Micol
Advanced
BASIC

Structured Compiled
Language System
for
the Apple IIGS

Version 4.0

Micol
Advanced
BASI(C

Structured Compiled
Language System
| for
the Apple IIGS

Version 4.0

Micol Systems Inc., 9 Lynch Road, Willowdale, Ontario, Canada M2J 2V6

Introduction
Limit Of Liability

While every precaution has been taken to ensure the correctness of the software and
its accompanying manual, Micol Systems Inc. cannot assume any responsibility or
hability for any damage or loss caused by our software. It is the responsibility of the
user to make the necessary backups for the data and programs.

Apple Computer, Inc. makes no warranties, either express or 1mphed
regarding the enclosed computer software package, its merchantability or its
fitness for each particular purpose. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you. This
warranty provides you with specific legal rights. There may be other rights
that you may have which vary from state to state.

GS/0S is a copyrighted program of Apple Computer, Inc. licensed to Micol
Systems Inc. to distribute for use only in combination with Micol Advanced
BASIC (GS version). Apple software shall not be copied onto another diskette
(except for archival purposes) or into memory unless as part of the execution
of Micol Advanced BASIC. When Micol Advanced BASIC (GS version) has
completed execution, Apple software shall not be used in any other program.

Product Revision

Micol Systems Inc. reserves the right to make improvements to this software and
manual at any time without notice.

The text file INFO.DOC on the /MAB.SUPPORT disk contains the latest

information about this product which could not be included in the manual at the time of
publication. Be sure to read this file into the editor for up-to-date information.

Copyright Notice

This technical manual and the related software contained on the diskettes are
copyrighted materials. All rights reserved.

Duplication of any of the above described materials for other than personal use of the
purchaser, without express written permission of Micol Systems Inc., is a violation of the
copyright laws of the United States and Canada, and is subject to both civil and criminal
prosecution.

Apple, the Apple logo, Apple IIGS, AppleShare, ImageWriter, LaserWriter, Apple 3.5,
Finder, GS/08, QuickDraw and UniDisk are trademarks of Apple Computer, Inc.

Micol BASIC, Micol Advanced BASIC, Micol Advanced Utilities and Micol MACRO
are trademarks of Micol Systems Inc. Micol BASIC, Micol Advanced BASIC, the Micol

Advanced Utilities and Micol MACRO are copyrighted programs of Micol Systems Ine.
Micol Systems Inc. is an independent software developer.

11 Introduction

Copyright ©1988-92 by Micol Systems Canada and Micol Systems Inc.
Published in Canada.

ISBN 0-921270-04-6
Software: Micol Systems Inc., Willowdale, Ontario

Documentation: Micol Systems Inc., Willowdale, Ontario and Redaction Electronique
Enr., St-Hyacinthe, Quebec

FIRST EDITION, July 1988.
SECOND EDITION, revised, corrected, and enlarged.

