
•

HyperTalk® Beginner's Guide
for the Apple II Gs®

•

•

ti Apple Computer, Inc.

This manual and rhe softwa re described in ir are copyrighted, wirh all rights
reserved. Under the copyrig ht laws, this manual or the software may nor be
copied, in whole or part, without written consent of Apple, except in the
normal use of the software or ro make a backup copy of the sofrware. The same
proprietary and copyright notices must be affixed to any permitted copies as
were affixed to the or iginal. This exception does nor allow copies to be made for
orhcrs, whether or nor sold, but all of the material purchased (wi ch all backup
copies) may be sold, given, or loaned to another person. Under the law, copying
includes translating inco another language or format.

You may use the software on any computer owned by you, bur extra copies
cannot be made for chis purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the
"keyboard" Apple logo (Opcion-Shifc-K) for commercial purposes without rh__,
prior written consent of Apple may constitu te crademark infringement and •
unfair competition in violation of federal and state laws.

© Apple Computer, Inc., 1990
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-10 10

App le, the Apple logo, HyperCard,
and HyperTalk are registered
crademarks of Apple Computer, Inc.

Adobe, Adobe lllustraror, and
PostScript are registered crademarks,
and Adobe Garamond, Adobe
lllustraror 88, and Adobe Separator
are trademarks, of Adobe Systems
Incorporated.

ITC Zapf Dingbats is a registered
crademark of Incernarional Typeface
Corporation.

Linocronic is a registered trademark
of Linotype Co.

MacPaint is a registered trademark
of Claris Corporation.

NuBus is a crademark ofTexas
lnsrrumenrs.

QMS is a registered trademark, and
ColorScript is a trademark, of
QMS, Inc.

QuarkXPress is a regisrered
crademark of Quark, Inc.

Simu ltaneously published in the
United Scares and Canada.

•
Mendon of third -parry produces is
for informational purposes only and
constitutes neither an endorsement
nor a recommendation. Apple
assumes no responsibility with
regard co the performance or use of
these produces.

•

•

Preface About This Book vu
What you need co know co use this book v111
How to use trus book viii
Other sources of informacion x

Chapter 1 Getting Started 1
What you will build 2
Scarring up HyperCard 4
Setting your user level 4
Creating a practice stack 6
Working in d1e background 7
And now . .. a lirde scripting 9

Creating a Home bucron 9
Adding a button ro rhe Home stack 15

Message handlers 17

Visual effects 19
Purring information into your stack 23

Adding fields co me background 23
Typing in d1e fields 27
Adding more cards ro the stack 29
Buttons for traveling 29
Creating Next and Previous buttons 29

Contents

iii

iv

Adding graphics 32

What you 've done so for 34
Syntax summaries 35

Go 35
Visual 36

Chapter 2 Fields and Other Containers 37
Purring values into containers 38

Putting values into the Message box 38
Fields as contain ers 40

Putting values into a field 40
Creacing a pop-up field 44

Variables 49
Creating a Sort button 49

What you 've done in chis chapter 53
Syntax summaries 55

Answer 55
Hide 56
Put 57
Show 58
Sore 59

Chapter 3 Scripts That Make Decisions 61
If structures 62

Creating a Quit button 63
Repeat structures 67

Creating an Index button 68
Propercies and funccions 77

Setting properties 77
Using fw1crions 78
Going from an index entry to a card 80

What you 've done in this chapter 84

Contents

•

•

•

•

Symax summaries 86
Click 86
DoMenu 87

Find 87

If 88
Lock screen and unlock screen 89
Repeat 90
Set 91
Wait 92

Chapter 4 Handling Messages 93
How messages travel 94

Creating a Sound butcon 96
Moving the handler co the card level 97
Moving the handler co the background level I 00

Handlers calling handlers l O l
Writing the "calling" handler 102

Writing the "called" handler 103

Intercepting a message 106

Calling handlers from the Message box 109
Handlers as building blocks 110
What you've done in chis chapter 111

Syntax summaries 112

Play 112

Send 114

Chapter 5 More Scripting Ideas 115
Cuscomizing your Collection stack I 16

Presentation stacks 117

Creating main topics card 118

Creating cards about a copic 118

Animation 120

Animating a series of cards 120
Animating wirh Paint cools 122

Contents \ '

vi

A stack for fun 126
Where to go from here 130
What you've done in this chapter 131
Syntax summaries 132

Choose 132
Drag 133
Show cards 133

Appendix HyperTalk Su1nmary 135
Syntax sraremenr notation 136
Commands 137
Functions 142
Keywords 147
System messages I 48
Properties 149

Constants 152
Operator precedence 153
Script editor keyboard commands 154
Shortcuts for seeing scripts 155
Synonyms and abbreviations 155

Glossary 157

Index 165

Quick Reference Card

Tell Apple card

ContenL~

•

•

:::::.a

•

•

· Preface

About This Book

t is book shows you how to start using Hyper Talk®, the language
chat's built inro HyperCard at Iles•. With HyperTalk, you can write
your own instructions, called scripts, for HyperCard to carry our.
Writing scripts is called scripting.

You can create, customize, and personalize HyperCard stacks
without learning how to write scripts; but scripting with Hyper Talk
gives you even more control over your computer.

If writing scripts sounds a Joe like programming to you, you' re
right; however, you do not need any previous experience with
programming to write scripts. If you can read chis paragraph , you

. .
can wnte a scnpc .

vii

viii

What you need
to know to use

this book

How to use
this book

To get the most out of chis book, you should already know the
b:isics of using an Applet-> Iles computer; for instance, how rouse
the mouse, menus, and icons on the screen. You should also know
how t0 find your way around in a H yperCard stack. If you have
gone through the first three or four chapters of Getti.ng Started with
HyperCard Iles, you probably know enough to begin.

Specifically, you should know how ro use buttons co get around in
stacks and how to use the HyperCard menus and cools. You should
have browsed through some stacks, looked through part of the
HyperCard Hes Help stack, and perhaps personalized a stack-for
example, you might have used the Address scad<. to score some
information.

If you already have experience with programming in another •
language, you mighc wane co go directly to the HyperCard Iles
Script Language Guide, pub lished by Addison-Wesley Pulblishing Co.

This book is intended to help you gee started and lee you gee a feel
for scripting on your own. You won't find long, technical
explanations of Hyper Talk concepts here; but you will be able co see
clearly how specific scripts work.

Mose chapters in this book include exercises made up of numbered
seeps. Each seep consists of a shore instruction in boldface type and
then (usually) further explanation in plain type. Depending on your
level of expertise with HyperCard, you may find chat you can saw.
rime in some of the exercises by reading just the boldface seeps. Of
course you can stop and read the more-detailed explanations in
plain type whenever you need to.

Preface: About This Book

•

•

Each chapter builds on what you've done in previous chapters, so
ir's important char you scare at Chapter I and work ch rough the
book in order.

• In Chapter 1, "Ge eting Started," you'll create a practice stack,
which you'll use for scripting throughout chis book. You'll make
some burcons for the stack and complete their scripcs.

• In C hapter 2, "Fields and Ocher Containers, " you 'll write some
simple scripts that explore the way H yperCard scores and
retrieves information.

• In Chapter 3, "Scripts That Make Decisions ," you'll write some
more powerful scripcs .

• In Chapter 4, "Handling Messages," you'll explore how burrons
and other objeccs receive and send messages.

• In Chapter 5, "More Scripting Ideas," you'll look at o cher ways
you can use scripcs in stacks. You'll see how co create animation,
a presentation stack, and a stack just for fun .

• The Appendix, "Hyper Talk Summary," contains a comp lete list
of H yper Talk commands, functions, and ocher elemencs.

You'll also find a glossa1y of terms, an index, and a quick reference
card, which you can remove from chis book and keep hand y while
you work on your scripts.

Ar the end of the book is a Tell Apple card. By answering the
questions and mailing the card co Apple , you help us imp rove our
produces and documentation. Fill the card out after you've worked
with chis book.

l'rdan:: Ahollt This Book 1;,.

X

Other sources of
information

Because chis book is intended as an introduction co scripting for
beginners, it is not comprehensive . Hyper Talk comprises many
commands, functions, keywords, and ocher elements chat are not
explained in chis book. The Hyp erCard package includes the
following reference materials:

Hyper Talk Help: A stack that provides easy access co information
~~ about Hyper Talk. You will find chis stack
~ P" indispensable as you begin co learn scripting.

HyperCard Iles Help: A stack chat answers your questions about

(- HypcrCard's menus and cools.

HyperCard Iles Reference: A book that contains reference •
information about all aspects of HyperCard other
than scripting.

You may also wane co consult the following books, which were
written at Apple and are published by Addison-Wesley as pare of the
Apple Technical Library:

HyperCa,d Stack Design Guidelines: A book chat provides
information about how co design and build stacks. Its focus is the
look and behavior of stacks (for example, navigation methods and
card layouts) rather than the mechanics of scripcs.

HyperCard Iles Script Language Guide: A book that provides •
detailed reference information about scripts and HyperTalk. This
book is for people with some programming or scriptin g experience.

Several ocher books have been written about HyperTalk. Check
with your favorite bookseller co see what titles are currently
available.

Preface: About This Book

----·--- ------ -- ---- :z:i:ii~

•

•

Chapter _1

Getting Started

Have you ever wished your computer could do things your way?
Mose application programs are designed to perform one type of
task, like word processing or creating graphics. But what about all
the things you do chat don't fir neatly into ocher peop le's categories?

HyperCard ® Iles® lees you create your own ways of doing
things on your computer. If you have read Getting Started with
HyperCard fi es, you already know how co work with HyperCard
cools such as the Butron and Field cools. This guide introduces you
to scripting-writing sets of instructions called scripts that give you
even more control over the way HyperCard stacks work.

..

2

HyperCard scriprs are wrirten in the HyperTalk ® language, which is
similar to English in many ways. HyperTalk uses common words
such as go, put, and it in much the smne way that people use these
words in everyday life. In this book you'll learn how co combine
these words with other words co form inscrucrions that HyperCard
can understand. As you work through the book, you'll build your
vocabulary ofHyperTalk words. You' ll also learn how to write
larger, more powerful secs of insrrucrions.

You do nor need any prior experience with computer language s co
use this book. You should, however, know how ro gee arow1d in
HyperCard stacks, and how co use some of che cools described in
Getting Started with HyperCard lies.

•
What you will build In this book you'll learn scripting by building a pracrice Stack from

scratch and wriring scripts for ir. If you work through Chapters 1-4
in order, you'll end up with a stack you can use co catalog a collection
of record albums, cassettes, or compact disks. (Figure 1-1 shows a
sample card from a completed version of the practice scack.)

CATE60RY
I Rock RECORD
ARTIST COLLECTION
I Mo Sintrs Card 20

llTLt
I Sound Advict • NOTES lndn II Sound

Sort II Quit

About this stock

~ ~
Figure 1-1 Sample card from the practice stack

Chapter 1: Getting Started

•

•

If you don't feel like cataloging a collecrion of recordings , don 't
worry. In Chapter 5 you'll learn how to modify the practice stack
for other purposes. You can modify it to keep track of books,
baseball cards, compurer software, your favorite restaurants, the
inventory for a business, or anything else you mighr want to catalog.
Herc are some examples:

CfllJM

Julian

°"'"' l ~~l Ja111,~Nt. htKl1~ ltY

INCH

r
~~}ood~tk~~-::- ·~
ttn-'h' [J

l•dol I $!~. 0,1, 11111> .. , .• ~IISIDOk t•rd 12 • ~

\Ur + male
! 1116 Shtl~i

model

Imm
notes
0,1,, .. 1 erantt DaiM L'" •i In ~
rHlt tt 4rivt o, 1how

Tim's
Classic Cars

L_ _ _ ____ ..J.::r,~ .tl!I Ctr4l

~ Abtllt~ht~~ ~ ·-

Figure 1-2 ~ome ,.ir1ation, on the pr.1tltlt' ,tack

-,

As you build the practice stack, you'll learn basic scripting concepts
and techniques. By the time you're finished with this book, you'll
know enough to create stacks for your own purposes.

Each chapter in this book builds on material you've completed in
previous chapters, so you should go through the chapters in order.
In this chapter you'll create the practice srack and write some simple
scripts to control the actions of buttons.

Ch.tplt:r I: Gi:mng Startnl)

Sta1ting up
HyperCarcl

Setting your
user level

This book is meant to be used wirh HyperCard "up and running"
on your Apple lies "' computer . You'll need co perform rhc srcps
as directed in the sections that follow to get the most our of rhe
material.

First, start up HyperCard as you normally would. (The HyperCard
lies Reference includes instructions if you need them.) If you already
have HyperCard running, go co the Horne stack. You're ready co go
on when you see the first card of the Home stack on your screen.

~
Help

r!
Picture Puzzler •

~-
Birds • Tour

~
StorH Boord

Copvriaht © 1990 Rppl• Coaputu. Inc.
Dukm I l,.......,,To...,ol'""K1,...·t -,I I Attlo II Bmaont I

Figure 1-3 The fir~, card of the Home stack

To work with scripts, your user level must be set co Scripting. Starr
from the first card of the Home stack and set your user level as
described in the following steps: •

1. Click the User Preferences button .

The User Preferences card appears.

Chapter I: Gening 'itarced

•

•

2. Click the Scripting button on the User Preferences card.

For now, leave the check box options Blind Typing, Power Keys,
and Text Arrows unchecked. (For more information about these
options, refer co the HyperCard Iles Reference.)

Figure 1-4 shows the User Preferences card with Scripting

selected.

Your Nnme: Kevin
S. [diHhtscripts of buttons, fields, D Blind T•ping

cords, backgrounds. ond stocks. •
~-Cmu buttons ond fields. Link

buttons to cords ond stocks.
3. Ust tht Point tools to chonat th! D

oppeoronce of cords ond bocksrounds. Powtr Kos
2. U~t stocks. [nm ond tdit tut in D Tut Arrowj

helds.
1. forc7.li~ck~in-go~nl-y.~Vo-uaoyexp~ -

stocks but not change thea. ...

Figure 1-4 The User Preferences card of the Home stack

When you set the user level co Authoring or Scripting, a new
menu ciclc, Objects, appears in the menu bar. Commands in chis
menu allow you co gee information about and change properties
of H yperCard objectJ-butrons, fields, cards, backgrounds, and
stacks. (You'll learn more about objects later on.) The user level
must be sec co Scripting before you can look at, write, or change
these objects' scripcs.

Chapter I: Gelling Started 5

6

Creating a
practice stack

Now chat you've sec the user level co Scripting, the next cask is
co create the srack char you'll work with throughout chis book. You
can make a new stack at any time from anywhere in HyperCard;
you don't have co go back co the Home card. Just follow these seeps:

I. Choose New Stack &om the File menu .

A diaJog box appears in which you can name the stack.

2. Typ e the nam e Collectio n for your stack:

If you make an error while typing the name, use the Delete key
co erase it and retype. The diaJog box should look similar ro chis:

D :Hord.Disk:
17~2~ free of 32767 K. c Volwaes)
[] Home
D HyperCord

~ (Hew Folder)

c Open)

~ (Close)
-0,

)) Hew Stock Home: (Create

I Collection! I c Cancel)
D Copy Current Background

Figure 1-5 The New Stack dialog box

From now on your practice scack will be referred co as the
Collection scack.

Chapter I: Getting Staned

•

•

•

•

Working in the
background

3. When you're ready, click Create (or press Return).

You should see a completely blank card on your screen with rhc
menu bar at the cop. This card is the first-and right now the
only--card of your Collection stack.

When you creare a new stack, you automatically get three things:
the stack itself, a background, and the first card. If you selected the
Copy Current Background option, you would also get the
background pictures, fields, or buttons of the card you were on
when you chose the New Stack command. Otherwise, as in this
case, you have a blank card co work with .

You can think of the background in HyperCard as a kind of
"holding area" for general elements. If a picture , a field, or a button
is in the background, it appears on every card that shares chat
background. If you put a button in the background, for example,
you will have chat button constantly available cl1roughout a nLLinber
of cards-you don't need to re-create it on every card. So far the
Collection stack has only one background, so all the cards you
create will share that background.

In the rest of chis chapter you'll add buttons and fields to the
background of the Collection stack

Chapter l: Getting Started 7

8

Bdon : you go on ,

• Choose Backgro und from the Edit menu.

The word Background appears in the menu bar, indicating that
you're working in the background :

'3 file 1r.n• Go Tools Obitcts
Undo ,,1

Cut :1X
Copu :1C
Paste dY
Cleo,

Mtw Cord dM
Othtt Cord
Cut Cord
Copy Cord

lext Stvle. :'il
ri : I . ' ' :

•

Figure 1-6 Working in the ha<:kgrouncl

Background l This indicttes
you're ll'orking in
tht.: h:Kkground.

•

You can also work in the background by pressing - -B. (The
key is called the Command key and is co the left of the Space bar
on the keyboard.) Keyboard shortcuts like · -B can save you a
lot of time when you're creating a stack. You'll have man y
opportunities to practice HyperCard 's most useful keyboard
shortcut s as you work through this book.

•

Chapter 1: Getting Sta ncd

•

•

And now ...
a little scripting

Creating a Home button

ln rhis section you will create a burton and write a script for it. You
may already know how to copy and paste burtons with prewrittcn
scripts . ln this book you'll complete the scripts yourself.

Whenever you see a small picrure of a house in HyperCard , you can
be pretty sure that clicking it will take you to the Home card. In
this section you'll add a Home button to your stack and complete
. .
its scnpt.

First you'll create the button. You may already know how co create
buttons by choosing New Button from the Objects menu. In
chis book you'll use a keyboard shortcut to create buttons . Follow
these steps:

1. Make sure you're working in the background.

You should sec the word Backuroundin the menu b:1r. If vou
,\' J

don't see Background. press -B.

2. Choose the Button tool from the Tools menu.

The pointing hand (Browse tool) on the screen changes co an
arrow pomter.

If you prefer to work with a palette, you can turn the Tools
menu into a palette by dragging past its bottom edge to "rear"
it off the menu bar.

Thl' Button tool 3 . With the pointer anywhere on the card, hold down
the "; key.

The arrow pointer changes co a crosshair.

Chapter 1: Getting Startl'd 9

10

4. While holdin g down the t ", key, press th e mouse bllltton and
drag to create a small button about half an inch square.

Release the mouse button and the ~ key when the burton is
approximately the correct size. The new burron is aucomacically
selected-you can cell by the moving dashed line acow1d ics
edges. (This effect is sometimes called "marching ancs.") While
it's selected, you can stretch or shrink the button by dragging
a corne r.

5. Move the button to the lower-right corner of the background.

To move the bu tton, position the poincer near rhe center of the
button and drag.

Because the button is in the background, it will appear in this •
position on every card in rhe stack, so you can always go Hom e.

6. Double-click the button to see its Button Info dialog box.

Or choose Button Info from the Objects menu.

Button Ho11e: II I "-------- ---'
Bkgnd button number: 1 Bkgnd button IO: 1

D Show HOiie Style: I transparent ~
0 Auto Hilite

family: I O (none) ~
0 Shore Hilite

(Icon ...)

(Link To ...) (font ...)

(Script ...) (Colors ...)

Figure 1-7 A But1on lnfodi:iloghox

Chapter I: Gelling Started

Pop-up menu for selling
a bullon·s styll'.

•

•

•

HyperCard butto ns have a variety of styles and feacures from
which to choose. You customize a button's appearance and
actions through che Burton Info cLalog box.

A verrical bar marks the insercion point in the Burton Name
box, ready for you to type a name.

7. Type Home to name the button (but don't press Return).

If you press Return prematurely, don't worry; just double-click
the button again to get back to the Button Info dialog box.

8. Click the Auto Hilit e check box to select it.

The Auto Hilite option causes the burron ro briefly change color
when it's clicked .

9. Click the Icon button .

Another dialog box appears in which you can select an icon for

the button .

/"I. 10. Choose one of the house icons. m anm a\
Scroll through the window until you find the house icons and

Some house icons click the one you want.

11. CU ck OK to close the list of icons.

You see the Butron Info dialog box again.

Next you'll write a script for this burcon .

Chapter 1: Getting Started 11

12

Writing thl' script

You create and change scripts in a dialog box called the script editor.
To see the script for the new Home button, make sure the Button
tool is selected, and follow these seeps:

I. Click the Script button in the Button Info dialog box.

The script editor for che H ome button appears.

Script of Bkand but ton ID 1 = "Home"

Ohl] (Print) C OK) (Cance I)

Figure 1-8 Tht: ~nipL l'd11or

Norice chat d1e cext ac me cop of me script editor identifies chis
script as "Scripr of Bkgnd burton ID l = "Home""-your new

•

button. Notice also the vertical bar cursor. •

The next step is to type the statements chat define the
button's action.

2. Type on mouseUp and press Return.

Be sure co type mouseup as one word . If you make a
mistake, use the Delete key co erase it and finish typing rhe
script correcdy.

Chapter 1: Getting Started

•

•

3. Type c30 Lo [;L.:lc k "H ome" and press Return .

4. Type e nd mouseU p and press Return.

These three lines make up the complete script for the Home
button.

on mouseUp

go t o stack " Home"
@nd mouseUp

The script editor aucomacically indentS lines within scripts. This
indenting helps you check your scripts. on and end sho uld
always line up at the leftmost edge of the script editor when
you're finished typing a script; if they don't line up , press the Tab
key to check the script's formatting. If they st:ill don't line up ,
you may have left out something important; check the script
agam.

•:• By the way: le doesn't matter how you capitalize Hyp erTalk
words. Wo rds chat are formed from two words (such as
mouseup) are usually typed in small lette rs with a capit al in the
middle likeThis co make them more readable. ·:·

To save your script and leave the script editor :

5. Click O K

The script editor disappears, and you're looking at rhe
Collection stack with your new button.

By clicking OK (or pressing the Enter key), you save any
changes you made to the script and return co the stack you' re
working on. If you click Cancel, you close the script edicor
without saving changes.

Chapter I: Geeting Started 13

Thl' llrm~Sl' 1001

l'I

11-ying out rhe Horne button

Now see if the Home button works as it's supposed to.

l. Choose the Browse tool from the Too ls menu.

2. Click the Home button.

The Home stack appears. Welcome Home !

If something else appears, such as a dialog box saying "Can't
understand," you may have made a typing mistake. Swiech to the
Button tool, double-click the Home button, and click Script in the
Ru rron 1 n fo box to check the script. M akc sure cvcryth i ng is
correct, then click OK and ny out the Home button again .

How rhe script works

As you might guess, the script you wrote describes whar should
happen when someone clicks the Home button.

•
Whenever you move the mouse, your Apple IIGS computer and
HyperCard software track the movement electronically. You see the
movement as a change in the position of the pointer on the screen.
When you press and release the mouse burcon, the mouse sends an
electrical signal to the computer, much the way a light switch works
when you turn it on or off. The same thing is true when you press
different keys on the keyboard. The HyperCard software interprets
these signals from che system and translates them into Hyper Talk
system messages. • Mouseup is a system message char means the mouse button has been
released; an on-screen HyperCard button receives chis message
when someone clicks it (chat is, positions the Browse cool on ir and
then presses and releases the mouse burcon).

Whether something happens when the on-screen button receives
the mouseup message depends on whether the butron's script
contains any instructions for char message.

Chapter J: Getting Staned

•

•

The first line of your script, on mouseup , signals HyperCard chat
instructions for the mouseUp message exist. The next line, go to

stack " Home", tells HyperCard to go co the Horne stack.

