case statement is ignored unless it
contains an otherwise clause.

In ANS Pascal, a Readfrom a text file with a ch,artype variable assigns a blank to the variable if Eolnwas
True before the Read. In TML Pascal, a carriage return character (Chr(13)) is assigned to the variable
in this situation.

In ANS Pascal, a Read from a text file with an integer type or a real type variable ceases as soon as the
next character in the file is not part of a signed-integer or a signed-number. In TML Pascal, reading
ceases when the next character in the file is a blank, a tab, or an end of line character.

In ANS Pascal, a Write to a text file with a packed string type value causes the string to be truncated if
the specified field width is less than the length of the string. In TML Pascal, the string is always written
in full, even if it is longer than the specified field width.

Extensions to ANS Pascal

The following TML Pascal features are extensions to Pascal as specified by ANSIIIEEE770X.97-1983.

The following are reseNed words in TML Pascal:

body
implemention

interface
otherwise

string
unit

uses

An identifier may contain underscore characters after the first character.

Integer constants may be written in hexadecimal notation. Such constants are prefixed by a $.

String constants are compatible with the TML Pascal string types.

Label, constant, type, variable, procedure, and function declarations may occur any number of times
in any order in a block.

A signed constant identifier may denote a value of type Integer, Longlnt, or Extended.

Pascal Reference Manual 94 Comparing TML Pascal with ANS Pascal

TML Pascal implements the additional integer type Longlnt, and the additional real types Single,
Double, Camp, and Extended.

Arithmetic operations on Integer operands produce Integer results. Arithmetic on Longlnt operands
or mixed Integer and Longlnt-operands produce Longlnt results. Longlnt values are compatible with
the Integer type provided they are in the Integer range.

Arithmetic operations on real type operands or mixed integer type and real type operands produce
Extended values. Extended values are compatible with the Single, Real, Double, and Camp types,
provided they are in the range of those types.

TML Pascal implements string types, which differ from the packed string types defined by ANS Pascal
in that they include a dynamic length attribute that may vary during execution.

The type compatibility rules are extended to make char types and packed string types compatible with
string types.

String type variables can be indexed as arrays to access individual characters in a string.

The type of a variable reference can be changed to another type through a variable type cast.

The relational operators can be used to compare strings.

TML Pascal implements the @ operator, which is used for obtaining the address of a variable or a
procedure or function.

The type of an expression can be changed to another type through a value type cast.

The case statement allows an optional otherwise part.

Procedures and functions can be declared as external (assembly language subroutines), inline (inline
machine code), and tool (Apple IIGS ROM tools).

TML Pascal implements static formal parameters in addition to value and variable formal parameters
defined in ANS Pascal.

TML Pascal implements the UN/V formal parameter type.

TML Pascal implements Units, Unit Specifications, and Unit Bodies to facilitate modular programming
and separate compilation.

TML Pascal implements the following file handling procedures and functions, which are not available
in ANS Pascal:

Close
Erase

Rename
IOResult

Seek
FilePos

String type values may be input and output with the Read, ReadLn, Write, and WriteLn standard
procedures.

Pascal Reference Manual 95 Comparing TML Pascal with ANS Pascal

TML Pascal implements the following standard procedures and functions, which are not found in ANS
Pascal:

Exit
Halt
Ord4
Pointer
Cycle

Length
Pos
Concat
Copy
Leave

Delete
Insert
SizeOf
MoveLeft
IsToolError

Implementation Dependent Features

MoveRight
FiliChar
ScanEQ
ScanNE

HiWord
LoWord
Inc
Dec

The effect of using an implementation dependent feature of Pascal, as defined by
ANSI/IEEE770X3.97-1983, is unspecified. Programs should not depend on any specific path being
taken in cases where an implementation dependent feature is being used. Implementation dependent
features include:

The order of evaluation of index expressions in a variable reference.

The order of evaluation of expressions in a set constructor.

The order of evaluation of operands of binary operator.

The order of evaluation of actual parameters in a function call.

The order of evaluation of the left and right sides of an assignment.

The order of evaluation of actual parameters in a procedure statement.

The effect of reading a text file to which the procedure Page was applied during its creation.

The binding of variables denoted by the program parameters to entities external to the program.

Pascal Reference Manual 96 Comparing TML Pascal with ANS Pascal

A

abs function 65
activation 9
adding operators 26
AND(logical operator) 29
arctan function 66
arithmetic operators

+28
- 28
* 28
128
div 28
mod 28

arrays
comparing 30
index types and 15-16, 22

assignment
compatibility 20
statement 35

asterisk (*)

B

in multiplication 25, 28
in set intersection 29

BitAnd 68
BitNot69
BitOr68
BitRotL 69
BitRotR69
BitXor69
BitSL 69
BitSR69
block structure 7
boolean operators

or 29
and 29
not 29

boolean type 13
braces ({}), to delimit comments 6

c

calling functions 32
card function 70
caret (")

pointers and 23
CASE statement

in variant records 16-17
case selector 4
charactor string 5
chartype 13
chrfunction 67

close procedure 57
closing files 56
code segmentation 50
combining sets 29
comments 6
comparing 30-31
compatibility of types 19
compiler directive 4
compound statement 37
concatfunction 68
conditional statements 37
CONST6
constant(s)

character 5
declarations 5
maxint 12
maxlongint 12
NIL 23
numeric 4
string 5

copy function 68
cos function 66
cycle procedure 63

o

data segmentation 51
dec procedure 65
declaration(s)

constant 6, 8
external 45
forward 44
function 45
inline 45
label 5, 7
part 7
tool 45
type 8,11
variable 8, 21

declaring
functions 45-46
procedures 43-45

delete procedure 68
devices 56
directive 4

A+/- 79
CSeg 79
DefProc 80
DeskAcc 80
DSeg 81
I 81
LongGlobals+/- 81
StackSize 82
XrefVaf+/- 82

dispose procedure 64
DIV operator 28

DOWNT041
dynamic variables 23

E

ELSE 38
empty set 18, 33
enumerated types 13

comparing 30
eoffunction 59, 60
eoln function 61
equal sign (=), in set equality 30
erase procedure 57
exit procedure 63
exp function 66
expression 25-26
extended arithmetic 14
external declaration 45
extended type 14
exit procedure 63