First printing, February, 1992
Third printing, June, 1992

Table of Contents iii
Table of Contents
Introduction
LAimit Of Liability . uecceerceeriieeeereriieeerine e e ereas e sensssnsesesseenssnens i
Product ReVISION.....cccciviiieieeeeceece e ctreree e erearessne e sesessacnbesanees i
COPYTIZRE NOICE oceeeeetreiee e i ivtieerriessrecesesssssesrnvessesesrassnsesensasresans 1
Table of Contents..........cccerimeevvecreerieerecerereeceeestsseesavonseennssassnsenes 1ii
Part One: Overview of the Language
Chapter One: General Review....... .1
Comments on the Second EQLHONcovecooeecriiie e e cone e 1
OVEIVIEW c.rireievreiecerteee e e e se et aerass e enbaseseseseestesssesanesesesresasessreosens 1
Some Advantages of the LANGUAZE .cveveeveerecvereraervneercnsiceercneimnerenn 1
The Components of the Language Systermccvoevvcrereniersinccsveennns 2
1. The Command Shell.......ccoooiiueemrnriei e s s 2
2. The Source Code EItOrcccurrereentrarescerenserrsensasscrsssaserssesinnens 2
3. The Full-featured Compiler and Linkerccc.cooveereerciicnnninncens 3
4. Full-featured Structured BASIC Languageccococcveervicnvininnene 3
How this Manual is Organized.......ccccovvrveeecvnemnenccncniicccnncnnnine. 4
The Micol Advanced BASIC System Diskscoceeveevererceienneeciereenn 5
What You Need to KNow.....ooocevieiiciiiereceecteeecsrte e sennencrenenens 6
Hardware ReqUirements........cooueoiveevrerecrrsreressseeenressasessesseseesaessasrens 6
Suggested Additional Hardwarecccoveieeeeeceenrenceesseeesnessiennns 7
Run Time Memory Needs of Stand Alone Applications................. 7
Setting up Micol Advanced BASIC on a Hard Drivec.cccocveececrcnne. 7
Using Micol Advanced BASIC with the Findercccoovvveeceevnveniicnnnnn. 8
Using Micol Advanced BASIC With a RAM DisK....cooerinvenccenrerenncnn 8
Using Micol Advanced BASIC With Your Printer.....ccccovverveeveecnnnn. 8
Confip wring Your Printer Using the Control Panel.......cc.ccccoene. 9
If You Need ASSISLANCEcoveevreereieeererieeeceeesaaaeeeeseneasess st ansesanesseerenns 9
Compatibility OVEIrVIEWcvevueeierecieiereeirieerestiessessneesseestsssnessaecsasnnan 10
ADPIESOIE BASTC ...ttt eeee s sareaesesanesseaessnssasersane 10
Micol Advanced BASIC for the Apple ITe/TIc......ccoeveieercniencencnn 10
Earlier Versions of MAB for the Apple IIGSccocccoveveeccereriennnenn. 11
Syntactic Symbols Used in this Manual........cccceeeerereveecenroricrenerenenan. 11
Chapter Two: Getting Started........ S cecsnnenaseassann cosesserssaase w12
A Brief History of BASIC....couoiiieeeeeeetiereeeeceeeeesiesinessssesesreessssenssnesne s 12
Writing Your First Program in Micol Advanced BASIC 12
Entering Program ERAmples.........ccccuviieemeeieresneseereenseresraresressasaranses 14
Suggested ManUals .. cccoceeciirivieereveseeeseerecsesesesesesesese s sssssersrens 15
AcCKnOWIedZmMENtS. ... ccoiererireetiice et een et e a e eaaes 15

Introduction

iv Table of Contents

Part Two: The Programming Environment

Chapter One: The Command Shell............ eestenesmessstarsesnatonsenern 16
OVEIVIEW ...t eetieceee st escestaeee s eaeevssssaesastaesantessesssasansnsaensssesaranasane 16
Line Editing Commandsc..covterieeiereeraeerecrerenisriecernisesssesesnnaescsmeecs 16