The word go is a Hyper Talk command; it means what you might
expect . Go must be followed by a destination - a description of a
stack or a card. In this case, you used the name of the scack Home.

Each line in a scripc is called a HyperCard statement. In a mor e
complicated script, the instructions signalled by mouseUp could
consist of many starernencs. The last line of your script , end

mouseup , indicates the end of the instructions for the mouseup

message.

Translated into English, the instructions in your script say:

"When someone clicks this button, go to the Hom e stadc. Thar 's all."

Adding a button to the Wouldn't it be convenient to have a button in the Home stack that
Home stack would cake you directly co yow- collection stack? In this sectio n

you'll create one.

Make sw-e you're looking at the Horne stack and follow

these seeps:

1. Choose the Bunon tool.

2. While holding down the O key, drag to create a new button.

Make rhc button about an inch wide and a half-inch high. Move

it co any open space on the card .

3. D ouble-di ck the button to see its Info box.

4. Na me the button Collection

Chapter I: Getting Started 15

Stack icon

16

5. Click Show Name and Auto Hilite to select d1em.

When Show Name is selected, the button's name appears inside
the button .

6. Click Icon.

The list of icons appears.

7. Choose the stack icon.

8. Click OK to close rlle list of icons.

The Button lnfo dialog box appears again.

Writing the script

Now you' re ready to write ilie script.

1. Click ilie Script button to see ilie script editor.

2. Type ilie following script (pressing Return at the end of
each line):

on mous eUp
go t o s ta ck "Colle ct i on"

e nd mouse Up

3. ClickOK

The Home stack appears wiili ilie Collection button in place.

•

4. Try out ilie new button by clicking it with the Browse tool.

If your Collection stack appears, congratulations! •

.:• If something else happened: You may have misspelled a word or
left out a space in ilie button's script. If you got a directory dialog
box asking where ilie stack is, you may have cyped che stack's
name incorrectly. •!•

Chapter 1: Getting Started

Message handlers

•

•

The words go to stack "Collection" cell H yperCard to go co the
Collection stack. Hyper Talk is a flexible language; any of these
statements would also have worked in the button's script:

go "Collection "

go to "Collection"

go to card 1 of stack "Collecti on "

You may already know that buttons, fields, backgrounds, cards, and
stacks are HyperCard elements known as objects. An object can send
and receive messages. (For example, when you click a button, the
button receives a mouseup message.) As you've seen, when an object
receives a message, it can act on the message according ro
instructions in the object's script. More specifically, the object actS
according co instructions in the message handler.

A message handler is a set of instructions to be carried out when a
particular object receives a particular message. It's called a handler
because it "handles" the message. Handlers always begin with the
word on and end with the word end, and both words are followed
by the name of whatever message the handler deals with-for
example, on mouseup . Each of the scriprs you have written so far
contain only one message handler, but an object's script can contain
a number of handlers, each one handling a different message. The
word script therefore refers to all the handlers for a given object .

Chapter 1: Getting Started 17

18

In some ways writing a script for a HyperCard object is like training
a dog (see Figure 1-9) . The dog is like a HyperCard object, and a
spok<.:n comman<l is lik<.: a message. Each of the <log's tricks-th<.:

response of a particular dog co a particular command-is like a
message handler. And the sum coral of all the dog's cricks represents
the "script" for the dog. When the dog receives a message (for
example, "fetch"), the dog searches through its script for the
appropriate handler and then aces according to the instructions in
char handler.

(

.0 0 1
0

on sit
sit down
wag rrry tail

end sit

on fetch
get the stick
bring it back

end fetch

on sha.lteHands
raise my paw

end shakeHands

Figure 1-9 Message handlers: an analogy

• 1--1f--- Mess'.1ge
handler

,:, By the way: The words on and end belong co a special group g[
Hyper Talk words known as keywords. Keywords are used to •

control which statements are executed in a script. •:•

Cha p[er l: Gerring Sta reed

•

•

Visual effects Visual effects can make the movement from one c.1rd to :morher
more obvious and interesting. In chis section you'll learn how co

write scripts co display visual effects.

Adding a visual effect to the Home button

First modify the script for the Home button.

1. Choose the Button tool.

2. Double-click the Ho me bu tton to see its Info dialog box.

3. Click Script.

The script editor appears showing the button's script.

•:• By the way: Even though you had to switch to the background
when you created chis button, you do not have to switch to the
background to change its script. ,:,

4 . Click before the wor d go to set th e insertion point at the
beginning of the second line.

5. Type visual effect barn door close and press Return.

The script should now look like chis:

on mouseUp
visual effect barn door close
go to stack "Home "

end mouseUp

6. C lick O K

7. Choose th e Browse tool and click th e Ho me button.

T he first card of the Home stack gradually appears on the
screen, closing in from the edges of the screen.

Chapter 1: Getting Started 19

20

Adding :1 visual dkr1 to the Collc.:ction hullon

Now you'll modify the script for rhe Collection burron that you
added ro che Home stack. You'll use a shortcut for seeing a button's
scnpt.

1. With the Browse tool chosen, hold down the O and Option
keys.

Pressing these cwo keys lees you see the outlines of all burrons on
the card.

2. While holding down O and Option, click the Collection
button.

The script editor appears showing the button's script. (Release •
the keys after the script editor appears.)

The CJ-Option-click shortcut allows you to go directly to a
button's script without switching to the Button tool first-a
handy feature when you're doing a lot of scripting .

3. Click before the word go to set the insertion point at the
beginning of the second line.

4. Type visual effect barn door open and press Return.

The Collection bucron's script should now look like chis:

on mouseUp
visua l effect barn door open
go to sta c k "Collection"

end mouseUp

5. ClickOK

6. Try out the Collection button.

•
The first card of your Collection stack appears co open from rhe
center of the screen.

Chapter 1: Getting Started

•

•

The syntax of the visual command

All languages-for people and computers-have rules of syntax.
Syntax is a description of the way in which words are combined co
form meaningful statements. For example, in English the statement
"Go to the store" makes sense because ic follows the rnles of English
syntax. However, the sea cement "The go score co" doesn' c make
sense because it doesn't use proper syntax.

HyperTalk syntax is much like English syntax, which makes
HyperTalk an easy language co use. It 's not always crne, however,
that a statement chat makes sense in English will make sense in
HyperTalk. For example, HyperCard cannot understand the
command

visual effect slowly dissolve

because the words are in the wrong order. (The correct order is
visual effect dissolve slowly.) If you wrote chis command,
you would see a "Can't understand" dialog box like this:

Can't understand argtaents of c011111and
visual.

~ [Cancel]

Figure 1-10 A "Can't understand" dialog box

Clicking Script in a "Can't understand" dialog box opens the script
editor and places the insertion point in the statement HyperCard
can't understand. You can then correct any errors in syntax or
spelling and cry your script again.

Chapter 1: Getting Started 21

22

The syntax of a HyperTalk statement describes the general,
underlying structure chat a statement muse follow. In order for
HyperCard co understand a statement, it muse contain the correct
elements in the correct order. Certain conventions are used co show
the syntax of Hyper Talk statements. For example, here's the syntax
of the visual command:

visual [effect) ejfectName [speed) [t o image]

Syntax elements in this ki nd of type are typed exactly as they
appear.

Element s in italic are placeholders. ln an actual stateme n t, you
would replace effectName with the name of an actual visual effect,
such as barn door close .

Syntax elements enclosed in brackets [J are optional. (You don't
include the brackets in an actual command.) In the visual

command, the elements [effect) , [speed], and [to image]
are optional.

•
Knowing a command's syntax is as important as knowing what it
does. Bue don't worry-you don't have to memorize syntax. A
reference section , "Syntax Summaries, " appears at the end of each
chapter in chis book, describing the syntax of the commands you've
learned. The Appendix and Hyper Talk Quick Reference card list
the syntax of every HyperTalk command. The Hyper Talk Iles
Help stack and the HyperCard Iles Script Language Guide describe
the syntax of every command in detail. •

Chapter 1: Getting Started

Putting infon11ation
into your stack

•

•

Adding fields to the
background

C:11rgo1y field

Arci~, field

Title field

Notes field

So far the Collection stack consists of a single card with a Home
button. Tn chis section you'll add fields to the background of
the stack, type some text into the field~, and add some cards co

the stack.

First you'll add four fields to the background. When you're
finished, the background will look similar co this:

I

I I

: l I

,Q

'o ~

Figure 1-11 Background fields for the Collection stack.

Because you'll place these fields in the background, they will appear
on evecy card in your scack. However, the text contained in the
fields can be different on evecy card .

Creating the Category field

You can always get a new field by choosing New Field from the
Objeets menu. In this book you'll use a keyboard shortcut co make
fields.

Follow these seeps:

1. Press ' ' -B to work in the background.

The word Background appears in the menu bar.

Chapter I: Getting Stan eel 23

The Field tool

24

2. Choose the Field tool.

The pointing hand (Browse tool) on the screen changes co an
arrow pointer.

3. With the pointer anywhere on the card, hold down the CJ key.

The arrow pointer changes to a crosshair.

4. While holding down the O key, press the mouse button
and drag to create a new field one line high and about three
inches wide.

This method for creating a fidd is similar co the method you
used to create your Home button. Release the mouse button and
the O key when the field is the size you want. The new field is.
automatically selected, as indicated by the "marching ants"
around it. While it's selected, you can screech or shrink the field
by dragging a corner.

5. Move the field to the top of the background (as shown in
Figure 1-1 I).

To move the field, position the pointer near the center of the
field and drag. Because the field is in the background, it will
appear in this position on every card in the stack.

6. Double -dick the field to see the Field Info dialog box.

Or choose Field Info from the Objects menu.

HyperCard fields have a variety of styles and features from ,
which to choose. You customize a field's appearance and action
through the Fidd Info dialog box.

A vertical bar marks the insertion point in the Field Name box,
ready for you to type a name.

Chapter 1: Getting Started

•

•

Fie 1 d Hcne: II I ~-- ----- --'
Bkgnd field n1111ber: 1 Bkgnd field ID: 1

D Lock Text Style: I tronsportnt k

0Auto Tab
D Don't Search D Show Lines
D Shored Text D Wide Margins

Qoiiy
(OK] (Conce I)

Figure 1-12 The Field Info dialog box.

Pop-up menu for choosing
a field's style

7. Type Category to name the field (but don't press Return) .

8. Choose "rectangle" from the pop-up menu to set the field's
style.

9. If you'd like, choose a font for the field.

Click the Font button to display the Text Style dialog box. Then
choose a font and size. (Choose a font that's easy to read, such as
Shaston 8.) When you've selected a font, click OK to return to
the Button Info dialog box.

I 0. If you'd like, choose colors for the field.

Click the Colors button to display the Field Color dialog box.
Then choose a color for the frame of the field and the text inside
the field. When you've selected the colors you wane, click OK co
return to the Field Info dialog box.

11. Click OK to close the Field Info dialog box.

Chapter 1: Getting Started 25

26

Creating the Artist, Title, and Notes fields

Now you need co add three more fields to the background. This
rime you'll use a shortcut to create each field. Make sure you're still
in the background and that the Field tool is scill selected, then
follow these steps:

1. While holding down the Option and Shift keys, position the
pointer near the center of the Category field and drag down.

You should see an exact duplicate of the Category field move
down the screen, leaving the original Category field in place.
Dragging the field while you hold down the Opcion key creates
an exact duplicate of the field. Dragging the field while you hold
down the Shift key restricts your movement of the field co

straight up and down or straight left and right. Dragging the •
field while you hold down both keys produc es both effects
simultaneously. (Both of these shortcuts also work for buttons.)

Now all you need to do is change the name, and you'll have a
new field with the same size and ocher characteriscics as the
Category field.

2. Double-click the new field to see its Field Info dialog box, and
nan1e the field Artist

Except for its name, number, and ID, the Artist field will have all
the same characteriscics as the Category field.

3. Using the same shortcut, Option-Shift-drag the Artist field to
create a third background field, and name it Title •

4. Option-Shift-drag the Title field to create a fourth backgrowid
field, and name it Notes

In addition to changing the name of this field, you should
change the field's style to "scrolling." After you rename the field,
enlarge it by dragging a corner, uncil it's a few inches high, as
shown in Figure 1-11.

Chapter 1: Getting Staned

•

•

Typing in the fields Now chat you've created all the fields for your stack, you're ready ro
type some text into chem. Figure 1-13 shows some examples of
cards with text typed in the fields. For your own stack, rype in
information about your own records, tapes , or compact disks.

I Bnl ofltch

I Counttv

! Ann Aaron

I Soddnl "'''

Figure 1-13 Sample record cards

Chapter 1: Getting Started 27

28

To type cexc into the fields, follow these steps:

1. Choose the Browse tool.

Choosing the Browse tool automatically takes you out of the
background. In this case, it takes you to the first and only card in
the stack.

2. Click inside the Category field and type the category of music
to which the recording belongs.

Type "Rock," "Jazz.," "Classical," "Country," or any other
category you wane co use. Don't press Return.

3. Press the Tab key.

The iruercion point moves co the next field you created-in ~
case, the Artist field.

4. Type the name of the artist featured on the recording.

Type the name as you would like it co be sorted alphabetically.
For example, if you wane your cards to be sorted by the artist's
lase name, you should enter "Johann Sebastian Bach" as "Bach,
Johann Sebastian."

5. Pre~ the Tab key to move to the Title field and type the title of
the recording.

6. If you'd like, press the Tab key to move to the Notes field and
type the names of songs or any other information you want to
keep about the recording. •

Chapter 1: Getting Started

•

Adding n1ore cards
to the stack

Buttons for traveling

•
Creating Next and
Previous buttons

Now add ac least cwo more cards co the stack. Follow these seeps:

1. Select New Card from the Edit menu.

Or press 0 -N. A new card appears on the screen.

•:• If a field disappears when you create a new card: You may have
placed the field in the card layer rather than the background
layer. To move a field from the card layer co the background , go
back to the card where you last saw the field; then dick the field
with the Field cool to select it. Press 0 -X to cut the field, press
c:"J-B to go to the background, and press 0 -V co paste the field in
the background. (You'll also have co return to the card layer and
retype the conte nts of the field.) •!•

2. Type information about another recording into the fields on
the new card.

Repeat these seeps co add as many cards as you want co your stack.

Now that your stack contains several cards you 'll create cwo buttons
that allow you co move fonvard and backward between cards.

To make che buttons, use the san1e steps you followed when you
made the Hom e button:

1. Press \.~S-B co wo rk in the backgr0tmd .

The word Background appears in the menu bar.

2. Choose the Button too l.

Chapter I: Getting Siarted 29

30

A right
arrow icon

3. While holding down the \ ·5 key, drag to create two new
transparent buttons.

Make each new button about the same size as the Home button.

4. Position the two new buttons side-by-side, near the Home
button.

Drag each button by its cenrer ro move it.

Customizing the button on d1e right

Make the button on the right into a Next button:

1. With the Button tool still sdected, double-click the button on
the right. •

The Button Info dialog box appears.

2. Name the button Next .

3. Click the Icon button to see the available icons.

4. Choose any icon that points to the right.

Click the icon you wane.

5. Click OK to do se the list of icons.

You see the Button Info dialog box again.

You want the Next button (the button on the right) to take you to

the next card in the stack. Puc your instructions into the button's
scnptnow .

6. Click the Script button to see the script editor.

Charrer I: Geu1ng Sianed

•

•

•

7. Type the following script {pressing Return at the end of
each line).

on mouseUp
visual effect scroll left
go to next card

end mouseUp

8. Clid(OK

The script editor disappears. You should see the icon you chose
on the button.

Now try out the Next button to see how it worb.

9. Choose the Browse tool and dick the Next button .

Each time you click the button you go co the next card in
the stack.

You can use the Next button to move fmward through the cards in
the Collection stack Cards in a stack are arranged in a circle, so the
first card is the next one after the last card.

Customizing lhe button on the left

Make the buccon on the left a Previous bucton:

1. Choose the Button tool and double-click the button on
the left.

The Button info dialog box appears .

2. Name the button Previous

3. Click the Icon button to see the available icons.

4. Choose an icon that points to the left.

It's best to use the same kind of arrow that you chose for the first
button, but pointing the opposite way.

Chapter 1: Getting Started 31

32

5. Click OK to close the list of icons.

The Burton Info diaJog box appear s again.

Now you'll write a script for the Previous button.

6. Click Script to open the script editor and type the following
script:

on mouseUp
visual effect scroll right
go to previous card

end mouseUp

7. ClickOK

Th e script editor disappears. You should see the icon you chose •
on the button.

8. Try out the Previous button.

Choose the Browse cool and click the Previous button. Each rime
you click the button you go to the previous card in the stack.

Moving to adjacent cards isn't the only possibility, of cotllfse; you
can create other button s to take you to any card of any stack you
wane by specifying in a script where you want to go.

Adding graphics If you'd like co give your srack a distinccive look, you can take some
time now to design graphics for the background. Well-designed A
graphics can make your stack easier to use, as well as more appealing-
visually.

You can create graphics by using the Paint tools, or you can copy
clip art from the Art Ideas stack. You may also want to change the
fonts in the background fields or the position of the fields and
buttons. You'll be adding more buttons to the background lacer, so
be sure co leave space for them.

Chapter 1: Getting Started

•

•

The Paint tools

JI,,_,......,=
~ "}.....,t=:I

(For instructions on how to use paint tools, see the HyperCard !!GS
Reference. For cips on how to design stacks, see HyperCard Stack
Design Guidelines, published by Addison-Wesley.)

You can leave your stack as it is, copy one of the designs suggested
in Figure 1-14, or have fun creating a design of your own . When
you' re satisfied with the way your stack looks, you can move on to

Chapter 2 .

1. Blu,prinl for
!rouble 4:10
2. lotolly Greo;
2:1$
3. Ro1coo's F1111ih
3:311

Figure 1- 14 Some possible designs

Chapter 1: Getting Started

• ..

33

What you've
done so far

In this chapter you've created a stack in which you can practice
scripting in the rest of this book. You've created fields and added
cards to the stack. You've also created some buttons and written
their scripts.

Here's a list of the Hyper Talk words you have learned:

Keywords

on

end

System Messages

mouseUp

Commands

go

visual [effect]

Chapter I: Getting Sraned

This word signals the beginning of a sec of
instruction s. It must be followed by the name
of a message, such as mouseUp.

This word signals the end of a set of
instructions. It must be followed by rhe n~
of a message, such as mouseUp. All Hyper Talk
message handlers conclude with an end
statement.

When you dick something, such as a button
on the screen, the system sends mouseup

when the mouse button is released. (If the
pointer is moved off the screen button before
the mouse button is released, mouseup is
not sent .)

This command is used to move from one
card to another, within a stack or between
stacks.

Causes the visual effects you specify. A
visual command must eventually be
followed by a go command.

•

•

•

Syntax sun1111aries The following reference section describes the basic scrucrure of che
rwo HyperTaJk commands you've learned so far.

Go The go command rakes you to the specified card or stack. If you
name a stack without specifying a card, you go to the first ca.rd in
the stack. If you don't name a stack, you go to the specified card in
the currenr Stacie You can specify a visual effect to be used on
opening the card by using chc visual command before you use the
go command.

Syn tax

go [to] stnck
go [to) background [of st11ck]
go [to] card [of background] {of stack)

The words stack, background, and card are placeholders. You would
replace chem with a word or plu-ase that describes a stack, a
backgrow1d, or a card.

Examples

go "Home"
go to first card
go to card 3 of background 2 of "Presentation "

Chaptl'r l · Gening Stane<l 35

36

Visual The visual command lers you display visual effects while going
from one image to another. The visual command must eventually
be followed by a go command.

Syntax

visual [effect) effectName [speed) [to image]

EjfectName is one of the following:

barn door close
barn door open
checkerboard
dissolve
fade
iris close
iris open
plain
scroll down
scroll left
scroll right

Speed is one of the following:

fast
slow[ly]

Image is one of the following:

black
card
color n11mber

scroll up
venetian blinds
wipe down
wipe left
wipe right
wipe up
zoom close
zoom in
zoom open
zoom out

very fast
very slow[ly)

gray
inverse
white

•

Note: number is a number between I and 16, representing one of •
the colors in the color palette.

Examples

visual effect barn door open
visual dissolve slowly to white

Chapter 1: Getting Started

•

•

Chapter 2

Fields and Other Containers

In everyday life a containe r is somethin g you can put things into.
In Hyper Talk a container is a place in the computer's memory
whe re you can put a value such as a number or some text. You can
put values into containers; you can also get values out of containers
to use elsewhere as needed.

In this chapter you'll learn about three different kinds of containers :
the Message box, fields, and variables. You'll also learn how you can
use scripts to work with values in containers. You'll add some more
features to your Collectio n stack, and you'U increase your
vocabulary of Hyper Talk commands.

If you took a break at the end of the previous chapter, start up
HyperCard and go to the Collection stack before you read on.

37

38

Putting values
into containers

Putting values into
the Message box

You use the puL command co put a value into a container. In chis
section, you'll praccice using che put command to put values into
che Message box. Lacer in chis chapter you'll use che put. command
m scripts.

• First open the Message box.

1. Press ' -M to open the Message box.

Or choose Message from che Go menu.

The verticaJ bar chat marks the insertion point should be inside
the Message box, ready for you t0 type. If for any reason you
previously typed something into the box, the earlier entry will
still be there. When you start typing, whatever you cype will
replace the old text.

I 1° nmnm@n9iumi,mmnom 1111111rni;·ini:nn111.1111 mun 111111B111lli'Oh:/n'111@1ne1111111111111 ,111m11101111,orn111,111mmm1111111@nm111•1111 111i:@1'.111tm1Wi/1111 "I

•
Figure 2-1 The Message box

Chapter 2: Fields and Other Containers

.J

•

•

2. Type f" JI •·11, ·llu " i11t ,, Lhc me~:~:,HJ~· 1,nx and press Return.

The word Hello appears in the Message box.

The pu t command does what you would expect-it puts a value
where you want it co go. In its most basic form, rhe syntax of the
pu t command is:

put expression [into container J

The placeholder expression is a word or phrase chat specifies a value.
For example, the expression 2 + 2 specifies the value 4.

The placeholder container can be a field, a variable, or the Message
box. If you don't specify a container, the value is pur inco the

Message box .

•!• By the way: After you press Return, you can scare typing a
new message into the Message box right away, even though

you can't see the vertical bar. Whatever you cype will replace
the old text. •:•

3. Type p ut "The time is " && t he t ime and press Return.

Some text appears in the Message box. For example:

The time is 12 : 00 PM

Including quotation marks around text cl1araccers cells HyperTalk
co interpret literally whatever is inside. It treats what's inside the
quotation marks as a string of text characters .

Chapter 2: Fields and Other Container:.

40

If you don't include quotation marks, Hyper Talk evaluates the
expression. That is, it replaces the expression with the value of the
expression. For example, it replaces the time with the rime
currently set in your Apple Iles .

The double ampersand(&&) joins two pieces of text together with a
space in between. In chis case, it joins the words the time is and
the current system time. (If you wanted co join cwo pieces of text
together without a space, you would use a single ampersand.)

4. Close the Message box.

Click che close box in the upper-left corner, or press · -M .

• Fields as containers Fields are objects. They can receive and send messages and
can have scripcs. Fields are also containers char can hold text
and numbers.