F

factor 27
false 13
field identifier 16
field list 16
fields 16
file(s) 18, 56
filepos fu nction 59
file type 18
floating-point notation

with the write procedure 60
FOR statement 40-41
forward declaration 44
function(s)

abs 65
arctan 66
BitAnd 68
BitNot69
BitOr68
BitRotL 69
BitRotR69
BitXor69
BitSL 69
BitSR69
calling 32
card 70
chr67
concat 68
copy 68
cos 66
declaring 45-46
eof 59,60
eoln 61

G,H

exp 66
fi/epos 59
HiWord69
IOResult58
IsTooiError70
length 67
In 66
LoWord70
odd 66
ord 67
ord4 65
pointer 65
pos 67
pred67
round 64
sin 66
Size0f70
sqrt65
succ67
trunc 64

global variable 7
GOTO statement 36
greater-than-or-equal-to symbol (>=)

in sets 30
halt procedure 63
HiWordfunction 69

I,J

identifiers, scope of 8-9
IF statement 37-38
implementation part 52
IN operator 30
inc procedure 65
index types 15
inline declaration 45
input, standard file
insert procedure 68
integer type 12
integer type variables

read procedure and 58, 59
write procedure and 58, 60

interface part 51
IOResultfunction 58
IsTooiError70

l

label(s)
declarations 5
with GOTO statement 36

leave procedure 63
length function 67
less-than-or-equal-to symbol «=),

in sets 30
In function 66
local variable 7
logical operators 29
longinttype 12-13
LoWordfunction 70

M

maxint 12
maxlongint 12
members 31
minus sign (-)

in negation 28
in set difference 29
in subtraction 28

MOD operator 28
multiplying operators 26

N

new procedure 64
NIL constant 18
NOT (logical operator) 29
not-equal symbol «»,

in set inequality 30
null string 5, 18
Numbers 4

o

odd function 66
opening files 55
operands 25
operators 27-30

@31
arithmetic 27-28
logical 29
precedence of 25
relational 29-30
set 29

unary 28
OR (logical operator) 29
ordfunction 67
ord4 function 65
ordinal types 11-12
OTHERWISE part 38
output, standard file 55

p,e

packed string type 16, 30
page procedure 61
parameter(s)

static 48
types 46
univ 48
value 47
variable 47

pathname 56
plus sign (+)

in addition 28
in set union 29

pointerfunction 65
pointer type 19
pointer variables 23
pointers

caret nand 23
comparing 31

pos function 67
precedence of operators 25
predfunction 67
procedure call statement 36
procedure(s)

close 57
cycle 63
dec 65
declaring 43
delete 67
dispose 64
erase 57
exit 63
halt 63
inc 65
insert 68
leave 63
new 64
page 61
read 58,59
readln 60
rename 57
reset 57
rewrite 57
seek 58
write 58,60
writeln 60

program 49
qualifiers 21

R

read procedure 58, 59
readln procedure 60
real-type values

write procedure and 58

real-type variables •
read procedure and 58

real-types 14
record(s) 16, 22

types 16
variant 17
WITH statement and 41-42

recursion 44, 46
relational operators 29-30

= 30
<>30
<30
>30
<= 30
=>30
boolean operands and 29
in 30

rename procedure 57
REPEAT statement 39-40
repetition statements 39
reserved words 3
reset procedure 57
rewrite procedure 57
round function 64

s

scope of identifiers 8-9
seek procedure 58
segmentation

code 50
data 51

separators 3
set(s)

combining 29
comparing 30
constructor 31-32
type 17

set operators
+29
- 29
• 29

simple expressions 26
sin function 66
SizeOffunction 70
slash (f), in division 28
special symbols 3
sqrtfunction 65
statement(s)

assignment 35
CASE 38
compound 37
conditional 37
FOR 40
GOT036
IF37

null 35
procedure call 36
REPEAT 39-40
repetition 40
simple 35
structured 37
WHILE 40
WITH 41

static parameters 48
string type 18
structured type 15-18
subprograms 43
subrange type 13
suce function 67

T

tag field 17
tag identifier 17
term 26
text 18
text files 59-61
THEN 38
tokens 3
tool declaration 45
ToolErrorNum 71
true 13
trune function 64
TYPE 11
type cast 23, 33
typed- files 58-59

u

unary operators
+ 28
- 28

unit 51
unit body 53
unit specification 52
UNTIL 40
UNIV parameter 48
USES clause 50

v

value parameters 47
VAR44
variable(s)

declarations 21
dynamic 23
global 7
local 7
parameters 47-48

real-type 14
reference 21

variant records 17

w

WHILE statement 40
WITH statement 41
write procedure 58, 60
writeln procedure 60
write parameters 60

r

4241 Baymeadows Road • Suite 23 • Jacksonville, Florida 32217