Up and Down Arrow Keys (Td) oo 16
Left and Right Arrow Keys (—¢=) womriivivviineiretne e aeerenveeeeon 16
The RettITl KEY ..covivuevvereiiecerieveseieiaeecreteaeceeesaseaenan e e s s sa s nanesconene s 16
The Delete KeY ...oovvivi i ctieseeeetne v aese s s neassemsanses e nseeeon 16
<CONLTOISC (Break) ...cvviveieiriiececetesseeeeeesesesseesesieaasarts e snesenansnss 17
<Control>R (RepPeat) ...cccoeeeceiiriieeeere et eesecnsesenceos 17
<Control>S (Space/Stop/Start)ccccmeriimnerccecenirecc e, 17
<Control>X (Cancel)coueieeeiieeeeiciieeererersaereeessrnssernraressansssessereres 17
Built-in Shell Commandsocceeveeecveiiriieecevieesereveesseerenresessenreesssens 17
BATCH Pathiame.....ooeocoeieeceeiiieieeiccvrsseesessseessessnsessssessnssensessses 17
AULOEREC FULE aaiiiiii ittt re s aeas s s et encanas 18
CATALOG {(Pathname]ccccvcerarerreeiisnserrveessseerroseroresnecsssesesnsas 18
COMPILE Pathname [, Pathname].......ccoccevevvciiiirrecvvecnenesrniceneenes 19
COPY Pathnamel TO Pathname2.........cccoovvveeeeeeeievrveeeeareneasennsrenes 19
CREATE Pathnamecocvioeeeeeirieiic e cetieceecvsessmrrassssseanannesns 19
DELETE Pathnamec..ccoooveeeeiiieieiieecesveeeesveeesinreeessssesnssnaneseseee 19
EDIT [Pathname]c..cocvuveririiieriereinieeenreecneesseesvsssessnesssasssmessas 20
FORMAT Volume_NAMEccocveeeiiirienirieecenraeecarrseesssassssssssensseasens 20
HIE LR vttt ettt e ev e eesbtr s e s et ae e tbea e srne e enene e 21
HOME ...ttt ceeie e eecatsssseveesatasssasesstsssessnrasansaaeasssasassnnesins 21
LIST Pathnamecccocevivicereiiiieiieecveisiaeeessssaeaeesrsessseesesisssassnnes 21
LOCEK Pathnamecocoeeeeeeevieiiiieeieeecrerceetee et es s nevss s saeseracasanes 21
ONLINE ... creteeretreecre e eeretetesasssessrsnr e sbeassensasassnnasesasanessrssassnns 21
PREFIX [Directory NAMEe]cccccceviuveeieieeeecreterassecessnessssraerosseseenns 22
PREFTX €[] cotiiieriiiecieeeecetemecitiececvvanassssreereveesassnesssssessssnseassnsercans 22
PRINTER ...t teieitetieeeeeeeee et e eeesseae e cssbsvasaeneseensssase e s ssnsaasasene 23
QUIT [Pathnamie] oottt ieee e eeereeeeerreeeeaeaesecessnsaans e renenens 23
RENAME Pathnamel TO Pathname2cocceeeeeeieeiernrniiceanne .24
RUN [PAtRnamie]cocceeeeeeeieieiieeeeeeeraissaeesenaesssissescosssssessnenssssssersss 24
UNLOCK PathDame «..ceceeeeereiiiiecceeeecssieiieieee s ieeeaeeseressere e sasseseas 24
Adding Your Own Commands to the Shell......ccooccvieiiiiriieiicneeenns 24
How to Write a Shell UtLHLY «vveecierecieieeerieeine e neiecesreeeasanenenne 25
Passing Parameters to the Utility......cococeeeriviaiiiernirceccenceiinness 25

Chapter Two: The Source Code Editor.....eiccens sesseserecessesae 26
OVEIVICW ..ttt ettt st tesesa e s antaeesanressaasseresbaseasnnnsia 26
Entering and Quitting the Editor.......cocceiveeeivoiiiiiciiereceeeeeeseiene e 26

Entering the Editor (EDIT [Pathname]) «oov e eereeeeeeeeeeeeeenneeees 26

Quitting the Source Code Editor (<Apple>@).....coomervenienernceccenns 26

Description of the Editor’s DisSplayccocooeveeeecieeieerie e ceenremeeieeiens 26
Introduction

Table of Contents v

The Command LINe.c.veeeecerarreerrerrscaessanrrssaserenerssacieesnressanaess 26
The Reference RUIETcouceierveiicceireemreievrecrteceee e stane e senions 27
The Editing Display ATeacvvccceevrecccveninnicnieiniecnvesesnnnenvssnronenns 27
The Data LiNe c.cccveecereceecereniiiiiieessenssniecorenacenressessscnesenvorsessens . 27
The Sound INAICALOTcccuveeeieieeriercneecrersraee s ereenesaneaneeeresararesmevons 27
Basic Editor Commandsccceereereererereesecersorroncseecessnessenencncsvensal 1
Control Command Keyscicccccviviriererererereninecrenseesns e venvecssseseans 27
<Control>B Erase to start of lineccoccvvvcercnnniiiiccninninecenn 28
<Control>X Erase current lineccoceecvemmeeeiiinivmenniciecnecnne 28
<Control>Y Erase to end of line aererversnnarereeeaeeasnns 28