Putting values into a field In Chapter 1 you put text into fields by typing in the fields. In chis
section you'll write a script chat pucs text into a field.

First you need co create a background field named Label. This field
will display the number of each card in your stack, so you can easily
cell where you are in the stack.

•

Chapter 2: Fields and Other Containers

•

•

Creating the Label field

To create the field, follow these steps:

1. Press l"J-B to work in the background.

The word Background appears in the menu bar.

2. Choose the Field tool from the Tools menu.

3. Hold down the 1 ' key and drag to create a field one line high
and about an inch long.

Move the field to any available space in the background by
dragging its center.

4. Double-click the field to see its Info box .

Or choose Field Info from the Objects menu.

5. Name the field Labe l and set the field's characteristics.

Choose "rectangle" for the field's style. If you'd like, specify the
field's font and colors.

6. Click OK to dose the Field Info dialog box.

Writing a script for the hackground

You could label all cards in your stack by going to each one and
typing ics number into the Label field. But you can also write a
script telling HyperCard to do it for you .

You'll write a script that pucs a description of each card into the
Label field. The field will contain a text string with two pieces: the
word Card and the number of the current card.

Chapter 2: Fields and Ocher Containers 41

on openCard

To write the script, follow these steps:

1. Choose Bkgnd Info from the Obj ects menu .

The Info dialog box for the background appears.

2. Click the Script button .

The script editor for the background appears. The line at the top
of the script editor identifies it as the background script.

3. Type the following script:

put "Card " && number of Lhis card into bac kgrou nd field "Label "
end ope nCard

In English, the script says, "Whe n a card opens, put the word •
Card and the number of the card into the background field
named Label. That 's all."

4. ClickOK

5. Try out the script by choosing the Browse tool and clicking the
N ext button several times.

Each time you go to another card, you should see in the Label
field the word card followed by the number of the current card.

•:• If something else happened· Open the backgrow1d script and
check it for spelling errors. Also make sure that rhe Label field is
in the background and that its name marches the name you used
. .
m your scnpt. •:• •

Chapter 2: Fields and Other Containers

•

•

I low Lhc :iCript work:i

J use as H yperCard sends the system message mouseUp every time
you click the mouse button, it sends the message openCard every
time you go co a different card in a stack. When you open any card
in the Collection stack, the opencard message handler executes and
puts the number of the current card into the Label field. Because
the opencard handler is in the script for the background, it affects
every card sharing chis background-not just a particular card.

The advantage of using a script to label cards is chat you won't have
to worry about labeling the cards yourself, even if you add or delete
cards. HyperCard will cake care of it for you .

Script editor tips

As you begin to write longer scripts, you'll find it helpful co know
the keyboard com1nands for cutting, copying, and pasting text in
the script editor:

Key combination Action

· -C Copies the selected text to the Clipboard.

1 °1,-X Cuts the selected text to the Clipboard.

1 ··-V Pastes the contents of the Clipboard at the
. . .
msernon pomt.

Option-Return Breaks long statements into more than one
line (so chat they will fit in the script editor
dialog box). Pressing Option-Return inserts a
"soft" Return character at the end of a line,
symbolized by chis character(-.), in your
scnpt.

The Appendix and the Hyper Talk Quick Reference Card contain
complete lists of keyboard shortcuts you can use while working in
the script editor.

Chapter 2: Fields and Other Containers 43

44

Creating a pop-LI[) field Now it's time co give yourself a well-deserved pat on the back; you'll
create a field chat displays the credits for your stack. You'll create a
button chat makes the field appear, and write a script tlhac makes the
field disappear when you click it.

Figure 2-2 shows an example of how the new field and burron
might look:

I Rock

ARTIST
i Mo Sisws

Till£
! Sound Advice

I

RECORD
COLLECT I OH
Cotd 20

This sleet scripted by
NE!

-+-i.--- Credi!S field

1J ~====::::;---::' ! About this Slock •. ~
Figure 2-2 A sample Credits field

Chapter 2: Fields and Other Containers

•

•

•

•

Making Lhe Credits field

You can start from any card in the Collection stack. Create the field
by following these steps:

1. Press · -B to work in the backgrolllld.

The word Background appears in the menu bar.

2. Create a new 6eld.

Use any method you wane. Make the field about two-inches
long and an inch high. It's okay if the field covers other fields
or buttons.

3. Double-click the field to see its Info box .

4. Name the field Credits

5. Click Shared Text.

Background fields with shared text contain the same n:exr on
every card.

6. Choose "shadow" &om the pop-up menu to set the field 's
style.

7. If you want to, choose a font and colors for the field.

8. Click OK co close the Field Info dialog box.

Now you'll rype your message in the field. Because it's a
background field with shared text, the message you type will
appear on every card in the stack.

9. Choose the Browse tool.

10. Click inside the Credits field to see the insertion point, then
type the credits for your stack

Type any message you want.

Chapter 2: Fields and Other Containers 'l)

M:1king an About 'J'ltis Slack bullon

Next you' ll create a button that makes the Credits field appear and
disappear. Make sure you're scill working in the background , and
follow these steps:

1. Choose the Button tool and create a new butt on about an inch
wide and one-half inch high .

Drag che button co any available space in the background.

2. Double-click the button to see its Info dialog box.

3. Name the button Abou t Th is Stack and select Auto Hilit e.

4. Choose " rectangle " for the button 's sty le.

5. If you want to, choose a font and colors for the button.

6. Click Script to see the script editor and typ e the followin g

script:

on mou s eUp
s how bg field "Cre d its "

e nd mouseUp

The lerrers bg are an abbreviation for the word ba ck ground . The
appendix includes a complete list of Hyper Talk abbrev iations.

•

[n HyperTalk, you must use car d or cd in front of field ro
specify a card field. If you leave our c ard, HyperCard assumes you
mean a background field. Co nversely, you must use backg rou nd,

bkgnd , or bg in front of button co specify a backgro und button, •
otherwise HyperCard assumes you mean a card button. To avoid
confusion, it's a good idea co always use card or background when
referring co fields and buttons.

7. Click OK.

Chap1t:r l: F,eltb and Otht:r Containers

•

•

Writing a scr ipt ror the Credits field

Nexr you'll write a script chat makes rhe C redits field disappear
when you d ick it.

1. Choo se the Field tool and doubl e-click the C redits field co see
its Info box.

2. Select Lock Text to lad < the field.

When a field is locked, you can'c type in the field. (You have co

unlock the field if you want co type in it.)

\X,'hen you click a locked field, H yperCa rd sends rnouseup :md
ocher system messages co the field .

3. C lick Script .

Th e script editor for the C redi cs field appears.

4. Typ e the followin g script:

on mouseDown
hide me

end mouseDown

MouseDown is a system message chat's sent as soon as the mouse
burron is pressed.

T he H yper Talk word me refers co the object in whose script the
word appears. In this case, me refers co the Credits field.

5. Click OK .

Chapter 2: Field~ and Other Containers

48

Trying out the scripts

Now see how the About button and Credits field work.

I. Choose the Browse tool and click the Credits field.

The field disappears.

2. Click the About This Stack button.

The Credits field reappears.

•:• If something else happened· Make sure the script for the button is
spelled correctly. Also make sure that the name of the Credits
field is spelled correctly.

If the Credits field still won't appear when it is supposed co, open
che Message box and type: show last bg field. Then check .
spelling of the Credits field name in the Field Info box. •:•

3. Click the Credits field to make it disappear.

How the scripts work

When someone clicks the About This Stack buct0n, the mouseUp

handler in the button's script executes. The statement, show bg

field "Credits " makes the Credits field visible.

When you press the mouse down when the cursor is in the Credits
field, the field's mouseDown handler executes. The scacemenc hide

me makes the Credits field disappear.

To be able co send messages co a field by clicking it, the field muse •
be locked. Otherwi se, clicking the field merely places che insertion
point inside the field.

You can use the hide command to hide a field, a button, a window
(such as the Message box), the menu bar, the background picture
(graphics in the background), or the card picture (graphics on the
card that aren't in the background). The show command does just
the opposite; you use show co reveal hidden elements.

Chapter 2: Fields and Other Containers

•

•

Variables A variable is a named contai ner that can have any value you choose
to put into it. In this section you'll create a button that uses a
variable in irs script.

Creating a Sort button First you'll create a button that sores all the cards in your stack
alphabetically. Whe n a user clicks the Sort button, a dialog box will
appear asking the question "Sort by what?" and presenting three
possible replies: Category, T itle, or Artist. When the user chooses,
the stack is sorted alphabetically according to the contents of the
chosen field.

Follow these steps to create the Sort button:

1. Press 0 -B to work in the background .

2. Choo se New Button from the Objects menu.

A new button appears. When you choose the New Button
command, you automatically switch to the Burton tool, and the
new button is automatically selected.

on mouseUp

Drag the button co any available space in the background.

3. Name the button Sort .

The Show Name and Auto Hilite options are already selected.

4. If you want to, choose a font and colors for the button.

5. Click Script to see the script editor and type the followin g
script:

answer "Sort by what?" with "Category" or "Title" or "Artist"
put it into reply
sort by background field reply

end mouseUp

6. ClickOK

Chapter 2: Fields and Other Containers 49

50

Now Lry d1t: Son buuon w set: how ir works:

7. Choose the Browse tool and click the Sort button.

The following dialog box appears.

Sort by what?

(Category) (Title) [Artist]

Figure 2-3 Dialog box displayed by the Sort huuon

8. C lick Artist.

HyperCard reorders the cards in che srack alphaberically
according to the contents of the Artist field. Browse through
your stack with the arrow buttons to see that the names of rhe

artists are in alphabetical order .

•
lf you would rather sort your cards by category or title, you can use

che Sort button to do that, too.

I low Lhc script works

The answer command asks the user of your stack a question, and
presents up to three possible replies in the form of buttons in a
dialog box. In this case it asks the question sort by wha t? and
presents duee possible replies: Category, Title, and Artist. (Th .
answer command always highlights the lase reply, so it's a good idea
co list the safest or "most correct" answer lase.)

Chapter 2: Fields and Other Concainers

•

•

When someone clicks a reply in the dialog box, chat reply is put
into a special Hyper Talk variable named it . For example, when
you click Artist, the value Artist is put into it.

The next statement in the script, put it into reply, puts the
contents of it into another variable, which you've named reply .

The names of variables can be almost anything you choose, bur it 's
a good idea to name chem something chat describes what's
conta ined in them.

If you clicked Artist, the variable reply would then contain the
value Artist. Therefore, the statement

sort by background field reply

is evaluated as

sort by background field Artist

and H yperCard sorts all the cards in your stack according co the
contents of the Artist field.

•:• Local versus global The variables discussed here are local
variab/,es; chat is, they and their values exist only within the
handler in which they're created. HyperCard also has global
variables, whose values are available to all handler s everywhere.
You declare a variable as a global variable by using the global

keyword. For information about global variables and the global

keyword, see the Hyper Talk IIGS Help stack or the HyperCard
lies Script Langua.ge Guide. •:•

Chapter 2: Fields and Other Containers 51

52

Putting comments in [he handler

The following version of the handler for the Sort button shows
comments char describe the action of the handler 's statements.
Comments are text lines typed into a script that are nor part of the
instructions . In Hyper Talk, a comment must be preceded by a
double hyphen (--); a double hyphen indicates to H yperCard that
the text following is a comment and should be ignored.

You :ion't have to type these comments into your own script ; they
are shown for example only.

- - This but t on sorts t he s t ac k accor ding to a field chosen by the user
on mouseUp

answer "Sort by what?" with "Category " or "Tit l e " or "Art ist "
-- The user ' s response is now in the variable it • put it into reply Response is now in reply
sort by backgrou nd fi e l d r eply -- Sort s t he stack

end mouseUp

As you see, comments can be placed either at the beginning of a line
or after a statem ent.

Although HyperCard ignores comments, other scriprers generally
appreciate them. Adding comments to your scripts is an excellenc way
to document what your scripts do. Comments not only help other
scripters understand what you 've done , bur also help you remember
when you look at old scripts long after you've written them .

•

Chapter 2: Fields and Other Containers

•

•

What you 1ve done
in this chapter

You've learned how to use fields, variables, and the Message box as
containers for cexr and numbers.

You've also added some features to your Collection stack: a handler
that automatically numbers the cards in the stack, a pop-up field,
and a Sore button.

System messages

openCard A message sent by HyperCard when a card
is opened.

mouseDown A message sent by HyperCard when the mouse
button is pressed down .

Commands

answer Puts a box on the screen containing a question
and up to three response buttons.

hide Makes buttons, fields, windows, and pictures
invisible.

put Takes something and puts it somewhere. The
word put must be followed by the name of che
thing you wane to put somewhere and the name
of che place where you wane to put it.

show Causes hidden buttons, fields, windows, and
pictures to become visible.

sort Sores all the cards in a stack.

Chapter 2: Fields and Other Containers ;3

54

Operators

&

&&

-,

(Ampersand) This symbol joins two pieces, or
strings, of text together with no space between
chem.

(Double ampersand) This comb ination symbol
joins two pieces of text with a space between
chem.

("Soft" return character-produced by pressing
Option-Return at the end of a line) Breaks long
statemems into more than one line in che script
editor window.

(Double hyphen) Indicates that what follows is •
comment and should be ignored by HyperCard.

Script editor
keyboard commands

·. -C
" -X

. - V

Miscellaneous

bg

me

it

Copies the selected text to the Clipboard .

Cues the selected text co the Clipboard.

Pastes the conrencs of the Clipboard at the
. . .
1nscrnon point.

Abbreviation for backgr ound .

The object in whose script the word appears . •

The name of a special Hyper Talk variable . Cerrain
commands, such as an s wer , puc a value inco !.t .

Chapter 2: Fields and Other Container~

•

•

Syntax sununaries This section describes the syntax of the commands you used in chis
chapter .

Answer The answer command displays a dialog box wich a question and
up to three buttons for the user co choose from, each represent ing a
different reply. lf you don'c specify a reply, HyperCard displays a

single OK button in the box.

H yperCard puts the label of whatever button gees clicked into a
variable named it .

Syntax

answer question
answer question with reply
answer question with reply] or reply2
ans wer question with reply] or reply2 or reply3

Q}iestion can be any text you like-usually a question chat invites
che user to answer. Reply], reply2, and reply3 are the labels for
buttons representing the choices. The size limit for a reply is about
11 characters, depending on the width of the characters.

Example

answer "Pick a color :" with "Red " or "Blue " or "Green"

Chapter 2: Fields and Other Containers 55

56

I lie.le The hide command makes invisible a button, field, picture, or
window. (See also "Show," lacer in chis section.)

Syntax

hide button
hide field

hide card picture
hide piclure of card
hide background picture
hide picture of background

hitle menuB<1r
hide message box
hide tool window
hide pattern window
hide go window
hide card window

Button, field, card, and background are expressions identifying
objeccs (for example, background button 1.)

•
Card picture consists of all elements on the card level created with
a Paint tool. Background picture consists of all graphic elemencs
on the background level.

Examples

hide background field "Credits"
hide picture of card 1
hide message box

Chapter 2: Fields and Other Containers

•

•

•

Pu l The put command places che value of .rn expression imo
a conc.uner.

Syntax

put expression
put expression i nt o [chunk of] container
put expression af ter [chunk of] container
put expression be for e [chunk of] container

Expression can be any description of a text sering or a nun1ber.

Chunk consists of the words character, wor d, i t em, or line

preceded by an ordinal or followed by a number, range of numbers,
or another chunk expression .

Container is an expression that identifies a field, a variable , the
Message box, or the selection. If you don 't specify a container ,
container is the Message box.

The preposition i nto causes anything already in the destination
container co be replaced by the expression. The preposition before

places the expression at the beginning of what's in the container (if
anything), and after puts the expression at the end.

Examples

put 256
put 256 i nto Total
put 256 into line 1 of card field 3
put 256 before word 4 of line 1 of card field 3
put 256 after word 3 of line l of card field 3

Chapter 2: Fields and Other Containers

58

Show The show command makes visible a button , field, picture , or
window.

Syntax

show button [at point]
show field [al point]

show card picture
show picture of card
show background picture
show picture of background

show menuBar
show message box
show tool window [at point]
show pattern window [at point]
show go window [at point]
show card •,andow

See "Hide," earlier in chis section, for a description of the
placeholders.

Point consists of the horizontal and vertical coordinates of a point
on the screen, separated by a comma. This optional phrase, ac.

point, lees you place a button or field wherever you want. If you
don't include it, the window or object appears wherever it was
before it was hidden.

Examples

show background field "Credits"
show background field "Credits " at 10 , 20
show Message box
show picture of card 1

Chapter 2: Fields and Other Containtrs

•

•

•

•

Sorl The.: sor L comman<l allows you to rcor<lcr all rh<.: cards in a srack
from within a script.

Syntax

sort [sortDirection] [sortStyle] by expression

SortDirection is asce nd i ng or descen d ing . If you don't specify a
direction , che direction is ascending . SortSty/,e is text: , numeric,

dateTime, or internationa l. If you don't specify a style, rhe style
LS text .

Expression is any expression. The sort command orders all the cards
in a stack according to che value of expression, which is evalu ated
individually for each card in che stack.

Examples

sort by ca rd field 1
sort descending numeric by card field 1

Chapter 2: Fields and Other Containers 59

•

•

•

•

Chapter 3

Scripts That
Make Decisions

In chis chapter you'll learn how to control which statements are
executed in a message handler, as well as the order in which they are
executed. You'U create some buttons for your Collection stack and
write scripcs that use the Hyper Talk words if and repeat . By
using if and repea t you can write scripts that are more responsive
and efficient.

If you took a break at the end of Chapter 2, start up HyperCard
and go to the Collection stack before you go on .

61

62

If structures In English, we use che word ifco talk about an action that depends 01

a certain condition. For example, we might say "If I am hungry , chen
I'U eat dinner." If che condition "I am hun gry" is rrue, then rhe ac91
"I'll eat dinner" will be performed.

In HyperTalk , che word if is used in much the same way. It and
th1,n are Hyper Talk keywords chat work rogecher in arrangemencs
called if structures. If scrucrures are used to test condit ions and
specify differem actions, depending on the resulcs.

If scrucrures come in a few varieties; the most basic version is:

if condition then
11c1io11

end _f

The placeholder conditi.on stands for the thing being tested. It's
an expression chat Hyp erCar d can evaluate as eicher true or false. The
placeholder action stands for the instruction lines char follow •
if the condition is true. The lase line, end if, signals the end of the . .
mstructions .

H ere's how rhe English example would look if ir could be written in
HyperTalk:

it I am hungry then
I 'll eat dinner

c·1ul 1 t

Chapter 3: Scripts That Make Decisions

•

•

(In English, rhc word then is often implied; in Hypl'rTalk you musr
always include ir.)

Creating a Quit button In this section you'll create a button that uses an if structure m 1cs
script. When you click the button, a dialog box will appear asking
you whether you want to quit HyperCard. The dialog box will
display two options: OK and Cancel. If you click OK , you quit
HyperCard. If you click Can cel, the dialog box disappears and
nothing else happens.

Follow these seeps co make the Quit button:

1. Press _.,, -B to work in the background,

2. Select New Button from the Objects menu, and move the new
button to any available space in the background.

3. Name the button Quit and select Auto Hilite.

4. If you want to, choose a font and colors for the button.

5. Click Script to see the script editor, and type the following
script:

on mouseUp
answer "Quit HyperCard? " with "OK" or "Cancel "
if it is "OK" then

doMenu "Quit HyperCard "
end if

end mouseUp

Notice that the contents of the if structure are automaticall y
indented. The statements beginning with if and end if

should always line up. If they don't line up , you may have
misspelled a word or left out somethin g.

6. ClickOK.

Chapter 3: Scripts That Make Decisions 6.1

11-ying out the Quit button

Now ay the Quit button to see how it works:

1. Choose the Browse tool and click the Quit button.

This dialog box appears:

Quit HyperCord?

(OK) [Cance I]

Figure 3-1 Dialog box displayed by the Quit button

• 2. Click Cancel.

The text sering Cance l is put into the variable it .

Because the condition it is "OK" is not true, HyperCard
doesn't execute the action specified within the if structure. The
dialog box disappears, and nothing else happens.

3. Click the Quit button again.

The dialog box appears again.

4. ClickOK

The rexr sering OK is put into the variable it .

The condition it is "OK" is true, so HyperCard executes the.
staremenrwichin the if scrucrure-and you quit HyperCard.

The ctoMenu command lets you execute any of HyperCard' s menu
commands from within a script. In chis case it executes the Quit
HyperCard command . (Be sure co put quotes around the nan1e of
the menu comn1and.)

To continue in this chapter you'll need co scare up HyperCard again
and return co chc Collection stack.

Chapter 3: Scripts Tim Make Decisions

•

•

Adding an additional action

An if strucrure can specify not only an action ro be taken when a
condition is true, but also an alternative action to be taken when the
condition is false. If structures of chis type have the general form

if condition then
action

else
another Action

end if

In chis version the placeholder anotherAction stands for an
alternative instruction line or lines. An exan1ple in English might be
something like chis: "If I am hungry, then I'll ear dinner; ocheiwise
[else] I'll go to the movies." Here's how it would look if it could be
written in HyperTalk:

if I am hungry then
I ' ll eat dinner

else
I ' ll go to the movies

end if

Modifying the Quit button

1n chis section you'll add two statements co the script for the Quit
button. You'll add an e lse statement and a statement that specifies
an alternative action for when a user clicks Cancel.

1. Open the script for the Quit button .

2. Click before end if to position the insertion point at the
beginning of the next-to -last line.

3. Type the following lines (press Return after each line):

else
answer "Glad you reconsidered ." with "No prob l em! "

Chapter 3: Scripts That Make Decisions 65

66

The lines will automatically indent. When you press Return for
the final time, end rnouseUp should line up at the lc~mo sr
margm.

Here's the completed script (the two new statemencs are shown
in boldface type):

on mouseUp
r1nswer "Quit Hyrer<::ard? " with "OK" or "Cancel "
ii il is "OK" then

doMenu "Quit HyperCard"
else

answer "Glad you reconsidered." with "No problem!"
end if

end mouseUp

4. ClickOK

5. Try the Quit button. •
When you dick the Quit button with the Browse cool, you gee
the alert box, just as before. Clicking Cancel (the choice
represented by else) makes another alert box appear with a
friendly co mment and reply-just for fun. (No further
instructions are specified for the "No problem!" button.)

Decisions within decisions

Ir's possible to specify more than two separate actions by nesting if

structures inside other if structures. H ere's how an English

example might look if it could be written in Hyper Talk: •

if I am hungry then
if there ' s some food in the house then

I ' ll cook
else

I 'll order a pizza
else

if there ' s a good movie at the theater then
I ' ll go to the movies

else
1'11 walch Lelevision

end if

Chapter 3: ScripL5 That Make Decisions

Repeat structures

•

•

Repeat is a keyword chat cells HyperCard co perform a command
or series of commands over and over again. Suppose you wanted co
create a sequence in which your stack moved through a series of six
cards, with a one-second pause between cards. You could write the
instructions chis way:

go to next card
wait 1 second
go to next card
wait 1 second
go to next card
wait 1 second
go to next card
wait l second
go to next card
wait 1 second
go to ne xt card
wait 1 second

Or you could write a repeat structure, like chis:

repeat 6 times
go to next card
wait 1 second

e nd repeat

Chapter 3: Scripts That Make Decisions 6,

68

Repeat structures cause HyperCard co go around in a "loop,"
repeating seeps until a particular endpoint occurs. Being able co use
repeat structures saves you from having to retype or duplicate
statements over and over again.

Repeat structures come in several varieties. The first line of
a repeat structure can have any of these general forms:

repeat [for] number [times]

repeat with variable= startingValtte to endingValue
repeat with variable = startingValue down to endingValue

repeat until condition
repeat while condition
repeat [forever]

The scacemenc or list of scacemencs chat you want co have repeate.
can follow any of these first lines. At the end, you must include end

repeat co indicate the end of the list. (For more information about
variations of the repeat structure, see the end of chis chapter.)

Creating an Index button In this section you'll create a button that uses a repeat st ructure co

generate an index for your stack . Each index entry will include the
name of the recording artist and the title of the record. (Figure 3-2
shows what the index might look like.)

Lacer in chis chapter you'll write a script that lees you go co a card by
simply dicking an index entry.

•

Chapter 3: Scripts That Make Decisions

•

•

Aoron, Ann Soddest Hits 0
Boch. J.S. Art of lht fuaut
Boch. J.S. BeSI of Boch

Emri~ field-..;.....,.:... Bttthoven, L. S1111phonv Humber 5
Beethoven, L. S1111phonv Humber 9
Cellini, Francesca I Hust Sav
Cotttr. Sean Born to bt Blue
Dannv and the Donut, Hole Latta love
Gossard and Hills Bis Production
Haist. Gusiav The Planets
Knabe, Kevin Liv• froa flinl Cenur
Liszt. front ffunaarian Rhapsodv
Loralte Oon'I Change a Thine
Hatori. W.A. £int Kleine Mochtausik
Mozart, W.A. Piono Concerto M1111b1r 1~
Hotort. W.A. Si,aphonv MU11ber ~I
Ma Slslm Sound Advice . .

figure 3-2 A sample index card

Creating the Index card

RECORD
COLLECT I OH

Index

Soll II Quit I
About this Slack I

First you need to add a new card co your stack. Make sure you 're
looking at the Collection stack, and follow these seeps:

l. Choose New Card from the Edit menu.

Or press j -N. A new card appears.

2. Choose Card Info from the Objects menu.

Th e Card fnfo dialog box appears.

Card Home:

Card IO: 208~0. Card nU11ber 31 out of 39

Contains O card fields.

Contains O card buttons.

0Can't delete

D Don't Seorch

~ (Colors ...) [OK] (toiittl)

Figure 3-3 C:1rd lnro dialog hox

Chapter 3: Scripts That Make Decisions 69

70

3. Name the card Index

4. Click Don't Search to select it.

When the Don't Search option is selected, Hyp erCard will nor
search chis card when you use the find command.

5. Click OK.

Crearing 1he Entries field

Now you'll add a field to the lnd ex card chat will d isplay rhe lisr of
index enrries. Make sure you are not in the background, and follow
these steps:

1. Choose the Field tool. • 2. While holding down the G key, drag to create a large field (like
the scrolling field shown in Figure 3-2).

Make the field large enough co cover the Cacego1y, Artist, Tide,
and Notes fields.

3. Double-click the field to see its Info box.

Notice chat the field is a card field (nor a background field). The
field appears only on chis card.

4. Name the field Entries

5. Select "scrolling" for the field's style.

6. If you want to , choose a font and colors for the field. •

Use a small font, such as Shaston 8.

7. Click OK to close the Field Info dialog box.

Chapter 3: Scripts That Make Decisions

•

•

Creating the Index button

Now you'll create the butcon tha t aucomatically generates
the index.

1. Press 1 ~·-B to work in the backgroWld .

The Index bucton will appear on every card in your stack, so
make sure you see the word Background in the menu bar.

2 . Choose New But ton &om the Obj ects menu an d move the
new button to any available space in th e background .

3. Nam e the bu tton Cndex

4 . If you want to, choose a font and colors for the button .

Writing a script to go through all the cards

You will write the script for the Index buccon in several stages. First
you'll use a repeat structure to go through all the cards in the
Collection stack.

Follow these seeps:

1. Click Scrip t in the Button In fo dialog box and type the
followin g script:

on mouseUp
repeat with count= 1 to the number of cards

go to card count
end repeat

end mouseUp

The contents of a repeal structure are aucomacically indented.
The repeat and end repeat statements should always line up.

Chapter 3: Scripts That Make Decisions '.' I

72

2. C lickO K

3. Try out the Index button.

HyperCard goes to the first card in the stack, then to the second,
then to the third, and so on- until it reaches the last card in the
stack.

How the script works so far

The handler uses a repeat structure to go through all the cards in
the stack. The repeal statement uses the repeaL wit h form,
which has this syntax:

repeat with variable = startingNumber to endingNumber • In this case you've named the variable count. The starting number
is 1 and the ending number is the number of cards in the srack.

The fust time through the loop, count equals 1. Therefore
HyperCard evaluates the statement

go c.o car d cou nt

as

go to card 1

The next time through the loop, count equals 2, so HyperCard
goes to card 2 of the stack. The process continues and HyperCard
goes to card 3, and 4, and so on- unti l co un t equals the number
of cards in your stack. At that point, the loop finishes and the •
handler moves on co the next statement, which is end mouseU!'.'.

Chapter 3: Scripts That Make Decisions

•

•

Adding statements that compile the index

Now you will add statcmencs to the script that put information into
che index. As you go to each card, you'll put the contents of the
Artist field and Title field into a variable. Each time che handler
goes co another card, it will put the entry for chat card afterwhac is
already in che variable. In chis way che variable will accumulate all of
che index entries. Finally che handler will put the contenlCS of the
variable into che Entries field.

Follow these steps:

1. Open che script for the Index bunon.

2. Type the statements that are shown in bold in the following
script:

You'll need to break the long put command into two lines by
pressing Option-Return after "Title"

on mouseUp
put empty into list
repeat with count= 1 to the number of cards

go to card count
put bg field "Artist" & " " & bg field "Title" -,
& Return after list

end repeat
go to card "Index"
put list into card field "Entries"

end mouseUp

Make sure everything is spelled correctly and chat che scacemencs
are in che right order.

3. ClickOK

4. Try the Index button.

You go to che first card in che stack, then che second, and so
on until you reach the end of the stack. Then you go back co
the Index card, where a list of recordings appears inside the
Entries field.

Chapter 3: Scripts That Make Decisions 73

74

•!• If something else happened· Check your spelling and try the script
again . Make sure chat the names of the Index card and Entries
field are spelled correctly and match the names you used in your
script. •!•

Each index entry consists of the contents of the Artist field, followed
by a few spaces and the contents of the Title field.

Because you put a Return character at the end of each entry, all the
entries begin on new lines. Some entries may tal<e up more than
one line. Entries take up more than one line if they are [ong and
"wrap" onto a second line or if you ryped Rewrn characters when
you entered cexc inco the Artist and Title fields.

Some finishing touches •
The index includes an entry for every card in your stack-including
the Index card itself Because the Index card has nothing in its Artist
and T itle fields, tl1e entry for the Index card is a blank line. If you
have any blank cards in your Collection stack, they also appear as
blank lines in the index.

Now you'll add an if structure to the script chat checks each card to

make sure chat something has been typed into the Anise field. If the
Artist field is blank, the index won't include that card.

You'll also add a lock screen command at the beginning of the
handler co freeze the screen while HyperCard goes from card ro
card "behind the scenes." •

Chapter 3: Scripts That Make Decisions

•

•

Follow these seeps:

1. Open the script for the Index button.

2. Type the statements that are shown in bold in the following
script:

on mouseUp
lock screen
put empty into list
repeal with count ~ l to the number t,(cards

go Lo card counL
if bg field "Artist" is not empty then

put bg field "Ari:ist " & " " & bg field "Ti i:le " -,
& Return after list

end if
end repeat
go to card "Ind ex "
put list into card field "Entr ies "
unlock screen

end mouseOp

The put statement should automatically indent and the i:

statement should line up with the end if statement.

3. ClickOK

4. Try the Index button.

After a pause, you go ro the Index card where the list of
recordings is displayed. The list should contain only cards for
which you typed something into the Artist field.

As you probably guessed, the loc k screen command locks the
screen. When you lock the screen, the screen image won't change
until either an unlock screen command is executed or all handlers
have finished executing. Because HyperCard doesn't have to redraw
the screen every rime the script goes to another card in your stack, ir
can compile the Index more quickly.

Chapter 3: Scripts That Make Decisions 75

76

Creating a keyboard command

Every time you click the Index button, HyperCard recompiles the
index for your stack. This process can be time-conswning,
especially if your stack contains many cards. Now you'll modify the
Index button's script so chat it recompiles the index only if you hold
down the Option key when you click the butcon. Otherwise you go
directly to the Index card without compiling the index.

Follow these seeps:

1. Open the script for the Index button, and type the statements
shown in bold in the following script:

on mouseUp
if the optionKey is down then

lock screen
put empty into list
repeat with count = 1 to the number of cards

go to card count
if bg field "Artist " is not empty then

•
put bg field "Artist " & " " & bg field "Title " -,
& Return after list

end if
end repeat
go to card "I ndex "
put list into card field "Entries "
unlock screen

else
go to card "Index"

end if
end mouseUp

2. ClickOK

3. Try out the Index button.

When you click the Index button, HyperCard tests the condition
the optionKey is down. If the option key is pressed, HyperCard
compiles the index. Ochetwise you go directly to the Index card.

Chapter 3: Scripts That Make Decisions

•

•

•

Propetties and
functions

Setting properties

In chis section you'll write a script chat lees you go to a card by
simply clicking its index entry. To understand how the script works,
you'll first need co understand two important HyperTalk concepts:
propertie s and function s. You'll practice using properties and
functions in the Message box, and then you'll write anocher scripr.

The properties of a HyperCard object are characteristics of the object
that you can sec. For example, every button has a name property
that specifies the name of the button, a style property chat
specifies che style of che button, and so on.

Usually you set properties by choosing options in the object 's Info
dialog box or on the User Preferences card of che Home srack. Bue
you can also sec properties by using HyperTalk 's set command.
Follow these seeps co see how:

I. Open the Message box.

2. Type set the h ilite of bg button "Home" to true and press
Return.

The Home button becomes highlighted. (You might need co
move the Message box co see it.)

The hilite is a property of buttons, which has a value of true

when the button is highlighted and false when it's not.

3. Type set the hilite of bg button "Home" r:o false and
press Return .

The Home button returns co normal.

Cha peer 3: Scripts Thal Make Decisions 77

78

The syntax of the set command is:

seL [t.he J pro perry [of object J to expression

The placeholder property is a HyperCard property. What expression
may be depends on the property.

A complete list of properties appears in the Appendix. You can find
detailed information about properties in the Hyper Talk Help stack
or the HyperCard !! GS Script Language Guide.

Using functions HyperTaJk contains borh commands and functions. A command
(such as go or put) carries out an action, whereas a fimction returns
a value of some sort. For example, the time is a HyperCard
function that returns the current time set in your Apple IIG S. •

To practice using some other functions, make sure the Message box
is still open and follow these steps:

1. Type put the date and press Return.

The dare set in your Apple IIGS appears in the Message box.

Next you'll use the click Loc function (short for "click location"),
which returns a description of the point where you last clicked on
the screen.

2. Click anywhere on the screen, then type put r.he clickLoc

and press Rerurn.

Two numbers separated by a c01nma appear in the
Message box.

Chapter 3: Scripts That Make Decisions

•

•

•

These numbers represent the horiwnral and vertical position of
the point where you lase clicked on the screen. The first nwnber
cells you how far the point is from the left edge of the card, and
the second nwnber cells you how far ir is from the cop of the
card. The distances are measured in pixels. (A pixel is the smallest
dot you can draw on the screen.)

For example, if you clicked 20 pixels from the left edge of the
card window and 35 pixels from the cop of rhe card, the

clickLoc would have a value of 20 , 35 . The value of rhe upper
left corner of the screen is o, o.

3. Type set the location of bg button "Home" to the

clickLoc and press Return .

The Home button instantly moves to where you last clicked
the mouse.

The location is a property of buttons (and fields), which
describes the location of the center of the button. In English , the
command says: "Move the Home burron so char irs center is
located where the mouse was last clicked."

4. Close the Message box and move the Home button back to
where you want it to appear.

The Appendix contains a complete list of Hyper Talk funccions. The
Hyper Talk Help stack and the HyperCard !!GS Script Language
Guide describe how ro use each function, as well as how to write
your own functions .

'

Chapter 3: Scripts That Make Decisions 79

80

Going from an index
entty to a card

In this section you 'II write a script that lets you go to a card by
clicking its index enrry. T his script is a little trickier than the ochers
you've written. You'll write the script in stages to gee a better idea of
how it works .

Go to che Index card (if you're not already there) and follow these
steps:

1. Select the Field tool.

2. Doubl e-di ck the Entri es field to see its Info dialo g box.

3 . Click the Lock Text and Don ' t Search option s to select them.

Selecting the Lock Text option locks the field so you can't rype in
ic. When a field is locked, clicking the field with the Browse co9
doesn't place the insertion point in the field; instead it sends a
mouseUp message co the field.

Selecting D on't Search tells H yperCard not co search this field
when you execute a find command. If you are searching for a
particular record, you would want ro find rhe card for that
record, nor its index entry.

4. Click the Script button and type the following script for the
Entries field:

on mouseUp
set the lockText of me to false
clic k at the clickLoc
put the selectedLine
set the lock Text of me to true

end mouseUp

When you're finished, press Enter to close the script editor.

Chapter 3: Scripts That Make Decisions

•

•

•

5. Try out the script by clicking any index entry with the Browse
tool.

A description of the line you dicked appears in the Message box.
For example, if you clicked the second line, the message would
say:

line 2 of card field 1

•!• !/'something else happened Check your spelling and try the script
again. Also make sure chat the Encries field is locked. •:•

How the script works so far

You haven't finished the script, but here 's how it works so far .

Because the Entries field is locked, clicking the field does not sec the
insenion point inside the field. Instead it sends a mouseup message
to the field, causing the mouseUp handler in the field's script ro
execute.

The Statement set the loc kText of me 1:0 false temporarily
unlocks the Entries field. (LockText is a property of fields, which
has a value of tru e when the field is locked and false when it's
unlocked.)

The next statement clic k at the clickLoc cells HyperCard co
click at the point where you lase clicked the mouse. This
temporarily places the text cursor in the line chat you clicked .

T he statement put the selectedLine puts into the Message box a
description of the line you dicked. (The seleci:edLine is a function
that returns a description of the line in which the text cursor is
placed.)

Finally, the statement set t he lockText of me to true relocks
the Entries field so that it can respond to a mouseup message the
next time you click it.

Ch~pter 3: Script~ Thal Make Decisions 81

82

Finishing the script

The script now knows which line you dicked. But what does chat
line contain?

I. Open the sccipt for the Entries field and type the boldface
words in the following script:

on mouseUp
set the lock Text of me to false
click at the clickLoc
put the value of the selectedLine
set the lockText of me to true

end mouseUp

When you' re finished, press Enter.

2. Click an index entry with the Browse tool.

The contencs of the line you clicked should appear in the
Message box.

•
The value of is a function that returns the value of any expression.
In chis case, it returns a text string consisting of the contencs of the
line you clicked-that is, the index entry for that line.

Now that your handler knows which recording you're interested in,
the next seep is co go find the right card. You'll use HyperCard's
find command co do that.

3. Open the script for the Entries field, select the word put, and
change it to find

Ch:1pter 3: Scripts That Make Decisions

•

•

•

The completed script should look like chis:

on mouseUp
set the lockTe xt of me to false
click at the clickLoc
find the value of the selectedLine
set the lockText of me to true

end mouseUp

When you're finished, press Enter.

4. Click an index entry with the Browse cool.

If you went co che correct card, congrat ulations! You' re doing
great.

The find command cells HyperCard ro search through the fields
in the stack for the index entry char the user clicked. (Because you
selected the Don't Search option for the Entr ies field, ic won't search
the Entries field.)

•:• If something else happened: Check your spelling and cry the script
again. Make sure chat the Lock Text and Don't Search options
are selected in che Eno-ies field's Info dialog box. •:·

Chapter 3: ScriptS That Make Decisions 83

84

What you've done
in this chapter

In chis chapter you learned how to use if structures and repeat

strucnires, how co set prope rties, and how co use functions. You
added a Quit button ro your stack, and you wrot e a script char
compiles an index for your stack, and a script char lees you go co a
card by clicking an index entry.

Here are the new Hyper Talk words you learned .

Keywo rds

Begins an if structure . if

then Used in if structures to mark the beginning of a

list of actions co be carried out.

else

re peat

Command s

click

doMenu

find

lock screen

set

Used when you want co specify an alternative
action in an if structure .

Begins a repe at structure.

Causes the same actions chat happen when you
dick a specified point on the screen.

•

Lees you execute a menu command from within a
scnpt.

Searches all the cards in a scack for a text string.

Prevents HyperCard from updating the screen
unril an unlock screen command is
encountered or until all handlers have finished
executtng.

Changes the value of HyperCard propertie s.
•

Chapter 3: Scripts That Make Decisions

•

•

Properties

hi lite

location

lockText

Functions

clickLoc

date

selectedLine

value

Determines whether a button is highlighted.

Determines the location of the center of a burron
or field.

Determines whether a field is locked.

Returns the location where che user lase clicked.

Returns the current dace sec in your Apple Iles.

Returns a description of the line in a field where
the text cursor has been placed .

Returns the value of an expression.

Chapter 3: Scripts That Make Decisions 85

86

Syntax sun11naries This section describes rhe synrax ot the commands you used in chis
chapter, along with the syntax of rhe if and repeat keywords.

Click The click command causes the same actions that happen when
you click the mouse at a specified point.

Syntax

click at point
click at point with key]
click at point with keyl, key2
cU ck at point wit h keyl, key2, key3

Point is a description of a point on the screen: two integers separated
by a comma, representing the ho rizontal and vertical distance fro~
the cop-left corner ot the screen. •

Keyl, key2, and key3 can be any of the following key names:
shiftKey, optionKey,or commandKey.

Examples

click at 50,60
click at the clickLoc with optionKey

Chapter 3: Scripts Thai Make Decisions

•

•

•

DoMenu The doMenu command lees you execute any of HyperCard's menu
commands from within a script .

Find

Syntax

doMenu menultt'7n

Menu!tem can be ehe name of a menu command or che name of a
desk accessory in the Apple menu. Include three typed period s if
chat's how a command is shown in che menu; for instance , "Card

info ... ". You must cype che three periods; done use che ellipsis
character (Option-semicolon).

Examples

doMenu "New Card "
doMenu "Print Stack ... "

The f.i.nd command searches for a eexe sering in all the card and
background fields (visible or not) of che current stack. You can limit
che search co a specific background field by specifying a .field.

Syn tax

find text [in background.Field]

Text can be any eext sering. BackgroundFie!dis an expression chat
identifies a background field.

When HyperCa rd finds a word beginning wich text, it stops
searching and places a rectangle around che word .

Examp les

find "Moz"
find "Mozart " in background field "Artist "

Chap1er 3: Script~ Thal Make Decisions

88

ff T he if keyword begins an if structur e. An if structur e tests a
co ndi tion, then executes one o r mo re state ments if the co ndition is
true. lf the co ndi tion is false, sta tements following the optio nal
else keywo rd are executed.

Syntax

if condition then statement

if condition then strttement else statement

if condition then
Sltlll"IIU 'II IS

e lse
statements

e nd if

if condition then
s111tements

end if

•
Condition is an expression th at evaluates co eithe r true or false.
Statement is a single H yper Talk stacemenr. Statements can be one or
mo re state ments.

Exampl e

i f Rc~spo n sP - "Cot r ec:r " 1 hen
answer "That ' s correct !"

else
answer "Sorry , try again . "

end if

Chapter 3: Scripts That Make Decisions

•

•

•

D01\1enu The doMe nu command lees you execute any of HyperCard's menu
commands from within a script.

Find

Syntax

doMenu me1111!tem

Menu/tern can be the name of a menu command or the name of a
desk accessory in the App le menu. Include three typed periods if
that's how a command is shown in the menu; for instance, "Card

info ... ". You must type the three periods; don't use the ellipsis
character (Option-semicolon).

Examples

doMenu "New Card "
doMenu "Print Sta.ck ... "

The find command searches for a rexc sering in all rhe card and
background fields (visible or not) of the current stack. You can limit
the search to a specific background field by specifying a field.

Syntax

find text [in backgroundField]

Text can be any text string. BackgroundFieldis an expression char
identifies a background field.

When HyperCard finds a word beginning with text, it stops
searching and places a rectangle around the word .

Examples

[ind "Moz "
fi nd "Mozart " in bac kgr oun d field "Artist "

Chapter 3: Scripts Thal Make Decision~

88

If Th e if keyword begins an if structur e. An if structur e tests a
condi t ion, then executes one or more statements if the condi tion is
crue. If the condition is false, statements following the optional
else keyword are executed.

Syntax

if condition then statement

if condition t hen stntement else statement

if condition then
.l'f{//('11/1'1/(J

el::;e
statements

end if

if condition then
statements

end if

•
Condition is an expression chat evaluates to either true or false.
Statement is a single HyperT alk statement . Statements can be one or

more srarcmcncs.

Example

i l Rcspom;c, "Cot I Pel " l he?n
answer "That ' s correct. !"

else
answer "Sorry , try again ."

end if

Chapter 3: Script5 That Make Decisions

•

•

•

Lock screen and
unlock screen

The l ock screen command prevents HyperCard from updating
the screen unti l HyperCard encounters an 111ilock s~rec,r,

command or all handlers have finished executing.

Syntax

l ock screen
unlock screen
unlo ck screen wi th visuaLE./Ject

visuaLEffect is any of the forms of the vi sual command.

Exam ples

lock screen
unloc k scr een wi t h visua l eff ec t zoom out s l owl y

Chapter 3: Scrip[s Toa[Make Decisions 89

90

Repeat A repeat statemenc identifies rhe first line of a repeat srructure.

Syntax

repeat [forever]

This loop repeats forever, or until an exit statement 1s
encountered.

repeat [for] number [times I

Number specifies how many rimes rhe loop executes.

rPpeat unt i I m11di1io11
repeaL while condition

Condition is an expression that evaluates to true or false. The •
repeat until loop repeats as long as condition is false.
The repeat while loop repeats as long as condition is uue.

repeat with v11riab/,e = stttrl Lo finish
repeat with vt1riahle = start down to finish

Variable is a variable name, and start and finish are integers. Ar the
beginning of the loop , variable equals the value of start. With each
pass through the loop, the value of variable increases by l. (In the
down to form, the value of variable decreases by 1 with each pass
through the loop.) Execution ends when the value of variable equals
the value of finish.

Examp le

repeat for 100 times
add l to Messa g e Box

end repeat

Chapter 3: Scripts That Make Decisions

•

•

•

SL'l Tht: sel comman<l ;Jlows you to chang<.: various Hyp<.:rCar<l
properties from within a script.

Syntax

set [the] property [of object] to expression

hoperty stands for a changeable characteristic of the H yperCard
environment or of an object.

Object is an idenrif-'ier for an object, such as its numb er, 10 , or
name.

What expression is depends on the property. Some properties, such
as hilite, have the values true or false . Ochers, such as
userLevel, have numeric values. Still ochers-such as the name

property of a button-have as their value a sering of characters.