The Apple and Option Keys.....cocvviercrrevrircneccernrie st 28
E8CAPE KEY (FE8C) curereeiiiciiieeericvreveseiecnreressssnsaesesemnasneassanseasensasoncrasas 28
RetUIT KOy vt ctrtarte e et e es s e ree e s s e eseesees s s rnnne e s e 28
Deletion Mode (<Apple>Delete).......cvvvicnneieiecinnicinieensecenas 28
DJete KO ...uviiereieieeeeesieteeecesisrnrreiees i serese s senrseassessnsnesesssnnsasevessssanasse 29
Help screen (<Apple>H or <Apples?)....ccccvvmeniccocniciienciienns 29
Enter/Overstrike Mode (<Apple>E} ..o riorineiiriniariiinicnninnrcenane 29
Upper/LowerCase Mode (<Apple>X).....ooccvevneeercmevvonmiicnovciiinannens 29
Moving in the FUleooccciiiiieeeecieieeies st e caee e s e eessne e s nrmneseasans 30
Cursor Control (TUm—) .. ss s eseseretsns e e ne 30
Move Down one screen (APPlesd) .o 30
Move Up one screen (<Apple>T)..coiruieceiiiceereecccceeeeeerresresaeese e 30
Move To Beginning of Line (<Apple>e) .coccvemrveeenienrnccivacencnennes 30
Move To End of Line (<APPLE>—) .ccrivceriiirireeceree e neienreeeeeneernas 30
Move to Previous Word (<Option>«<) covvicoirienininiecnninnnrcas 31
Move to Next Word (<Option>—)......cevcierirnrenineceierecrrieeresemsonae 31
Relative Motion within the File........cc.occiirrrrieiiiiieenrcecnnaenee e 31
{<Apple>1 through <Apples>9) ..o iiivieieieeceres e 31

Go to Program Line (<Apples>G).....cooerviienccneninseisisnccccnse e 31
Setting Tab Stops (<ApPPle>Tab) ...cvieceeeiererrerencccierieerrerereeens 31
Tabbing (TaD Key)...oocccveveereeieeieeeecratceaienresceessneressesssrrssesssnssnsens 32
Text Block Editing Commands........ccevcerrerrioriieineervrerescaeeerranacereens 32
Copy Text Block from Buffer (<APple>C)....cvvimmnveerinrenerrarennene 32
Delete Text Block from Code (<Apple>D).....coieeccivreccvcennrnrcinenes 32
Move Text Block to Buffer (<Apple>M)cccvnrrivicciiiiiniicneenne 33
Find/Replace Commandsc.ccceuvrrveveroeeicrrarirrrerisserssserssessssssenseesnsees 33
Backward Find/Replace (<APPLe>B) ..vvocarirreriee e 33
Forward Find/Replace (<APPlesF)....oiiciierieeieeiie et 33
Filing CommMAandScvveriiiiirienermeesieieiie s seesisns e enssssbanesessassanas 34
New Source Code File (<APple>ND i iiiereieicecerereinereeesnvie e senens 34
Insert Source File from Disk (<ApplesT) cuocoevveeriovenienerrireseeeens 34
Save, Kompile and Execute File (<Apple>K) .c.covvviveaeenererervrnnnn 35
Load Source Code File (<APPle>L)...cccceirieeveereerareeecrecennenennens 35
Save File as TXT type file (bit 7 on) (<Apple>S)........ e 36