Examples

set the userLevel to 5
set the hilite of card button 1 to true
set the name of card field 1 to "Horse "

Chapter 3: Scripts Thal Make Decisions 91

92

Wait The wai t command causes Hype rCard co pause for a specified
period of rime, or unt il a specified condit ion is true.

Syntax

wait [for] number
wait [for] number seconds
wait until condition
wait while condition

Number specifies how long you wane HyperCard ro pause. If you
want seconds, you must add second, seconds , or the abbreviation
sec or secs ; otherwise, HyperCard uses ticks, which have a value
of ~o second. No ocher measurements (such as minutes) can be
used.

Condition is an expression chat evaluates co true or false . The
wait until form pauses until condition is true . The wait while

form pauses until condition is false .

•
Examples

wait 2 seconds
wait 30 -- waits 30 ticks (or one-half second)
wait until the mouse is down
wait while the mouse is up

Chapter 3: Script~ That Make Decisions

•

•

•

Chapter4

Handling Messages

A s you know, a message handler is a group of Hyper Talk
statements beginning with an on statement, such as on mouseUp

and ending with an end statement. All the scripts you've written so
far contain only one message handler, but scripts often contain
more than one handler.

In chis chapter you'll write new handlers and explore the way
messages travel between objects. You will add another feature co your
Collection srack-a button chat plays a sound when you click it.

If you took a break at the end of Chapter 3, start up HyperCard
and go co your Collection stack before you go on .

9.3

How n1essages travel HyperCard can send system messages co a button , a field, or the
current card . For example, if you click a button , HyperCard sends a

94

mouseup message to the button. If you click a locked field, •
HyperCard sends mouseUp to the field. If you click anywhere else
on the card, HyperCard sends mouseup directly to the card.

A message can travel from one HyperCard object to another - until
it is handled . For example, when someone clicks a bu econ, a
mouseup message is sent to the button. If chat button 's scr ipt doesn't
have a handl er for mouseup, the message is passed to the current
card. If the current card's script doesn't have a mouseUp handler, rhe
message is passed to cl1e background . As long as the message does
not encounter a handler, it continues traveling-to the stack, then
to the Home stack, and finally to HyperCard itself

This sequence is called the message-passing order; it's illustrated in

Figure 4-1. •

Chapter 4: Handling Messages

~ ;f?

§ C BUTTON) .

Button Field

~ ·s ~

Current card

• /J8Cl'ground

Currem background

Current stack

•
Home stack

llyperC:ircl

Figure 4-1 The message-passing order

Chapter 4: Handling Messages 95

96

You can place handlers at different levels. Where you place a handler
has an effect on irs availability. For example, in Chapter 2, when you
wrote the handler to labd all the cards of the Collection stack, you
placed it in the background script; that placement meant that the
hand ler was available for every card sharing that background. If you
had placed the handler in the script for one of the cards, it would
have been available only to that card; no other cards would have
been labeled.

In this section you'll see how messages move around in HyperCard.
First you 'll make a button and write a message handler for the
button 's script. Lacer you'll move the handler to different levels in
the message-passing order and observe the difference in che
handler's action. •

Creating a Sound button You'll create a button that plays a sound when you click ic. Follow
these steps:

I. Press r '1-B to work in the background.

2. Choo se N ew Button from the Objects menu .

Drag the burton to any available space in the background.

3. Name the button Sound

4. If you want to, choose a font and colors for the button .

5. Click Script and type the following message handler:

on mouseUp
play "boing "

e nd mouseUp

The play command lets you play sounds from with in scripts.
Boing is the name of the sound that plays. ·

Chap[er 4: Handling Messages

•

•

•
Moving the handler

to the card level

·!· Alternative for hearing-impaired peopk: If you can't hear well,
type th is line in place of or in addition to the play statements to

see the effect of the handler:

flash 3

This command causes the entire screen image to flash rapidly
three times when the button is clicked. (The whice pares of the
card switch to black and the black pares co white; then they
change back again.) •!•

6. C lickOK

7 . Click the Soun d butto n with the Browse tool.

You hear the "boing" soun d (or see the screen image flash) .

·!· If something else happened· Check the script's spelling and make
sure you have included quotation marks in the righr places. If
the script is correcc, make sure you have the Sound Volume in
the Co ntrol Panel turn ed up far enough. •:·

When you dick the Sound burcon, a mouseup message is sent to

the button. This causes the mouseup handler co execute, and the
boing plays (or the screen flashes).

Where you place a handler in HyperCard affects its action. A
handler ac the "cop" level- that is, in a button script or a field
script-can respond only co a message received by char b4tcon or
field. Th e same handler further "down " in the message-passing
order-chat is, at the card, background , or srack level-can respond
co a message sent by any objects higher up , unless chose objects
intercept the message with their own handlers. (See Figure 4-1
earlier in this chapter.)

What the message-passing order means co you is that you can
control whether your handlers ace very locally-on ly for a particular
button , for example-or more globally, for an entire card,
background, or stack.

Chapter 'l: Handling Messages

98

In chis section you 'II move the mouseUp hanJlcr of 1.he Sound
button ro a different level in rhe object hierarchy to experience rhe
change in irs response.

First notice that the handler works only if you click the Sound
burron. If you click anywhere else on the card, you won't hear

anything.

The next seep is co move the handler co rhe script for one particular
card. You'U cur the mouseUp handler from the Sound burron 's script
and paste it inco the script for the Index card chat you created in
Chaprer 3. Follow these steps:

1. Go to the Index card.

2. Open the script for the Sound button. •
3. Select the mouseUp handler.

Drag che mouse across the entire handler co select it.

4. Press ·,_x to cut the handl er and place it on the C lipb oard.

The script editor should now have nothing in it. If you still see
the handler there, try steps 2-4 again . Every object has a script,
even if there's nothing in it. Scripts with nothing in chem are

called empty scripts.

5. ClickOK

Now you'll open che script for the Index card .

6. Choose Card Wo from the Object s menu. •
The Card Info dialog box appears.

7. Click Script.

The script for che Ind ex card appears.

Chapter 4: I landling Messages

•

•

8. Press C\-V to paste the handler into the script for the
Index card.

The mouseup handler appears in the script for the Index card.

9. Click OK.

·nying oul lhe card scripl

Now test the effects of moving the handler to the card level.

I. Click the Sound button with the Browse tool.

The "boing" plays (or the screen flashes) just as it did before.
The mouseup message passes through the empty button script
and goes on to the card script .

2. Click anywhere else on the Index card (except on a button or
field).

The "boing" plays (or the screen flashes) because whenever you
dick the card, mouseup goes directly to the card, which now
contains the handler for mouseUp in its script.

3. Click the Next button.

You go co the next card as usual-without hearing a sound. The
mouseup message goes co the Next button , where the message is
handled by the mouseUp handler in the button's script.

Now that you are on a card ocher than the Index card, nocice what
happens when you click the card.

4. Click anywhere on the card (except on a button or field).

Nothing happens because there is no mouseup handler in chis
card's script.

Chapter 4: Handling Messages 99

100

Moving the handler to
the background level

Now you'll tal«.: the.: handlc..:r out of the.: card scripr and move it ro
the background script:

1. Go to the Index card.

2. Choose Card Info from the Objects menu.

The Card Info dialog box appears.

3. Click Script to see the script editor.

The script for the Index card appears.

•:• Keyboard shortcut: You can press Cl-Option-C to see che script
editor of the cwTent card without having to go through che
Info box. •:•

4. Drag the mouse across the entire handler to select it. •

5. Press • -X to cut the script and place it on the Clipboard.

The card script should now be empty.

6. Click OK to close the Index card's script.

7. Choose Bkgnd Info from the Objects menu.

The Background Info dialog box appears .

8. Click Script.

The script for the current background appears.

9. Press -s-V to paste the handler into the background script .

10. Click OK to dose the background script. •
11. Test the effects.

Using the Browse tool, click the Sound button, rhen click

elsewhere on the card, just as before. You should hear the
"boing" (or see the screen flash) in every case. The mouseUp

message goes through the empty Sound button script and
empty card script to the background script, which now contains
the handler.

Chapk:r 4: Handling ~bsages

•

•

Handlers calling
handlers

Now move co any ocher card in the stack and click any area
except a button or field. You should still hear the "boing" (or
see the screen flash). The handler is now available co any card
sharing the background .

If you moved the handler co the stack level, the same thing would
happen because the Collection stack has only one backgrow1d;
however, if a stack has more than one background, only a handler ar
the stack level or above would be available co all cards of all
backgrounds.

All the handlers you've written so far respond co system messages
sent by H yperCard (such as mouseUp and opencard) . HyperCard
sends system messages in response co evenrs such as mouse clicks,
keyboard actions, and the creation or deletion of objects. (The
Appendix contains a list of all HyperCard system messages.) Bur
there are ocher ways for handlers co "gee the message."

Each time HyperCard executes a statement within a handler, ir
sends that scacemenc as a message. A message sent from one handler
can cause another handler co execute. It 's as though the handlers are
calking co each ocher, with one handler celling the ocher co begin
execucmg.

In chis section you'll write a handler that "calls" another handler.
First you'll write a handler chat sends a message, then you'll write a
handler chat responds to chat message.

Chapter 4: Handling Messages 101

102

Writing d1e
"calling" handler

You will write a script for the Sound button so chat a message
named pla ySound is sent whenever someone clicks the button.
Lacer you'U change the mouseUp handler in the background script
so chat ic responds co the p laysound message. Follow these seeps:

I. Open the script for the Sound button.

The script should be empty.

2. Type the following handler.

on mouseUp
playSound

end mouseUp

In English, the script says, "When someone clicks this button ,
send a message named p l aySo und. Thar's all." •

The message name playSound is arbitrary. You could use any
other word (except a Hyper Talk keyword) ; chis name seems
appropriate because it describes the action of the handler.

,:, Alternative far hearing-impaired people: If you are using the
flash 3 alternative instead of the notes, you could use a

different name , such as razzleDazzle (buc don't use flash) . Be
sure, however, chat you use your alternative name in the seeps
chat follow. •:•

3. C lick O K

You will need to write a handler that handles the playSound

message. Bur for now, see how the script works so far.

Chapter 4: Handling Messages

•

•

•

Writing the
"called" handler

4. Click the Sound button with the Browse tool.

You see a "Ca1i'r understand" dialog box. HyperCard can't
understand che playsound message because it can'c find a

playSound handler anywhere. In other words, there 's no handler
that begins wich che statement on playsound and ends with che
statement end playSound .

Can't understand "playSound".

(Script) [Cancel]

Figure 4-2 "C1n'L understand" dialog box

5. Click Cancel to close the "Can't under stand " dialog box.

Now you'll create a handler char. responds co the playsound

message chat's sent when someone clicks che Sound button. You
could write a handler from scratch, but in chis case you 'll simply
change the mouseup handle r in the background script co a
p l aySound handler.

1. Choose Bkgnd Info &om the Objects menu.

2. Click the Script button.

The script for the background appears .

•!• Keyboard shortcut: You can press C -Option-8 co see the script
for the current background. •!•

3. Select the word mouseup in the first line of the handler.

Drag across che word as you would when selecting any text, or
j use double-click the word.

4. Type playSound

playSound replaces mouseUp .

Chapter 4: Handling Messages 103

104

5. Select mouseup in the last line of the handler and replace it by
typin g playSound

The completed handler looks like this:

on playSou nd
p l ay "bo i ng "

en d playSou nd

You have changed the handler from a mouseup handler
co a p laysound handler. It now responds to the message
p laySound instead of the message mouseup .

6. Click OK

You have created a handler chat sends a message named pl a ysound ,

as well as a handler that responds co playSo un ct. Now see how the •
two handJers work together.

7. Click the Sound button with the Browse tool.

When the Sound button receives mouse up , its handler in cum
sends the message playsound . That message goes through the
message-passing order until it's intercepted by the playSound

handler in the background script. T he pl ayS ound handler
executes, and you hear the "boing." Figure 4-3 shows the path
taken by the playSound message.

Clicking anywhere else on the card won't cause the notes to play,
because the background handler isn't a mouseup handler any more.

In chis section you've essenrially defined a new command named •
p layS ound . The playSound command plays a "boing" sound.
That's really all there is to defining your own commands. Think of
what you want a command to do, think of a name for it, and write
a handler chat uses the name after on and en d , with the
appropriate Hyper Talk statements in between.

Chapter 4: Handling Messages

•

•

r:irs1, I lypl'rC:1rd
~l'nds :1 mouseUp

llll'S~.,gc lo lhL·

Sound lluuon.

Then, the Sound
bu non sends a

playSound
message.

Finally, the
playSound

message is handled
hy the background

~ ~
§ Sound .

Bullon Field

+ ·s ~

Current card

+ .
Deckgrouml

Current background

Currl'lll stack

I fume stack

HyperCard

Figure 4-3 Me~age traveling to a handler in the background :.cript

Chapter 4: Handling Messages 105

106

•:• By the way: lt's generally best to avoid using the name of an
existing H yper Talk command or function as the name of a
command you create. See the HyperCard Iles Script Language
Guide for details on naming commands. •:•

Intercepting a 1nessage When HyperCard sends a statement within a handler as a message,
the message goes first co the object chat contains the handler being
executed. (For example, when the Sound button sends a playSound

message, the message first goes co the button itself) If the object's
script doesn't have a handler for the message, the message next
travels co the current card . If the script for the current card doesn't
have an appropriate handler, the message continues through the
message-passing order, as shown earlier in Figure 4-1. •

Once a message is handled, it does not continue passing through
the message-passing order. Therefore it's possible for an object at
the "top" of the message-passing order co intercept a message before
the message can travel co objects at the "bottom."

In this section, you' ll write a pl aySound handler for the script of the
Index card. This card-level handler will make the Sound button
play a different sound when you're on the Index card.

Follow these steps ro write rhe script:

l. Go to the Index card .

2. Choose Card Info from the Objects menu , then click the
Script button to see the card's script .

Or press •1 -Opcion-C.

3. Type the following handl er:

on playSound
play "harpsicho r d " "c e g "

e nd pl aySound

This handler plays three notes using the harpsichor d sound.

Chapter 4: Handling Messages

•

•

•

4. Click OK.

5. Click the Sound button wi th the Browse tool.

The playSound handler in the card script executes, and you hear
rhe three notes.

6. Go to any other card in the stack and click the Sound button.

The p laySo und handler in the background script executes, and
you hear the "boing."

How the handlers work

When you click the Sound button, the button's mouseup handler
sends a p layS ound message. Because there is no playsound

handler in the button's script, the message passes to the script
for the current card.

When the Index card is the current card, the playSound handler in
the card script handles the playsound message. The card script
intercepts the message before it can pass to the background script.
Figure 4-4, on the next page, shows the path taken by the
pl aySou nd message when the Index card is the current card.

When the Index card is not the current card (that is, when there is
no p lay Sound handler in the script for the current card) the
p laySound message continues passing from object to object in the
message-passing order until it gets co the playsound handler in the
background script, as shown in Figure 4-3 .

•!• By the way: You can allow a message to continue passing
through the message-passing order after it has been handled
by using the pa ss keyword. (For more information about
pass , see the HyperTalk Help stack or the HyperCard Iles
Script Language Guide.) •!•

Chapter 4: Handling Messages 10~

108

Fir.,t, I lypl'rC:1rd
sends a mouseup

llll'ssage to the
Sound button.

Then, the Sound
button sends

a playSound
me~sage.

Finally, the
playSound

message is
h:111dled hy the

Index rnrd's scnpl.

(The playSound
messagl' does not

pass !O the
hackgmund.J

Sound
Button Field

+ 'S ~

Current card

•
Currem background

Current stack

Horne st:ick

• HyperCarcl

Figure 4-4 Mc~sagc being interceptl'd hy a handler in the c:ircl :;cript

Chapter 'I: Handling Mess;1ges

Calling handlers from
the Message box

•

•

Ry writing a different p l ny Sn11nd handler for the script of each card,
you can play a different sound on each ca.rd in your Collection
stack. (The reference section at the end of chis chapter explains how
to use the play command.)

Whenever you type something into the Message box and press
Enter, the contents of the Message box a.re sent as a message to the
current ca.rd.

In this section you'll use the Message box to call the playSound

handler. Follow these steps:

1. Open the Message box .

2. Type playsound and press Return.

A plays o und message is sent from the Message box co che
current ca.rd. If you're still on the Index card, the message is
handled by the playsound handler in the card script and you
hear the three harpsichord notes. If you're on another card, the
playSound message travels to the background script, and you
hear "boing."

You can use the Message box chis way when you wane to test
how a particular handler works. Ali you do is type the name of
che handler and press Return.

You can send a message directly to a specific object, bypassing the
message-passing order, by using the send keyword. The send

keyword works in the Message box as well as in handlers. Now
you'll send a mouseup message from the Message box directly to a
burcon.

Chapter 4: Handling Messages 109

110

Handlers as
building blocks

3. Type se nd mo use Up t o bg bu tto n "n ext " and press Rerurn.

A mouseup message goes to the Next butron. The mouseUp

handler in the button's script executes, and you go co the next
card in the stack, just as if you had dicked the button.

The send keyword lets you send messages against the normaJ flow
of the message-passing order-for example, from a stack script to a
buccon or from one button to anot her button.

4. Close the Message box.

In some ways getting things done in HyperTaJk is no differem from
getting things done in everyday life. When you want co perform a •
large, complex procedure, you can divide the procedure i.nco smaller,
more easily manageable parts. These smaller parts of a complex
procedure are somerimes called subprocedures.

For example, suppose you want co make spaghett i. You might divide
the main procedure, "make spaghetti," into three subprocedures:
" k " " k " d " dd " If uld coo pasta, coo sauce, an a sauce to pasta. you co
describe the procedure of making spaghetti as a HyperT.alk script, ic
would look something like chis:

on make Spag hetti

cookPasta
cook Sauce
dddf;auce'l'ol'.J!;Lc1

end mak eSpaghetti

The handl er for the main procedure (makeSpaghetti) calls
handlers for three subprocedures (c ookPasta , cookSauce, and
ad d SauceToPas t a).

•
HyperCard handlers can be used as subprocedures in much the same
way. Understa ndin g how handlers can call other handlers will be a
big help you as you begin co write longer, more comp lex scriprs.

Chapter 4: Handling Messages

•

•

What you've done
in this chapter

In chis chapter you have demonstrated the three ways chac
HyperCard can send messages:

• System messages (such as mouse up) are sent in response to some
event, such as a mouse or keyboard action.

• Statements within handlers (such as pl aysou nd) are sent when the
statements are executed.

• The contents of the Message box are senc when you type something
in and press Return.

You've learned how a message handler can "call" other handl ers,
how messages can o-avel &om one object to another, and how
handlers can be used as subprocedures .

Here's a list of the Hyper Talk words you have learned:

Commands

play

Keywords

se nd

Miscellaneous

harpsichord

boinq

Causes sounds ro play.

Sends messages directly to objects.

Names of sounds used with the play

command.

Chapter 0 1: l landling Messages 111

112

Syntax sumn1aries This section describes the syntax of the play command and the
send keyword.

Play The play command lees you play sounds from within a script.

Syntax

play (srm11d] [tempo) I nores)
play t;Lop

Soimdis ha r psichord or boing-which are included with
HyperCard--or the name of a digitized sound from some
outside source.

Tempo is the word tempo followed by a positive integer chat sets ch._
speed of play. The value 100 is a medium speed; higher numbers •
play faster. If you don't specify a tempo , tempo 100 is assumed.

Notes make up the melody sequence. Notes are represented by the
letters A through G. Rests (or pauses) are represented by the letter R

If you don't specify any notes, HyperCard plays a single note in the
sound you specify. You should include quotation marks around the
sound and the noces.

You can include funher modifiers after the note name, such as an
accidental (a sharp or flat), an octave specification, and a duration
code. Here's the syntax for a note:

noteName [accidental] [octave] [duration]

Accidental is either ~ for sharp or b for flat.

Octave is a whole number char specifies the picch range. For
example, g# 4 would be the G-sharp note in the middJe range, or
what musicians call the middle-C octave. Higher numbers give
higher ranges, and vice versa. If you don't specify a number,
HyperCard uses 4.

Chapter -1: Handling Messages

•

•

•

Durati.on is a letter code indicating how long co ho ld the note
before the next note sounds. Here are the codes for note duration:

w whole note (four counts)
h half (rwo counts)
q quarte r (one count)
e eighth (one-half count)
s 16th (one-fourth count)
t 32nd (one-eighth count)
x 64th (one-sixteenth count)

If you don't specify a duration code, HyperCard assumes a
quarter note.

A period (.) after the duracion code indicates a dotted note, which
means a note with a duration value of half again as much; chat is, w.

would indicate six counts (four plus half of four). A numeral 3 after
the duration code indicates a triplet.

The codes for octave and duracion carry over to subsequent notes
unless you change them; this feature saves you from having co type
numbers and letters over and over.

Here are some examples of notes with modifiers:

No te
specification

d#Sw

Bb4q

Meaning

D-sharp above h igh C held for four counts

B-flat above middle C heldfor one count

e5h . E above high C held for chreecounts (because of
the period after the duration code h)

Example

pl ay "harpsichord " tempo 300 "cq d#q gq c5w"

Chapter 4: Handling Messages 113

114

lkaling with Jong lines

You can put a long sequence of notes into a script; however, the
script editor doesn't wrap lines or let you scroll to see lines char
extend beyond the window. You can press Return or Opcion-Rerurn
to wrap a long line temporarily while you type the notes; however, if
you use chis method you mustdelete the Returns to "unwrap" the
lines when you're finished. If you don't, the script won't work
properly. HyperCard doesn't understand a line break of any sort
inside quotation marks.

Another alccrnacive is co wrap a long line permanencly by inserting a
closing quotation mark and the double an1persand (&&) followed by
an Option-Return (-,):

p l ay "harps i c hord " "c3 d e f g a b c 4 d e f " && -,

"ga b c 5 d ef gab c6 "

Notice chat you must also begin the wrapped line with a
quotation mark.

•

Send The s end keyword directs a message co any object in the current
stack or co another stack, but nor to a specific object in another
stack. le sends a message directly co the specified object, bypassing
any ocher objects in the usual message-passing hierarchy.

Syntax

send "messr1geNmne " [Lo object}

The quotation marks a.round the name of the message aren't need!
if the message is a single word, like mouseUp.

Object is an identifier for any object, such as its number, ID, or
n~rn1e. If you use the name, you must enclose it in quo1Cation marks.

Example

.,1'11 l mou~,·Up to l'.'klL·kqruund buLLon " Honie "

Chap1er 4: Handling Messages

•

•

Chapter 5
' .

More Scripting Ideas

As you built your Collection stack, you learned some of che
basic methods you can use for Hyper Talk scripting. In chis chapter
you'll learn other ways of using scripts in stacks.

This chapter explains how to modify the Collection stack for
other purposes . le also describes some other simple stacks you can
build- including a presentation stack, anin1acion stacks, and a
stack just for fun-and explains the basic steps involved in building
and scripting these stacks. You can try building the stacks if you
wish, or you can use chem as a source of ideas for creating stacks on
your own .

1 I)

116

Custon1izing your
Collection stack

You can easily modify the Collection stack to catalog things other
than records. For instance, you could modify the stack along the
lines shown in Figure 5-1.

•6rMII ISiicliil. {)
• N1111111111 ·t11tled _,,.
fisi: 0

Figure 5-1 Ano1her v:1ri:11ion on the record!-stack

•
To modify the Collection stack for some other purpose, follow chese

basic steps:

1. Save a copy of the Collection stack by choosing Save a Copy
from the File menu.

2. Change the names of the Artist and Title fields to indicate the
new contents of the fields.

3. Change the scripts of the Sort and Index buttons, replacing all
references to the Artist and Title fields with the new field •
names.

You might also want co delete the Sound button and create more
appropriate graphics.

Chapter 5: More Scripting Ideas

Presentation stacks You can use HyperCard to combine rexr, graphics, animarion, and
sound into a dazzling presentation. This section shows you how to

create a basic presentation stack. You can fill in the conrcncs of rhe
presentation (and the dazzle) yourself

•

•

There are many ways you can organize a presentation. One way is
to tell a story from beginning to end by having users go forward or
backward from card to card. In most stacks, though, users have
opportunities to branch to different pares of the stack, depending
on what interests them. (See HyperCard Stack Design Guidelines,
published by Addison-Wesley, for a discussion of different ways to
structure a sea.ck and how to make stacks easy ro navigate.)

The stack described in this section uses a simple tree struccure that
users can easily navigate. The first card of the stack lists the topics of
the presentation. A user chooses a topic of interest by clicking a
button. Once a topic has been chosen, the user can navigate
through a series of cards about that topic. The user can also return
to the main topics card at any time. Figure 5-2 illustrates the
structure of the stack.

Figure 5-2 Stark with a tree structure

Chapter 5: More Scripting Ideas 117

118

Creating a main Here is an example of a main copies card.

topics card

Creating cards
about a topic

k'Ud!tfe of Hontirey County
Click a t.opic

Trus

Figure 5-3 M:1in copies card wich an che user can d ick •
The card shows several pictures, each corresponding co a topic the
user can pick. Each picture is covered with a transparent button char
takes the user to a card about the chosen topic. For example, the
button covering the flower picture has this script:

on mouse Up
vi s ua l ef f ect dis so l ve
go t o card "Wildfl owers "

end mouseUp

ln chis case, vll.ldflowers is the name of the first card an a series of
cards about wildflowers.

Once you have decided what the topics of your presentation are, •
you can create a series of cards about each topic. Figure 5-4 shows
an example of a card about a topic.

You can create topic cards by following these basic steps:

1. If you want the background of the topic cards to be different
from the background of the main topics card, create a second
backgrou nd for your stack.

Chapcer 5: More Scripting Ideas

•

•

You do chis by choosing New Background from the
Objects menu .

Figure 5-4 A topic card

2. Create buttons for the background.

You'll probably wane a Next button, a Previous button, and a
button that returns the user co the main copies card.

The Topics button in Figure 5-4 cakes the user back to the main
topics card; it has the following script.

on mouseUp
visual effect dissolve
go to card "Topics "

end mouseUp

3. Create background fields.

You will probably want a field for the heading, as well as a field
for the text on each card.

4. Add cards to your stack.

Write the text and create the graphics for your presentation.

Chapter 5: More Scripting Ideas 119

Anin1ation You can use HyperTalk commands ro creare animacion effects.
Animation combined with visual effects and sound can turn a
presencation, a demonsrration, or a rraining stack into an exciting
audiovisual experience. This section explains two ways co create
animation effects with Hyper Talk commands.

Anin1ating a series of cards You can animate a series of cards by painting slighcly different images
on successive cards, then showing the cards rapidly-creating the
appearance of movement. Figure 5-5 shows an example of a multiple
card animation sequence .

You can practice creating an animation sequence by following
these steps:

1. C reate a new stack. •
Name the stack Animation or any ocher name you 'd like.

2. Add a few cards to th e stack, and create graph ics for each card.

You can paint your own graphics or copy chem from the A.rt
Ideas stack.

Each card should look slighcly different from the card before
it. To create each card, copy the image from the previous card,
then change the image by moving graphics or adding graphics
ro the card.

3. Create a button chat makes HyperCard flip through the cards.

In Figure 5-5, the button is named Drive the Train. Here's the .
script for the burton:

on mouse Up
go to first card
show 4 cards

end mouse Up

•

•

The show cards command goes rapidly through a specified number
of cards. You specify how many cards you want co show .

figure 5-5 Exampil: of multipll' t:ard animal1011

Chapter 5: More Scripting Ideas 121

Animating with Paint tools You can create animation effects by using HyperCard's paint
cools within scripts. In chis section you'll learn the basics of
paint animation, and you'll write a script chat creates compucer
generated art.

You'll write a script chat paints rectangles and lines of random sizes,
shapes, and colors. Each "painting" is unique, but Figure 5-6 shows
an example of what one might look like.

122

Figure 5-6 A Hyperlalk-generated "painting''

To paint each shape, your script will:

• choose the appropriate cool (either the Rectangle cool or the
Bmsh cool)

•

• choose a random color or pattern (When che Brush cool is •
selected, it will also choose a brush shape.)

• drag from a random point on the screen co another random
pomt.

Follow these steps co make the stack:

I. Create a new stack.

Name the stack Painting or any ocher n.w1e you'd like.

Chapter 5: More Scripting Ideas

•

•

2. Open the stack script.

Choose Stack Info from the Objects menu and click Script. Or
press U -Oprion-S.

3. Type the following script:

on mouseUp
set the dragSpeed to 200
set the filled to true
repeat until the mouse is down

choose rectangle tool
set the pattern to random(32)
dta<J from r,rndom(320) , random (200) to -,
random(320) , random(200) with optionKey
choose brush tool
set the brush to random(32)
set the pattern to random(32)
drag from random(320,random(200) to-,
random(320),random(200)

end repeat
choose browse too l

end mouseUp

4. Try out the script by clicking anywhere on the stack with the
Browse tool.

Watch the screen as lines and rectangles of different colors appear.

5. To stop the animation, click the mouse again.

If you'd like co start a new painting on a blank card , choose New
Card from the Edit menu .

,:, If something else happened· Check your script and try again. You
cannot open the script editor while a Paine cool is chosen. To
open the script editor you must have the Browse cool, Button
cool, or Field tool chosen. •:•

Chapter S: More Scripting Ideas 123

How the script works

When you click anywhere on the stack, a mouseup message travels
to the srack and the mouse op handler executes.

The statement set the dragSpeed to 200 determines how fast
drags will occur. The higher the dragspeed, the faster the drag. If
you don 't specify a speed, drags occur instantly.

The next statement secs the filled property to true , which means
that rectangles and other polygons will be painted as solid shap es,
instead of oudines.

Next comes a repeat structure that keeps looping until you click the
mouse (that is, until t he mouse i s do wn). Each time through the
loop, the script paints one rectangle and one line. •

First the script chooses the Rectangle cool, as though you had
chosen ir from the Tools menu.

The next statement set the pat te r n to random (32) secs the
pattern property co a random number between 1 and 32. Each
position in the Parcerns menu has a corresponding nwnber, as
shown in Figure 5-7.

I ,, ,- !\

! Ill '" "'
j II 1•1 27

1 I! ~ I !J<

; 13 21 29

6 14 22 JO

7 IS B } I

8 16 24 }l

Figure 5-7 Values for the panern property

Chapter 5: More Scripting Ideas

•

•

•

To choose a pattern randomly , the script uses the random funccion,
which has this syntax:

random (number)

The random function return s an integer from 1 ro number. Thus
evaluate the expression random(32) as a random integer from 1
to 32.

The next statement

drag from random(320) , random(200) to random(320),random(200) with optionKey

uses the drag command to drag from a random point on che
screen ro another random point while holding down the Opcion
key. (Holding down the Option key paincs rectangles as solid
shapes without showing black outlines.) The syncax of the drag
command is:

drag from startingPoint to endingPoint [with kry)

StartingPointand endingPointare points on the screen. Each point is
specified by rwo numbers separated by a comma. The first number
specifies the distance (in pixels) from the left edge of the screen, and
the second number specifies the distan ce from the top of che screen.

The top-left point on the screen has the coordinat es 0 ,0; the
bottom-right point has the coordinates 320,200. Therefore, the
expression random(320) , random(200) specifies any random point
on the screen .

After the rectangle has been drawn , the script chooses the Brush
cool and a random brush shape. T he brush property determines
which brush shape is used; it can have a value from 1 to 32, as
shown on the next page in Figure 5-8.

Chapter 5: More Scripting Ideas I r _)

126

I ; 9 13 17 21 ZS 29 • • / "\. I -. (I II> It IH u !t, ~· • • / "' I
j 8 II 1) l'I ?I - .31.

• / ' I

K l l lh lll 21 "
jl

, - ' ::··· ...

Figure 5-8 Values for the brush property

The second drag command drags the Brush rool ro paint a
straight line.

When you click che mouse, the script stops looping chrough the •
repeat structure.

Finally the script chooses che Browse tool again.

A stack for fun Here's another stack chat produces random events with interesting
results. It 's easy to build and fun to play with. It randomly generates
newspaper headlines from lists of words that you supply.

1. Create a new stack.

Name the stack Headlines or whatever you like.

Next you'll add some fields and buttons to the first (and only) card.
in che stack.

2. Create three fields named Man, Bites, and Dog.

Choose "scrolling" for che field's style.

3 . Type some words or phrases into the fields.

In che field nam ed Man, type che names of some friends. In the
field named Bites, type some verbs. In the field named Dog, type
some nouns. Press Rccurn after each word or phrase co put icon
a separare line.

Chapter 5: More Scripting Ideas

•

•

For now you can just type two or three lines into each field. It will
be easy co add more words lacer. Figure 5-9 suggesrs some words
you can type into these fields. H ave fun making up your own.

Man field Bites field Dog field

Andy Bitts {t Dov
Sorob Is Thing frOll Yenus
Kevin Weds Boss
Jod soys: I'• 8i9fool
thi Seen 11ilh Ho IIY11ood Stor I et
Jody Befriends " Infont Genius
Rofiq Reploced b8 o fish

~H_ol_lY __ __ ~ LY.:.:••.:.:' ":.:..s ::..:'°''----.u<..IL.:S.:.:el.:...f __ __ ..J.::<J

I ShOII/Hide I

Figure 5-9 Some text for the Man, Hites, and Dog fk:ld\

4. Create a button named Show /Hid e that makes the scrolling
fields appear and disappear.

W rite the following script for the button:

on mouseUp
if the visible of card field "Man" is false t.hen

show card field "Man"
:,;how r·ard fiPld "Bites "

show card tield "D0g 0

else
hide card field ''Man''
hide card field "Bi tes "
hide card field "Dog"

end if
end mouseUp

Chapter 5: More Scripting ideas

128

The visible property of a field determines whecher che field is
shown or hidden. When a field is shown, che visible property
of che field has a value of true . When che field is hidden, che
visible property has a value of false.

This script cescs whecher che Man field is hidden. If the Man field
is hidden, che script shows all chree scrolling fields. Ocherwise, if
che Man field is shown, che script hides all chree fields.

Select che Browse cool and cry out che Show/Hide button. By
clicking che button, you should be able co make the scrolling
fields appear and disappear.

Now you'll create a field for the headline and a button chat
randomly generates headlines. •

5. Create a field named Headline.

Choose a large, bold font. Choose "center" for rhe field's cexc
alignment.

6. Create a button named Write Headline .

Write the following script for the bucron. Press Opcion-Recurn
co insert a "soft" return character (-,) where necessary.

on mouseUp
put any line of card field "Man " && -,

any line of card field "Bi tes " && -,

any line of card field "Dog" ..,
into card field "Headline "

end mouseU p

7. Try out the Write Headline button. •
Each time you click che button, a different headline appears. If
something else happens, check your script and rry again.

Chaprer 1: More Scripung Ideas

•

•

8. Paint some graphics on the card to make it look like the front
page of a newspaper.

Here is one possible design:

Kevin Weds
Space Alien

-
Figure 5-10 Sample graphics forthe Man Bites Dog stack

How the Make Headline button works

The script combines any line from the Man field, any line from the
Bires field, and any line from the Dog field inro a single string of
text-which is pur inro the Headline field.

Games are often based on randomly occurring evencs, such as the
roll of dice. One way co create random events in H yper Talk is to

list aJJ of the possible outco mes in a field and then get any line

of the field .

Chapter 5: More Scripting Ideas 129

130

Where to go
from here

Now chat you're an experienced scripter, you can go on to ocher
sources to learn more about HyperTalk and more ways of using
HyperCard. Many people have written books on HyperCard and
scripting that you might find helpful. The HyperCard JIGS Script
language Guide contains complete descriptions of Hyper Talk
elemenrs. The HyperTalk Help stack is also a good reference co
consult while you're working.

Look again at the stacks that come with HyperCard, especially
Button Ideas. See what you can observe about the way their scripts
work, and how you might modify some of the scripts to suit your
own ways of doing things. Create a stack you can use as a reposico,y
for buttons with prewritten handlers and ocher scripts that you can
copy and paste when you want them. Talk ro other HyperCard
scripters about the stacks they've built and how they've built the4
Most of all, enjoy the creative environment that HyperCard
provides. Experiment. Build your own stacks for your own
purposes, learning more about Hyper Talk as you need to. Your
most valuable knowledge of scripting is likely co come from your
own expenence.

Chapter 5: More Scripting Ideas

•

What you've done
in this chapter

•

•

You've learned how co modify your Co llection stack for differenr
pw·poses, how co create a simple presentation stack, cwo ways co
add animation effects to stacks, and a fim way to use the r;:indom

function.

Commands

choose

drag

show cards

Properties

drag Speed

filled

patt e r n

visible

Functions

mouse

random

Chooses a cool just as though you chose it from
the Tools menu by using the mouse.

Does the same thing as dragging the mouse.

Shows cards one after another on rhc screen. The
cards co be shown (all or some number) muse be
m sequence .

A global property that determin es how fast che
drag command is executed.

A painting property-when sec co Lrue, shapes
are filled as they are drawn.

A painting property with a value of 1 to 32,
corresponding to the pattern selected in the
Patterns menu.

A property of fields and buttons chat has a value
of true when the object is shown and false

when it is hidden .

Gives the state of the mouse button: either u!=)

o r down.

G ives a random integer between 1 and a specified
number.

Chapter 5: More Scripting Idea~ 131

132

Syntax sumn1aries Here is the synrax of rhe command s you learned in chis chaprer.

Choose The choose command allows you to select a HyperCard cool from
within a script.

You can use the choose command only when the user level is sec co
Painting, Authoring, or Scripting. You can sec and reset the
user Leve l property inside a handler with the set command , if
you don't wane to change the user level permanently in a stack.

Syntax

choose too/Nam e tool
choose tool number

TooLName is any one of the HyperCard cools from the Tools men .
You muse always use r.ool after the name. Her e are the HyperTalk
names for the cools chat you can use:

browse fie l d reg[ular] po l y[gon]
brush la s so round rect [a ngl e)
buc ket line select
button oval spray
curve pencil text
er aser rect [ang l e)

Number is a positive integer corresponding co one of che cools.

Th e only cool you can't choose from within a script is rhe
Polygon cool.

Examples

choose button tool
choose tool 9

Chapter 5: More Scripting Ideas

•

•

•

Drag The drag command allows you to manipulate objects and graphics
on a card from within a script. It has the same effect as dragging the
mou se manuall y from one point co another.

Syntax

drag from point to point
drag from point to point with key}
drag from point to point with keyl, key2
drag from point to point with key], key2, key3

Point consists of the horizontal and vertical coo rdinat es of a point
on the screen, separat ed by co mm as. You can Find the coordinates
of a poinr by placing the pointer there and typing th e mouse Loc

inco the Message box .

Keyl, key2, and key3 can be shiftKey, optionKey, or commandKey.

Examples

drag from 5,5 to 80 ,1 30
drag from 5, 5 to 80 , 130 with commandKey

Show cards The show cards command lees you quickly displa y a numb er of
cards in sequen ce.

Syntax

show [all] cards
show positivefnteger cards

Positi.ve!nteger is the number of cards you want to show if you don ' t
want to show all of them.

Examples

show a ll cards
show 5 cards

1,,
133

•

•

_ Appendix

HyperTalk Summary

•
h is appendix contains

• Syntax scacemencs for all built-in HyperTaJk commands,
functions, and keywords

• Lists of system messages, properties, and constants

• A cable of' operators and their order of precedence

• Script eclicor keyboard commands

• Shortcuts for seeing scripts

• Synonyms and abbreviations

•

135

136

Syntax statement
notation

/' ~ l Add 25 to lin e 1 o (card field "sum ··

(•=••' ·,o, •~ you>· "'"' "F>M. ""'°'" j
R~~

Syntax statements show the most general form of a command or •
fimction, with all elements in the correct order. The syntax
statements in chis book use the following typographic conventions:

• Words or phrases in this kind of type are Hypercalk language
elements chat you type exactly as shown.

• Square brackets [] enclose optional elements that may be
included if you need chem. (Don't type the brackets .) In some
cases optional elements change what the command does; in
ocher cases cl1ey simply make che command more readable.

• Words in itttficare placeholders describing general elements, not
specific names; you muse replace chem in an acrual command.
For example, c./fectName srnnds for any of rhe H yperTalk visual
effect names, such as barn door, checkerboard, or zoom out . •

le doesn't marrer whether you use uppercase or lowercase leccers in
HyperTalk, but names formed from rwo words are often shown in
small letters wich a capital in the middle (likeTh is) co make chem
more readable.

Appendix: HyperTalk Summary

•

•

Commands This section lists the syntax of all Hyp erTalk commands. For more
information about othe r HyperTalk commands, see the HyperTalk
Help stack or the HyperCard ff GS Script Language Guide.

add number to [chunk ofJ container

ans wer question
answer question with reply
answer question with repryl or repry2
answer q11estiQ11 with reply I or reply2 or replyJ
answer file tt'Xt !of type JileTj,pe]

arrowKey direction

ask questi.on [with defoultAnswer]
ask password question [with defauLtAnswer]
ask file text [with fileName]

beep [number]

,;hoose too/Nmne tool
choose tool number

click at point
click at point with keyl
click at point with keyl,
click at point with keyl,

close file fileName

close printing

controlKey keyNumber

key2
key2, key3

convert [chunk of J container to format (and format]

create stack stackName [with background]

delete chunk of container
delete [stack] stackName

dial number
dial number wich modem [modemCommands]

divide [chunk of J container by number

Appendix: HyperTalk Summary 13~

138

doMenu menu/tern [wiLhout d ialog]

drag from point to point
drag from point to point with key]
drag from point to point wi t h key],
drag from point to point with key!,

edit scripl of object

enterKey

export painL t o file filename

find text
find text [in backgro1mdField]
find chars text [in backgroundField J
find word text [in backgroundField]
find whole text [in backgroundField]
find string text [in b11ckgro11ndField)

functionKey keyNumber

get expression

go [to] staek
go [to] background [of stack J

key2
key2,

go [to] card [of background] [of rtack]

help

hide button
111 J,, field

hide card picturr
hide picture of card
hide background picture
hi de p icture of background

hide menuBar
hide message box
hide tool window
hide pattern wind ow
hide go wi ndow
hide card window

11111 "" I I'" i nl I 1 ""' I i lr · jill'ltlffllt'

Appendix: HyperTalk Summary

key3

•

•

•

•

lock [Lhc] f.H.inL Te rnpl au,

loc k sc r ee n

multiply [chunk o f] container by number

open [fileName wi t h] applicationName

ope n fi le fil.eName

ope n printing [wi th di alog]

pla y sound [ttwpo J [notes]
pl ay stop

pop card
pop car d i nto [chunk o f] container
pop ca r d after [chunk of) container
pop card before [chunk of] container

print field
print fi/,,Nr11111: with ,1pplicmio11Name

prin t card
p r in t number car ds
print c ar d
pri nt a ll car d s

push card

pul expression
put expression into [chunk of) container
pu t expression a f t e r [chunk of] container
put expression be f or e [chunk o f) container

rea d f rom fil e fil.eName at start f o r numberOJChars
rea d fro m fil e fil.eName fo r numberOJChars
read from file fil.eName until character
rea d f ro m file fi!eName unt il e nd
read from file fileName until eof

reser. paint

re t urnKe y

Appendix: HyperTalk Summary 139

140

save this stack as fi!.eN11me
:,ave tli LS sl wck iJS fJ1LthN11111e
fklVP I ~t ;irk I st11rkNmnr ;)~ ji!.eN11mt'
save [sc.ackJ stackName as pathName

selec t button
select field

select text of container
select before text of container
select after text of container

select chunk of container
select before chunk of container
selecl after chunk of container
select empty

Note: container is a field or the Message box.

set [the J property [of object] to expression

show button [at point]
show field [at point]

show card picture
show picture of card
show background picture
show picture of background

show menuBar
show message box
show tool window [at point]
show pattern window [at point]
show go window I ac. point]
show card window

show number cards
show all cards

sort [sortDirection J (sortStyleJ by expression

subtract number from [chunk of) container

tabKey

Appendix: HyperTalk Summary

•

•

•

•

Lype leXI

type text with key!
Lype text with key!, key2
type text with key}, key2, key3

unlock [the] printTemplate

un loc k screen
unlock screen wit h visua!E./Ject

Noce: visualEjfect is any form of the visual command.

visual [effe ct) effectName [speed] [to image]

wait [for J number l seconds J
wait until co11ditio11
wait while condition

wri te text to file fi/.eName [a t start]

Appendix: HyperTalk Summary 1-t 1

1 12

Functions This section lists the syntax for alJ of HyperTalk's built-in functions,
as well as che value returned by the function.

When using functions in Hyper Talk statemen ts you must either use
the word the before the function name or add parentheses after it
(both forms are shown in the list that follows). The parentheses are
used co enclose any values on which the function operates. These
values are called parameters. If the function cakes several parameters
(for example, the average funct ion), you must separate the
parameters with commas . For a more complete discussion of
functions and parameters, see the Hyper Talk Help stack or the
HyperCttrd JIG'S Script Language Guide.

Syntax of function

t he ab s of (mm1ber)
abs (m11nber)

annu it y (rate, periods)

the atan of (number)
a tan (number)

average (numbe,.lim

the charToNum of chamt·ter

charToNum (chamcter)

the clickLoc

clic kL oc ()

the collU'lland.Key

command.Key ()

compound (mte, periods)

the cos of number
cos (1111mber)

Appendix: f-lyperTalk Summary

Value returned by function

Absolure value of number

Current or future value of an annuity

Arc tangent of number, expressed in radians

Average of che numbers in numberlist

ASCII value of a char,1cccr

Horizontal and vertical coordinates of che
point where the user lase dicked

Position of the Command key (the ..:_ key):
up or down

Present or future value of a compound
interesc-bearing account

Cosine of number, expressed in radians

•

•

•

•

Syntax of function

the date
the long date
the short. date
the abbrev i ated date
date()

the diskSpace
diskSpace CJ

th e exp of number
exp (number)

the expl of numb er
expl (number)

Lhe exp2 of numb, ,r
exp2 (number)

the foundChunk
foundChunk ()

the foundField
foundField ()

the foundLine
foundLine ()

the foundText
foundTPx" ()

the length of text

l ength (text)

the l n of number
ln (number)

the lnl of numb er
lnl (num ber)

Value returned by function

Currenr dare ser in rhe Apple Il es

Amount of free space on the current disk

Mathematical exponential (e raised co rhe
power of number)

1 less than mathematical exponenrial :
exp () - 1

Th e value of2 raised ro the power of 111011ber

Description of where the rext is found in
a fleld

Which field che found rexr is in

Which line the found rexr is in

Characters found by che find command

Number of characters in a cext sering

Base-e {natural) logarithm of numb er

Base-e (natural) logarirhm of (l + nwnbe1j

the log2 of nu mber Base-2 logarithm of numb er
log2 (numb er)

max (numberList) Highest number in m1mberlist

Appendix: HyperTalk Summary 143

Syntax of function

min (1111mberlist)

- h~ !T, JU.Se

mou:;,~ \ J

the mouseClick
mouse Click ()

the mouseH

the mouseLoc
mouseLoc ()

the mouseV
mousev ()

[the] number of objects

number (objects)

[the J number oi chunks in text

number (chunks in text)

[t he] number of cards in background
number (cards in background)

the numToChar of number
numToChar (number)

offset (textl, text2)

the opL1onKey
optionKey ()

t.he pa ram vf number
pd~ am (1111111ber)

Value returned by function

Lowcsr number in 1111111berlm

Posirion of rhe mou,e bunon: t.:p or down

True or fa lse, depending on whether the
mouse bucron is clicked

Horizon cal position of the pointer on mouseH ()

rhc screen

Horizontal and vertical coordinaces of
che pointer

Vertical position of che pointer

Numberofburcons/fields on che current
card or background, or the number of
backgrounds or car<l, in rhc current sc.,ck

Number of characters, words, lines, and so

on in a specified cext sering

Number of cards in specified background

Character corresponding co an ASCII value

Numbe r of characters berwccn che
beginnings of rwo scrings

Position of rhc Option key: up or dowr,

Value of a parameter in a li~r

•

•
che paramCount Total number of parameters

paramCount (l

14-1 Appendix: HyperTalk Summary

•

•

•

Symax of function

the params
params ()

the random of number
random (number)

the result
result()

the round o f number
round (numb er)

the screenR ect
screenRecc ()

the seconds
seconds()

the selectedChunk
selectedChunk ()

the selectedFie_d
selecteciField (J

the s elec te dLi ne
se l ectedLine ()

the selec t edTex l
selectedTex t ()

the shiftKey
shiftKey (J

the sin of number
sin (numb er)

the sound
sound()

Appendix: HyperTalk Summary

Value returned by function

Entire list of parameters

Random integer from I to number

A text string if find or go is unsuccessful

Nearest inceger to numb er (odd integer
plus 0.5 rounds up; even integer plus 0 .5
rounds down)

The rectangle of che screen in which
HyperCard's card window is displayed.

Number of seconds between midnight
January I , 1904, and the currenc rime
in your Apple Tlcs

Description of the location of che
selecced text

Which field the selecced texc is in

Which line che selected text is in

Text currently selected

Position of che Shift key: up or down

Sine of number, expressed in radians

Name of the sound resource currently playing
(or done if none is playing)

1-t5

Svntax of function

the sqrt of number
sq rt (number)

th e tan of number
ta n (number)

the target
u:1rge l ()

th e tic ks
ti c ks ()

t he t ime

t he long ti mP

the shorr r irnP

the abor-"v i at"'" t 1 me
time()

t he LOOl

tool ()

t he t r unc o f number

tr unc (number)

the value o f expression

val ue (expression)

Appendix: HypcrTalk Summary

Value returned lw function

Square roor of a number-it number i~
negative gives the result NAN(OOI)
meaning "not a number"

Tangent of number, expressed in radians

Description of che original rccipien c of
a message

Number of ticks (X., second) since die

Apple JIGS was lase started

Currenc rime sec in che Apple Hes

Name of che currendy chosen roo l

lnceger part of number

Value of expression

•

•

•

•

Keywords The following list includes Hyper Talk keywords and their syntax.
Keywords are predefined; you can't redefine chem-for instance,
you can't use a keyword as the name of a variable.

send is the only keyword char can be used in the Message box.

do expression

else

end fi111ctio11Nrm11·
end mess,1geNamt'
end if
end repeat

ex.i.L Ji1111·tiu11N(lme
exi t messageName
exit repeat
exit to HyperCard

function fi111ctio11Name
function fi111ctionNt1me parmneterList

global uari11blt•li.rt

if condition then

next repeat

on messageName
on messageName parameterList

pass fimctionName
pass messageName

repeat [forever)
repeat (for] number [times)
repeat until condirion
repeat while condition
repeat wi th variable = start to finish
repeat with (J(lriable = start down t o finish

return expression

send "messageName[parameterlist]" (to object]
send "messageName(parameterList] " to HyperCard

Appendix: liyperTalk Summary 1-1-

148

System 1nessages HyperCard sends these messages co the objects specified co inform
them of system events. Some messages include a variable (var),

which depends on the message. For example, the arrowKey variable
can be left , right , up, or down.

Messages sent to a button

deleteButton
mouseDown
mouseEnter
mouse Leave

Messages sent to a field

closeF ield
de l eteFie l d
enterinF'ield
mouseDown
mouseEnter
mouseLeave
mouseSU 11Down

mouseSt illDo wn
mouseUp
mouseWithin
newButton

mouseUp
mouseWithin
ne wField
openField
returnlnF ield
tabKey

,\!kssage~ senr to the currcm card

arrowKey var
closeBac kground
closeCard
closeStack
controlKey var
deleceBackground
deleteCard
,::ieleteStack
doMenu var
enterKey
function Key var
he lp
hide var
i <Ile

mouseDown

Appendix: HyperTalk Summary

mouseStil l Down
mouseUp
newBackground
newCard
newSt ack
openBackground
.::penCard
openSta::k
quit
resume
returnKey
show var
startup
suspend
tabKey

-·

•

•

•

Propetties This section lists the prop erties of the H yperCard environmenr and
of objects.

Background properties

cantDelete
cantModify
colorset
dontSearch
ID

Button properties

autoHilite
bottom
bottomRight
family
frameColor
heighL
hi lite
hilited
icon
iconBackColor
iconFrontColor
1D
left
loc[ation]
name
number

Card properties

cantDelete
cantModify
colorSet
dontSearch
ID

App<:n<lix: HyperTalk Summary

name
number
script
showPict
useColorSet

rect[angle]
right
script
sharedHilite
showName
style
textAlign
text Color
textFont
textHeight
textSize
i:extStyle
top
topLeft
visible
width

name
number
script
showPict
useColorSet

H<J

Field properties

autoTab scroll
bottom sharedText
bottomRight showLines
dontSearch style
frameColor textAlign
height text Color
ID textFont
left textHeight
loc[ation] textSize
lockText textStyle
name top
llUll!Ue C LopLelL
rect[angle] visible
right wideMargins • script width

Global properties

blindTypinq lockRecent
borderColor loc kScree n
cursor numberformat
dragSpeed power Keys
editBkgnd print Template
language textArrows
lastError userLevel
lockErrors userModify
lock.Mess ages version

Painting properties •
brush pattern
centered poly Sides
filled textAlign
grid textfont
lineSize textHeight
multiple te xtS ize
multiSpace text Style
rnit- l 1 nP.ci

150 Appendix: HyperTalk Summary

•

•

Stack propenies

cantDelete
cantModify
colorSet
freeSize
name

Window properties

bottom
boLLoBmRight
height
left
loc [ation]
rect[angle]

Appendix: HypcrTalk Summary

script
size
useCo l orSet
version

right
top
topLeft
vis i ble
width

l5l

Constants Co nstants are named values chat never change. You can't use c.he
name of a constant as a variable name.

Constants

down

empty

false

formFeed

lineFeed

pi

quote

return

space

lab

true

up

zero ... ten

Description

The value of che key funccions for rhe Command, Option,
and Shifr keys and for che mouse bunon when pressed

A sering conraini ng nothing (the nu!L srring)-
san,e as " "

The oppos ite of true

The form feed characrer, ASCI I 12

The line feed character, ASCI I 10

The value of pi ro 20 decimal places

The doubl e quotation mark character

The return character, ASCH 13

The space character, ASCII 32-same as

The horizontal tab character, ASCll 9

The oppos ice of false

It "

•

The value of the key functions for the Command, Option,
and Shifr keys and for the mouse button when nor
curren rly pressed

T he number s O through 10

•

AppendLx: HyperTalk Summary

Operator precedence The table below shows the order of precedence ofHyperTalk
operators. The order of precedence determines which operation
HyperCard performs first when evaluating an expression. Operators
are evaluated from left co right, except for exponentiation, which is
from right to left. Parentheses force evaluation in a certain order; for
example, 2"3+5 yields 11 , but 2* (3+5) yields 16 .

Order Operators

l

2

not • 3 ~

4 * / div mod

5 +-

6 & &&

7 > < <= >= ~ 2'.

is in
contains
is not in

8 = <> ,;,
is
is not

• 9 and

10 or

Appendix: HyperTalk Summary

Type of operator

Grouping

Minus sign for n..imlx:rs

Logical negation for rrue or false values

Exponenciacion for numbers

Mukiplicarion and division for
numbers

Addition and subtraction for numbers

Concarcnacion of cexc

Comparison for numbers or cext

Comparison for cexc

Comparison for numbers or cexc

Logical for true or false values

Logical for true or false values

153

Script editor
keyboard co111111ands

154

The following table list'> keyboard combinations used ro edit and

format scripts.

Key
combination

-A

-C

-1:

. -G

, -H

, -P

-V

-X

-period

Enter

Effect

Select entire script

Copy selection ro Cliphoard

Find rexr (same as Find buuon)

Find next occurrence of same rexr

Find currcnr selection

Print selecrion or (if no selection) entire scripr
(same as Prine button)

Paste Clipboard contents at inserrion poim

Cur sclecrion ro C lipboard

C lose script without saving changes

Close script and save changes

•

Return

Option-Return

Return characte r- indicates end of Hyper Talk sraremenc

Tab

Wrap line without return character ("sofi:" rerum
symbolized by -, in scripts. Don't use a "sofi:" return
inside quocation marks.)

Format script

Appendix: HyperTalk Summary

•

•

•

Shortcuts for The following table lisrs shorccurs for disp laying the scrip rs of

seeing scripts HyperCard objects .

Script

Butron script

Field scripr

Card script

Background script

Sr:1ck scripr

Shortcut(s)

Click burron while pressing
Option and ' keys

Double-click bucron with 13uccon
rool while pressing Shift key

Click field while pressing
Option, • and Shift keys

Double-click field wich Field rool
while pressing Shift key

Press · -Op tion-C

Press -Op tion-B

Press -Option -~

Synonyrns and This cable lists synonyms and abbreviations that you can use in

abbreviations scnp cs.

Synonym or
Term abbreviation

- - . -

abbreviated abbr
abbrev

background bg
bkgnd

backgrounds bgs
bkgnds

button btn

buttons btns

(w1111111tl'cf I

Appendix: HyperTalk Summa1y 1 :;;

~}'11011} Ill OJ

'IL·rm abbreviation

card cd

cards eds

character char

characters chars

commandKey cmdKey

field fld

fields flds

It 1y grey

location loc

m~ssage box message • msg box
msg

middle mid

picture pict

polygon poly

previous prev

rectangle rect

r gular reg

• ·, 1 •urid (//1111• 111111) !:J(JC

secs
seconds

·•I >r ,1y car, • prc1y

ticks Lick •

Appendix: Hypcrlalk Summa!)

• algorithm A srep-by-srep procedure for solving a
problem or accomplishing a cask. Writing
Hyper Talk handlers or programs in ocher
languages often begins with figuring our a suirable
algorithm for a task.

ASCII Acronym for American Standard Code for
Information Interchange, pronow1eed "ASK-ee." A
standard chat assigns a unique number co each
text character and control character. ASCII code is
used for representing cexc inside a computer and
for cransmirting information berween computers
and ocher devices.

background A rype ofHyperCard object; a
. emplace shared by a number of cards. Each

card with the same background has the same
background picture, background fields, and
background burcons in its backgrowtd layer.
Like ocher HyperCard objects, every background
has a script. You can place handlers in a
backgrow1d script char you wane to be accessible
co all che cards with char background.

background button A buccon char is common to all
c1rds sharing a background. Compare wirh card
button.

Glossa1y

background field A field char is common ro all
cards sharing a background; ics size, position ,
and default cexc format remain consra.m on all
cards associated with chat background, bur its
text can change from card ro card. Compare with
card fidd.

background layer The layer behind the card layer,
containing all the elements of the background.
You see the elements ofboch layers when you look
ar a card, as if the card layer were a transparent
layer in front of the background layer. The
backgrowtd button or background :field
created most recently is the topmost object in
che background layer (char is, closest within rhe
background layer ro the front of the screen). The
background picture is behind (farther from rhe
front of the screen) the objects in che !background
layer.

background picture A picture char is common co
all cards sharing a background. You see the
backgrow1d picrure by choosing Background
from the Edie menu. Compare with card picru.re.

hutton A type ofHyperCa rd object; a reccangular
"hot spot" on a card or background char
responds when you click ir according to the
instructions in its script. For example, clicking a
right arrow button with the Browse tool can take
you co the next card.

card A type of HyperCard object; a rectangular area
char can hold buttons, fields, and graphics. All
cards in a stack are the same size. Each card is a
composite of rwo layers-a foregrow1d layer,
called the card layer, and a background layer.
You see the elements of borh layers when you look
at a card, as if the card layer were a transparent
layer in front of the background layer. Each layer
can contain irs own buttons, fields, and graphics.

card button A button in the card layer of a single
card. Compare with background button .

card field A field in the card layer of a specific card;
its size, position, text aruibures, and conrents are
linlited co the card on which the field is created.
Compare with background field.

card layer The layer in front of rhe background
layer. You see rhe elements of both layers when
you look ac a card, as if the card layer were a
rransparenr layer in front of rhe background layer.
The card button or card field created most
recently is cl1e ropmosL object in the card layer
(that is, closest within the card layer ro the fronr
of the screen). The card picture is behind (farther
from the front of the screen) the objects in the
card layer and in front of all rhe elements in the
background layer.

card picture A picture in the card layer of a single
card. Compare with background picture.

158

chunk A piece of a character string represented as a
chunk expression . Chunks can be specified as
any combination of characters, words, items, or
lines in a container or ocher source of value.

chunk expression A Hyper Talk description of a
unique chunk of the con cents of any container or
ocher source of value.

command A response to a particular message; a
built-in message handler residing in HyperCard.
Compare wicl1 function and keyword. See also
external command .

command-key c~~-key) equivalent The
combination of the ' ·, key and another key •
on the keyboard chat you can press instead of
choosing a command from a menu.

comments Descriptive lines of text in a script or
program that are intended nor as instructions
for che computer bur as explanations for people
to read. Comments are set off from instructions
by symbols called delimiters, which vary from
language to language. In Hyper Talk, a double
hyphen (--) indicates the beginning of a
comment.

constant A named value chat never changes. For
example, rhe constant empty stands for the mJI
string, a value char can also be repre.'iemed by the
Literal expression " ". HyperCard conrains a •
number of constants, such as true, false, up,
down, and pi. Compare with variable.

container A place where you can score a value (text
or a number). Examp les are fields, the Message
box, the selection, and variables.

control structure A block of HyperTalk scactmems
defined with keywords rhac enable a script m
conrrol rhe order or conJirions undt:r which
specific statements execute.

current (adj.) The card, background, or scack you're
looking ar now. For example, the current card is
che one you see in rht.: activt.: window 011 your
screen.

debug To locare and correcr an error or che cause of
a problem or malfuncrion in a compute r
program, such as a Hyper Talk scripc.

delimiter A character or characccr~ used to mark che
beginning or end of a sequence of characrers; chat
is, to defme limits. For example, in HyperTalk
doub le quoration marks acr as delimirers for
literals, and comments are set off with two
hyphens ac the beginning of the comment and a

e erurn character at the end.

empty Used to describe scripts that contai n no
handlers. Every HyperCard object ha~ a script,
even if the script is empty. See also null.

expression A Hyper Talk description of how to gee a
value; a source of value or complex expression
built from sources of value and operators .

external command (Also known as XCMD.) A
command wrirren in a compurer language ocher
than Hyper Talk bur made available to HyperCard
to extend its built-in command sec. External
commands can be attac hed to a specific stack or
ro HyperCard itself. See also external function.

e! rnal function (Also known as XFCN.) A
function written in a compurer language othe r
than HyperTalk buc made available ro HyperCard
co extend its builr-in function sec. External
functions can be anached co a specific stack or co
HyperCard itself. Sec also external command.

field A type of HyperCard object; a container in
which you type field rexc (as opposed ro Paine
lt.:Xt). H ypcrC.u·d has [WO kind:; or fidds-car d
fields and background fields.

function A named value chat HypcrCard calculates
each time it is used. The way in which the value is
calculare<l is defined inn.:rnally for HypcrT.tlk's
bu ilt-in functions, and you can define your own
functions with function handlers. Sometimes a
script must supp ly a function with start ing values
or parameters. Compare with command and
keyword.

function call The use of a function name in a
HyperTalk sratemenr or in the Message box,
invoking either a function handler or a built-in
function .

function handler A handler char executes in
response to a function call marching its nan1e.

global properties The properties char determine
aspects of the overall HyperCard enviro nment.
For example, userLevel is a global pro perry rhac
determines the current user level setting.

global variable A variable that is valid for all
handlers in which iris declared. You declare a
global variable by preceding its name with the
keyword gl obal. Compare with locaJ variable.

handler A block of Hyper Talk statements in the
script of an object thar executes in response to a
message or a function call. The first line in a
handler must begin with the word on, and the
lase line muse begin with the wo rd end. Both on
and end must be foUowed by the name of the
message or function. HyperTalk has message
handlers and function handlers.

hierarchy Sec object hierarchy.

I 59

Home cards The first five cards in the standard
Home stack, designed co hold buttons that take
you to stacks, applications, and documcnr~.
Choose Home from the Go menu (or press -H)
co get to the card in the standard Home stack chat
you've seen most recently. You can also rype go
home in the Message box or include it as a
statement in a handler.

HyperTalk The built-in script language for
HyperCard users.

identifier A character string of any lengcl1, beginning
with an alphabetic character, containing any
alphanumeric character and, optionally, the
underscore character. Identifiers are used for
variable and handler names.

integer A number with no decimal pare. For
examp le, -6, 0, and 125 are all integers; 2.54 is
not an intege r.

keyword Any one of the 13 words that have a
special meaning in Hyper Talk sraremenrs.
Examples of keywords are end, if , on , repeat,
and send .

link A short script, usually in a button but
potentially in any HyperCard object, that allows
you co move immediately co a specific card in a
stack, co an application, or to a document. For
example, clicking a button that contains a link co
your Addresses stack takes you inlmediately co the
first card of that stack.

literal A sering of characters inrended to be taken
literally. In Hyper Talk, you use quotation marks
(" ") as delimiters to set off a sering of characters
as a literal, such as the name of an object or a
group of words you want ro be creaced as a ccxc
smng.

160

local variable A variable that is valid only wimin
the handler in which it is used (local variables
need nor be declared). Compare wicl, global
variable.

loop A section of a handler that is repeated umil a
limit or condition is mec, such as in a repeat

structure.

message A string of characters sent co an object
from a script or the Message box, or that
HyperCard sends in response co an event.
Messages that come from the system-from
evenrs such as mouse clicks, keyboard actions, or
menu commands-are called syste m messages .•
Examples of Hyper Talk messages are mouseup ,
go , and pus h card . See also handler and object
hierarchy.

Message box A container chat you use co send
messages to objects or to evaluate exp ressions.

message handler A handler that executes in
response co a message marching irs name.

message-passing order The order in whi ch a
message is passed between objecrs. for example ,
a message that goes first to a button, such as
mouseUp, would go next to the card, then to clle
background, then to the stack, and finally to

HyperCard itsdf, unless intercepted and acted •
upon by a handler. See also object hierarchy.

merasymbol See syntax.

null Having no value at all, not even zero. The
Hyper Talk constant empt y is defined as a sering
containing nothing-that is, a null string. A
string containing O would not be empty.

Glossary

number A character sering consisting of any
combination of the numerals O through 9,
oplionally including one period (.) rcpresencing a
decimal value. A number can be preceded by a
hyphen or a minu s sign co represenc a negative
value.

object An elemenr of the HyperCard environment
that has a script associated wich it and that can
send and receive messages. There are five kinds of
HyperCard objects: bunons, fields, cards ,
backgrounds, and stacks.

object descriptor A HyperTalk description that
• pecifies a unique object. An object descriptor is
W ormed by combining the narne of the type of

object with a specific name, number, or ID
number. For example, backgr ound bu tton 3

is an object descriptor.

object hierarchy The hierarchy of objects according
to their message-passing order. For example, for
a message such as mous eUp, the button that fuse
receives the message is higher in the object
hierarchy thar1 the background, the stack, or
HyperCard icself.

object prope1ties The properties that determine
how HyperCard objects look and act. For
example, the autoh i 1 i t e pro perry of a button

. ecermines whether the butron will high1ghc
when clicked.

operator A character or group of characters that
causes a particular calculation or comparison to
occur. In HyperTalk, operators operate on values.
For example, the plus sign(+) is an arithmetic
operator that adds numerical values.

painting properties The properties chat control
aspect.~ ofHyperCard's painring environment,
which is invoked when you choose a Paim tool.
For examp le, the brush property determines the
shape of the Brush cool.

palette A small window char displays icons o r
patterns you can select by clicking. You can see
two of HyperCard's palettes, the Tools palerre and
the Patterns palette, simpl y by " rearing off' their
respective menus. To see the Go palette, type
sh ow go wi ndow in the Message box. See also
tear-off menu .

parameters Values passed to a handler by a message
or function call. Any expressions after the first
word in a message are evaluated to yie ld the
parameters; the parameters co a function call are
enclosed in parentheses or, if there is only one , ic
can follow of .

parameter variables Local variables in a handJer
that receive the values of parameters passed wirh
the message or function call initiating the
handJer 's execution.

picture Any graphic or part of a graphic, created
with a Paint cool or imported from ar1 external
file, char is part of a card or background.

pixel Short for "picture elemenc"; the smallest dot
you can draw on the screen. The position of the
pointer is often represented by two number s
separated by commas. These numbers are
horizontal and vertical distances of the pointer
from the left and top edges of the card window,
measured in pixels. The upper-left corner of the
screen has the coordinates 0 , o.

Glossary 161

poinl ln priming, the unir oF measurement of the
height of a text characttT; one point is abom 1/-, of
an inch. When you sckct a tirnt, you can also
select a point size, such as l 0-poim , l 2-point, and
so on. Also, a location on the screen described by
two integers, separated by a comma, that
represent horizontal and vertical offsets measured

. in pixels from the upper-left comer of the card
window or (in the case of rhe card window itself)
of che screen.

propenies The defining characteristics of any
HyperCard object and ofHyperCard's
environment. For example, setting che user level
co Scripting changes the userLevel property of
HyperCard to rhe value 5. Properties are often
selected as options in dialog boxes or on palettes,
or they can be set from handlers. See also global
properties, object properties, paintin g
prop erties, and window properties.

Recent A special dialog box chat holds picrorial
representations of the lase 18 unique cards viewed.
Choose Recent from the Go menu co gee the
dialog box. Also, as in recent card, a Hyper Talk
adjective describing the card you were viewing
immediately prior to the currc.:rH can.I.

recursion T he continuing repetition of an operation
or group of operations. Recursion occurs when a

handler calls itself

resource fork The pan of a file chat contains
resources such as icons and sounds.

script A collection of hancUers written in Hyper"falk
and associated wirh a particular object. You use
the script editor ro add ro :ind revise an ohjecr's
scripr. Every objc.:ct ha~ ,1 ~L-ript, ~·vc.:n though wmt'
\crip1~ .ire c>mpty; rh.n i,. ,h ~·,· u111r;1i11 11n1hing.

162

script editor A large window in which you can type
and edit a script. The ciclc bar of tbc script ediror
J~crib c:i. the.: object to which 1he script belongs.
You can use the Edit menu, the Script menu, and
keyboard commands to edir text in the script
editor. See also handJer, object , and script.

scripting The act of writing scripts, or programs in
HyperTalk. Also refers co the user levd char
allows you to look ar and change objects' scriprs.

search path When you open a file from within
HyperCard, HyperCard arcempts co locate the
stack, document, or application you want by
searching the folders listed on the Search Paths
card in rhe Horne stack. Ead1 line on the Seard.
Paths card indicates the location of a folder,
including che disk name (and folder and subfolder
names, if any). This information is caJled a search
path. lcems in a search path are separated by
colons, like this: :my disk : HyperCard

folder : my stacks :

Search Paths card A card in the Home stack used to
score information about the location of scacks,
documents, and applications chat you open while
HyperCard is running. See also search path.

selection A contain er chat holds the currently
sdected area of rcxr. Nor e chat tcxr found hy rhc
find command is nor selected. • shared text Field text that appears on every card in a
bad<ground. Shared text can only be edited from
the backgrowid layer.

-;ource of value HypcrCard's most basic
expressions; the language elemenrs from which
valuel, can be derived: constants, co ntainers,
functions, literals, .111d properties.

Glossal)'

stack A type of HyperCard object chat consists of a
collection of cards; a H yperCard documenc .

statement A line of Hyper Talk code inside a
handler or typed into the Message box. A
handler can contain many statements. Statements
within handlers are first sent as messages co the
object containing the handler and then to
succeeding objects in the object hierarchy.
Scacemencs typed into the Message box are sent co
the currenc card.

string A sequence of characters. You can compare
and combine strings in different ways by using

~ ~erators. In Hyper Talk, for example, 23 + 23
~ II resulc in 46 ; bur 23 & 23 will result

in 2323 .

suhprocedure A parr of a larger procedure. You can
write scripts char perform complex tasks by
dividing the task into pares and writing message
handlers to perform each subprocedure.

syntax A description of the way in which language
elements fit together to form meaningful phrases.
A syntax statement for a command shows the
command in its most genera lized form, including
placeholders (sometimes called metasymbo ls) for
elements you must fill in, as well as optional
elements.

s- m message A message sent by HyperCard to
an object in response to an event such as a mouse
click, keyboard action, or menu command.
Examples ofHyperCard system messages arc
mouseUp, doMenu,and newCard .

target The object chat first receives a message.

tear-off menu A menu char you can remove from
the men u bar by dragging the pointer beyond the
menu's edge. HyperCard has three menus char
can be torn off. the Tools menu, the Patterns
menu, and the Go menu . When torn off, these
menus are referred co as palettes.

text property A quality or attribute of a character 's
appearance. Text properties include sryle, font,
and siz.e.

tick Approximately one-sixtieth (¼o) of a second.
The wai t command assumes a value in ricks
unless you specify seconds by adding secs or
seconds .

user level A property of HyperCard, ranging from
1 to 5, that determines which of HyperCard 's
capabilities are available. You can select the user
level on the User Preferences card in che Home
stack. Each user level makes all the options from
the lower levels available, and gives you additional
capabilities. The five user levels are: Browsing,
Typing, Painting, Authoring, and Scripting.

User Preferences card The lase card in che Home
stack, where you can sec your user level and select
or deselect the Blind Typing, Power Keys, and
Arrow Keys in Text options.

value A piece of information on which HyperCard
operates. All HyperCard values can be created as
strings of characters-they are not formal ly
separated into types. For example, a numeral
could be interpreted. as a number or as text,
depending on what you do with ir in a Hyper Talk
handler.

Glo:,~al)' 16.~

variable A named container char can hold a value
consisting of a character sering of any length. You
can create a variable co hold some value (either
numbers or rext) simply by using ics name with
the put command and pucring rhe value into ic.
HyperCard has local variables and global
variables. Compare wirh constant.

window properties The propenics char de1ermim:
how windows such as the Message box and the
Tool and Pattern palecces are displayed. For
example, the visibl e property of a window
determines whether that window is displayed on
the screen.

l (H

•

•

•
& (ampersand) 54
[l (brackets), syntax elements in 22, 136
&& (double ampersand) 40, 54
-- (double hyphen) 52, 54
-. (soft return) 43, 54

A
abbreviations, for scripts 15 5-156
About button 46--48
algorithm, defined 157
ampersand, double(&&), with text characters 40, 54
ampersand (&), with text characters 54
• ation effects
9ar d 120-121

with Paint tools 122-126
scripts for 120-126

answer command 50
defined 53
syntax of 55

An Ideas stack 32
ASCI1, defined 157

· Index

B
background

adding fields 23-26
defined 157
function of 7
properties listed 149

backgrow1d button, defined 157
background field

defined 157
moving message handlers to 100-101, 105
with shared text 45-47
specifying 46

background layer, defined 157
background picture, defined 158
background properties, list of 149
bg. See background
brush properties, values for 125-126
Button Info dialog box 10
buttons. See also background button; card button

About 46--48
adding to Home scack 15-17
for animation stack 120-121
customizing 11, 30

165

burt0ns (continued)
dd111nl 158

C

I lomc 9-11, 19- 20
Next 29-31
Previous 31-32
properties listed 149
Quit 63-66
Show/Hide 127-128
Sort 49-50
Sound 96-97
system messages sem ro l 48
Write Headline 128-129

Can't understand dialog box 21, 103
capitalizacion, in H yperT.1lk 13, 136
card. See rtlso index card; copic card

adding co stack 29
animation sequence for I 20-12 I
defined I 58
labels for 41-42
propercies listed 149
system messages senr co 148

card button, defined 158
card field

defined 158
specifying 46

Card Info dialog box 69
card layer, defined 158
c.:ard picrure, ddinnJ 158
choose command 131

syntax of 132
chunk,defined 158
chunk expression, defined 158
cl ick command 84

synrax of 86
c li ckLoc function 78-79, 85
color, choosing for fielch 25

166

Command key, in keyboard shortcuts 8
c.:u111111a11d-kc.:y c.:quivalc.:111, ddinc.:d l 58
c.:0111ma11Js. See also external c.:0111111a11d; keyboard

commands
alphabecicaJ list of I 37- l 4 I
answer 50,53,55
choose 131, 132
click 84, 86
defined I 5, 158
defrning new 104
doMenu 64, 84, 87
drag 131, 133
f i nd 82-83,84,87
go 34, 35
hide 48,53,56
l ock screen 74-75,84,89
pl ay 111, 1 12
put 38,39,53,57
l;et 77, 78,84,9 1
s how 48, 53,58
show cards 131,133
sort 53, 59
syntax of 22
visual 21-22,34,35,36
wait 92

comments
adding to ~cripts 52
defined 158

constants
defined 159
list of 152

container
defined 159
function of 37
Message box as defuulr 57
purring values in 38-40

control structure, defined 1 59
Cred its field, creating 44-47
current, dd1ned 159

Index

•

•

D
date function 78, 85
debug.defined 159
delimiter, defined 159
doMenu command 64, 84

syntax of 87
double hyphen (--), preceding comment 52, 54
drag command 131

syntax of 133
dr ags pee d property 131

E
else keyword 84
e1lji[Y,defined 159
e19< eyword, defined 34
encries field. See index
expression, defined I 59
external comm.111d, Je1111cd I ')1)

external fimcrion, defined 159

F
Field Info dialog box 24-25
fields. See also background field; card field

adding text 27-28
adding ro background 23-26
as comainer 40--43
creacing 24-25
defined 159

~ eking and unlocking 47, 48, 80
. oving between 29-32

pop-up 44
properties listed 150
putting values in 40--42
specifying kinds of 46
sysrem messages sent ro 148
vi sib l e property of 127

Field tool 24
fille d property 13 I
find command 82- 83, 84

symax of 87
fonc, choosing for fields 25

function call, defined 159
function handler, defined 160
functions . See also external function

G

alphabetical list of 142-146
clic kLoc 78-79,85
date 78,85
defined 78, 159
mouse 131
rc.1ndom 125
selecte dLi ne 81,85
va l ue 82,85

glob a l keyword 51
global properties

defined 160
list of 150

global v:iri:ihll' ') I
defined 160

go command 34
syntax of 35

H
handler. See also message handler

defined 160
hi de command 53

function of 48
syntax of 56

hierarchy. See object hierarchy
hili te property 77, 85
Home butcon

creating 9-11
visual effect script for 19- 20

Home card, defined 160
Home stack

adding buttons 15-1 7
first c.1rd 4

HyperTalk language 2
symax of. See syntax; syncax statements

hyphen, doub le(--), preceding comment 52, 54

lndl'X

I, J
idemificr, defined I (>0
1 f keyword 84

syntax of 88
: :: stnicrures

adding conditions 65-66
funccion of 62--03
nesting 66

image (in visual effects), lisL of t<:rms 36
index, script for generaring 68-74
Index bucron, creating 68-74
index card 69
imeger, defined l 60
it , as variable 51, 54
italics, for placeholders 22, 136

K
keyboard comm.rnJs, for M.:ript L·dico1 I '>4
keyboard shoncurs

for creating fields 23-24, 26
for editing text in scripts 43
for seeing scripts 155

keywords

L

alphabetical list of 147
defined 160
else 84
end 34
function of 18
globa l 51
if 84, 88
on 34
pa ss 107
rep~at 84
send 109, Ill, 114,147
then 84

labels, script for adding to card, 41-4 2
line brc,tk\, in scripts I 14
link, Jcf,nc<l 160
literal, defined 160

168

local variable 49- 5 I
defined 160

_, Jt _01, propeny, defined 79, 85
locking fields 47, 48
lo k screen command 74-75, 84

syntax of 89
l oc kText property 81, 85
loop. See also repeat srnictures

defined 16 I

M
rre , used for object 47, 54
message. See also message handler; message-passing

order; system messages
defined 161

Message box 38
calling handlers from I 09-110
.1s dcfuult destinarion for p ir rnmmand 5"'
defined 16 I
putting values in 38-40
send keyword in 147

message handler 18
calling from Message box 109-110
calling from other handlers 101-103
defined 17, 161
location of 96
message-passing order and 97

message-pa.¼ing order 94, 95
defined 161

m<:tasymbol. Sec syn Lax
mo..1 .. eDo wn system message 53
mouse function 131
mouseu p system message 14

defined 34
music. See sounds

N
nam, property, defined 77
ne .. mng, 1 r ,tniccures 66
New Stack di.tlog box 6

1ext button, creating 29- 31

Index

•

•

D
date funccion 78, 85
debug,defined 159
delimicer, defined 159
doMenu command 64, 84

synrax of 87
double hyphen (--), preceding commenr 52, 54
drag command 131

syntax of 133
dragSpeed property 131

E
else keyword 84
e~ ,defined 159
e19< eyword, defined 34
entries field. See index
expression, defined 159
L'Xtcrnal comman<l, dd111cd I 'i!)
external funccion, defined 159

F
Field Info dialog box 24-25
fields. See also background field; card field

adding text 27-28
adding ro background 23-26
as container 40-43
creating 24-25
defined 159

~ eking and unlocking 47, 48, 80
. oving berween 29-32

pop-up 44
propercies lisced l 50
purring values in 40-42
specifying kinds of 46
sysrem messages sent ro 148
visible property of 127

Field LOOI 24
filled property 13 I
Una ,ommand 82-83, 84

syncax of 87
fonr, choosing for fields 25

funccion call, defined 159
!unction handler, defined 160
functions. See also external funccion

G

alphabetical list of l 42-146
clickLoc 78-79,85
date 78,85
defined 78, 159
mouse 131
random 125
selectedLine 81,85
value 82, 85

global keyword 51
global properties

defined 160
list of 150

glnbal vari:iblt: 'i 1
defined 160

go command 34
syntax of 35

H
handler. See also message handler

defined 160
hide command 53

function of 48
syncax of 56

hierarchy. See objecc hierarchy
hilite property 77,85
Home button

creating 9- 11
visual effect script for 19-2 0

Home card, defined 160
Home stack

adding button~ 15-17
firsr card 4

HyperTalk language 2
symax of. See syntax; syncax scacemencs

hyphen, double(--). preceding commenc 52, 54

Index

I, J
idemi ficr, <lefi ned 160

t keyword 84
synrax of 88

1 f structures
adding conditions 65-66
function of 62-63
nesting 66

image (in visual effects), list of rerms 36
index, script for generating 68-74
Index button, creating 68-7 4
index card 69
integer, defined 160
it , as variable 51, 54
italics, for placeholders 22, I 36

K
keybo;1rd comn1.111Js, fo1 \U ip1 cdiwr I "i4
keyboard shortcuts

for creating fields 23-2 4, 26
for editing text in scripts 43
for seeing scripts l 55

keywords

L

alphabetical lisr of 147
defined 160
else 84
end 34
function of 18
globul 51
if 84,88
on 34
pass 107
rep,aat 84
send 109, 11I,114, 147
then 84

labels, script for adding co cards 41 -42
line break,. in scripts I I "l

link, dd1ned I 60
literal, defined 160

168

local variable 49-51
defined 160

Jt.or property, defineJ 7<J, 85
locking fields 47, 48
lock screen command 74-75, 84

syntax of 89
lockText properry 81,85
loop. See also repeat structures

defined 161

M
me, used for object 47, 54
message. See also message handler; message-passing

order; system messages
defined 161

Message box 38
calling handlers from l 09- 1 l 0
as dcfauh dcstinarion for put command ')7

defined I 61
putting values in 38-40
send keyword in 147

message handler 18
calling from Message box 109-110
calling from other handlers l 01-103
defined 17, 161
location of 96
message-passing order and 97

mes:.age-passing order 94, 95
defined 161

mct.t\ymbul. Se,• synrax
mouseDown system message 53
mouse funcrion I 3 I
mouseUp system message 14

defined 34
music. See sounds

N
name property, defined 77
nesri ng, i ~ structures 66
New ~tack di.1log box 6
Nexr button, creating 29-31

Index

•

•

note (music), specifying 112, 113
null, defined 161
number, defined 161

0
object

defined I 61
scripting and 5, 17

object descriptor, defined 161
object hierarchy. See rilso mcssagc-p,lssing order

defined 161
objecr propcrcy, defined 161
octave, specifying 112
on keyword, defined 34
o. rd system message 43, 53
operators

defined 161
order of precedence in HypcrTalk 153
in scripts 54

Option key, in scripting shortcuts 155
Option-Return (-,)

defined 43
function in text 54

p
painting, with HyperTalk scrip~ 122-124

. . .
pamnng propemes

defined 162
list of 150

p. to~ls . .
m ammanon scnpts 122-123
script editor and 123
using 32-33

palette, defined 162
parameters

defined 162
for functions 142

parameter variable, defined 162
parentheses (()), in syntax of functions I 42
pass keyword I 07

patLE,rn property I 3 I
values for 124

pause, sening with wait command 92
period(.)

in doMenu command 87
with duration code 113

picture, defined 162
pixel 79

defined 162
play command I 1 1

syntax of 112
point , defined 86, 162
presentation scack, creating 117-119
Previous button, creating 31-32
properties. See also global properci~; painting .

properties; text properties; wmdow propemes
alphabetical list of 149- 151
background properties 149
button properties 149
card properties 149
defined 162
dragSpeed 131
field properties 150
filled 131
hilite 77, 85
location 79,85
lockText: 81, 85
name 77
setting 77-78
~ .,. b e 127

put command
defined 53
function of 38
syncax of 39, 57

Q
Quit button

creating 63-66
quotation marks(" ")

line breaks inside 114
with sounds in a script 112
with tex:c characters 39-40

Index 169

R
random events, scripts for stacks producing 126-129
random function 131

in setting patterns 125
Recent dialog box, defined 162
recursion, defined 162
repeat keyword 84

syntax of 90
repeat scrucrnres 66, 123-124
resource fork, defined 162

s
screen

locating horizontal and verrical coordinates 79,
125,133

locking and tmlock.ing 89
script editor

defined 163
keyboard commands for 43, 54, 154
opening 21
with paint cools 123
using 12-13

scripting. See also script editor, using
defined 163
Objects menu and 5

sen pt~
abbreviations and synonym~ for 155- 1 56
adding commenrs 52
choosing cools from within 132
defined 163
format of 13
keyboard shortcuts for seeing 155
long lines in 114
message handlers in 17
purpose of 14
saving changes 13
statements in 15

search path, defined 163
Search Paths card. defined I 63
,., L0c LcdLi110 fum:1ion 81, 85
selecrion, dcfi ned l 63

liU

send keyword 111
in Message box 109, 147
syntax of l 14

set command
with properties 77, 84
syntax of 78, 91

shared text, defined 163
shortcuts. See keyboard shortcuts
show cards command 131

syntax of 133
show command

defined 53
fi.mction of 48
syntax of 58

Show/Hide button, creating 127- 128
"sofr" rernrn character. See Opcion-Rerurn
Sore butcon, creating 49-50
sort command

defined 53
syntax of 59

Sound button, creating 96-97
sounds

with play command 11 l
scripts for playing 96-97, 102-104, 106-109
syntax for creating 112-114

source of value, defined 163
,\f)t.:l'J (in visual dli.x:ls), liM of' tl'nrn, .)6
square brackets ((1), in syntax notation 22, 136
stack

creating 6-7
defined 163
properties listed 151

statement, defined 15, 163
string, defined 163
style property, defmed 77
subprocedure, defined 110, 163
synonyms, for scripts l 5 5-156
syntax. See also commands

conventions 21-22
defined 163
errors in 2 1

Index

•

•

syncax scacemencs
commands 137-141
functions 142-146
keywords 147
norarion for 22, 136

system messages 10 I , I I I
alphaberical list of 148
defined 14, 164
rnouseDown 53
rnouseUp 14,34,94
openCa rd 43, 53

T
carger, defined 164
r- ff menu, defined 164
rd"t50, specifying l 12
rext, keyboard commands for eclicing 43, 154
rexr properties, defined I 64
Text Sryle clialog box, choosing fonts 25
the , in functions syncax 142
then keyword 84
tick, defined 164
time function 39, 78
tools, selecting with choose 132

u
unlock screen command, syntax of 89
user level, defined 164
User Preferences card 5
. efined 164

V
value

defined 164
putting into containers ."38-40
purring into fields 40-42

value function 82,85

variable. See also global variable; local variable;
parameter variable

defined 49, 164
naming 51

visible properry 131
defined 128

visual command
defined 34
syntax of 2 1-22, 36

visual effects
lisr of 36
scripcs for 19-20

W,X,Y,Z
wait command, syntax of 92
window properties 151

defined l 64
Write Headline button, creating 128-129

(nuex

Script editor
keyboard commands

•

•

Quick Reference Card

HyperTalk®

The following table lisrs keyboard combinations used co ed ir and
format scripts.

Key
combi nation

··-A

• -C

-F

. ·G

I. -H

, -P

rj .y

CJ-period

Enter

Return

Option-Return

Tab

Effect

Select entire script

Copy selection co Clipboard

Find text (~ame as Find burron l

Find next occurrence of same text

Find current selection

Print selection or (if no selection) emire script
(same as Print button)

Paste Clipboard contents at insertion point

Cuc selection to Clipboard

Close script without saving changes

Close script and save changes

Return character- indicates end of HyperTalk scacement

Wrap line without rerurn character ("soft" return
symbolized by -, in scripts. Don't use a .. soft" retllrn
inside quotation marks.)

Format script

©Apple Computer, Inc., 1990

Apple, 1he Apple logo, and Hypdl11lk are registered lrJtk·m:1rb
or Apple Computer, Inc.

Comn1ands This section lists the syntax of all Hyper Talk commands. For more
information about ocher Hyper Talk commands, see the Hyper Talk
Help stack or the HyperCard !!GS Script Language Guide.

add number to [chunk of] container

answer question
ans wer question with reply
answer question with reply I or repiy2
answer question with reply! or reply2 or reply3
c10.JWl r f 1 le tat I of typ file Type)

arrowKey direction

ask question [with defizultAnswer]
ask password question [with defoultAnswer]
ask file text [with ftleNmne]

beep [number]

choose 100/Name tool
choose tool number

click at point
click at point with
click at point with
click at point with

close file ftkN11111e

close printing

key!
key!,
key!'

cont rolKey keyNumber

key2
key2, key3

~ nverc. (chunk of) ,·011t11iner ~o format (and fonnar)

..::r~dte :;Lack stllrkNmne with ba,kgro,mdJ

delete chunk of container
delete [stack} stackName

dial number
dial number with modem (modemCommands}

divide (chunk of) container by number

•

•

•

•

doMenu menu/tern [without dialog]

drag from poim to point
drag from point to point with keyl
drag from point to point with keyl, key2
drag from point to point with keyl , key2, key3

edit script of object

enterKey

export paint to file fi!ma,ne

find cext
find text [in bflckgroundField]
find chars text [in backgroundField J
find word text [in background.Field J
find whole text [in backgroundField J
find string text [in background.Field J

functionKey keyNumber

get expression

go [to] stack
go [to] background [of stack J
go [to] card [of background] [of stack]

help

hide button
hide field

hide card picture
hide picture of card
hide background picture
hide picture of background

hide menuBar
hide message box
hide tool window
hide pattern window
hide go window
hide card wind ow

import paint from file fiknn"1e

lock [the] printTemplate

lock screen

multiply (chunk of) container by number

open [.fileName with) applicationName

open file .fileName

open printing [with dialog)

play sound [tempo J [notes)
play stop

pop card
pop card into [chunk of) container
pop card after [chtmk of) container
pop card before [chunk of) container

prin t field
print .fileName with applicationName

print card
print number cards
print card
print a ll cards

push card

put expression
put expression into [chunk of) container
put expression after l ch11nk of) container
puL expression before f ch11nk of] container

read from file .fileName at start for numberOJChars
read from file .fileName for numberOJChars
read from file .fi!eName until character
read from file .fileName until end
read from file .fileName until eof

reset paint

returnKey

•

•

-

•

•

save this stack as fileName
save this stack as pathName
save [stack) stackName as fileName
save [stack J staclzName as pathName

select button
select field

select text of container
select before text of container
select after text of container

select chunk of container
select before chunk of container
select after chunk of container
select empty

Note: container is a field or the Message box.

set [the) property [of object] to expression

show b11tton [at poimJ
show field [at point]

show card picture
show picture of card
show background picture
show picture of background

show menuBar
show message box
show tool window [at point]
show pattern window [at point)
show go window [at point]
show card window

show number cards
show all cards

sort [sortDirectionJ [sortStyle] by expression

subtract number from [chunk of] container

tabKey

I Yf*' lf'XI

c.ype text with key/
t yp e text with key/, key2
type text with keyl, key2, key3

unlock (the) printTemplate

unlock screen
unlock screen with vimaLEJfect

Note : visualEJfectis any form of the visual command.

visual (effect] ejfectName [speed] [to image]

wait [for] number [seconds J
wai t until condition
wai t while condition

wri t e text to file fileName [at start] •

•