Introduction

vi Table of Contents
Save File as SRC Type File (bit 7 off) (<Apple>T) oo 36
Printing COMMEANASocooveiieceeeeeeereceeeteeceeaeeseeeereese e vrssseesneeaeennesanns 36
Print Source Code (<APPLESP).ttt 36
Text Window Printout (<APplesW). .o 37
Miscellaneous CommAanASooccveeeveeieeeceeeeeeeiteeeeerrreesessnescnrasasssemeaees 37
Convert Decimal to Hex (<APPIe>#) c..voverreeieenvorsonnennercnsnreninnion. 37
Convert Hex to Decimal (<Apples#) .co.covnmveesiinieniininanecciiiininans 37
Version Information (<Apple>V) .o 37
Chapter Three: The Compiler......cisimiomommsismsemns 38
VBT VIBW «.eeeeeccciev e ceetiee e crte e sesesassas e sssssbasassensssseeresassraeesenamnnnearannns 38
Invoking the CompPilervivieciiieiierecrerersrsraraeaeeseseeeeeemeoneessssnne 38
Compiler Commands.......ccocovveeeireiiieecieariesieessessssarermsasssasssasaseeersnnens 39
Aborting a Compilationcoceeceeeeeeierieeiesenreneraeereressesseeseesesssnassens 39
Compiled Listings to the SCreen......c.cooverveeeveeeeeeneeeeeeeveeevees 40
Compiled Listings to the Printer.......occoceeieriieieeeceieeececeeereeeseeen 40
Dealing with Syntax EITors...c..uoiveveviveaeienievesnnsaaacriacansressseseeecosseeos 40
Code GEDETAtIONooevieveeiceeeieetee et ceerrcenreeasreenresesans s e ercasssessasasaseee 41
Chapter Four: The LinkKer ... cecccerecccsseereessessaasssvssaarass creonrenumes 42
OVEIVIEW ..eieeeieeecrii et osas e stae e ceraarae st e sesntasassnsaesassneaebbesesenese s eneaes 42
How the Linker WOrksS.....oo i eeccemrer e e s s e e s e smanae s 42
How £0 USe the LINKeTcccocouiiueeieeiieeeieseeesneersssssssaesreseneessnnseseesas 42
520)T 15 o o) o - TR ORI 43
Chapter Five: The Run Time Librarycceecccmersssseenees 44
Reference SeCtionocccieeeiiieieiieiiece e eee e e e e ee e s srar e 44
The Micol Systems Licensing Agreement.........ccveveveeeiececcecrnveccnnnne 44
Educational and Industrial Site Licensesc.erceeeereeeecerrveeesneeicenane 45
Part Three: The Advanced BASIC Language
Chapter One: Compiler Rules and Directivesccceeeereessens wer 46
OVEIVIEW ..ottt ettt eeseste ot se oo sstnessestas s sasassenasasesesesrasansssss 46
General INformation.......oeeeeiiicceeerie et eeeee e sb e e eeseareraroeenieen 46
Multiple Statemerns per Lineccoeevieivereneecese e 46
Line NUIMDEYScccoeeriecieeeieieeeree e s s svae b et er e e e e sne e esnassens 46
Program Line Continuation Character (\) ...occcccoviiieiciiiinnirecenen. 47
Commenting Your Programs......eeccieeevivesveevreesesesasssesesseressesenees 47
Comment Statement (Old Method)cocveivveeeierereceiieeerecie e 48
Comment Delimiter Characters [{}] (Preferred Method).............. 48
Program Order...........ooiicciiceiceie s teeeass e s e e e ae s s e neees 49
Program NAINE.........coo et ee sttt eeeee e st e s e e e s e ascosaaessnsrenrerarees 49
COMIPIIET DAT@CEIVES...oecvvieeirveiriiireinnrinsreessssesseesseeseensseesnesreesnsesssanssassses 50
ComPIIEr OPHODSeoeeeeeceeeeeceice et st cr e seasesensses e ssarsnesaassees 50
BANK_NO = Integer_Literal......c..covvvveviieeiecieerrrreerniecvieaene e 50
CODE................... e bereeateeeesereseesanrer bataeteiabeaesnstenaararesnnereaan sbesaanas 50
ERROR .ottt ae e s nas e enbssnsnnans 51
Introduction

http:�.�...............�.�

Table of Contents
EXTEND ..ot eseictteieeeeevatseeesseeecsssasss e enesbsaersassassasesssnseres 52
% 1 OO OO U SR P OOV 52
LONGINT ..ottt iitre s eeee et eb e e tbe e e sane et sae e s e reraenneen 52
NOGOTO ..ottt ivetteceeesse e sstesssssaneasssbesnresssasasesessrese 53
N O T ettt et erstae s e e vsssbeans s s essbseassn s sbbanasnenns 53
OPTIMVIZ ...t vesseeesssansseessvessnnesenrs erbeaareeesasessssessaes 54
PRINTER ittt isissete i e sssraeennraesessaaasasnsressseae s messsnssanee 54
VAR ... et re e e s ee st e s s eessmba e s nan s e soesnannne s 54
COmMPILEr ALASES . eveeeriieiiereeerteeeerinresesieeeiraeeessaneessssassrvasaassemasssiase s 55
ALTAS “User statement” = “BASIC Expression”.........ccccoevveene 55
~User StAatement.........cccooiirieiierercreietreee e e reeesvie e st ereaes e 55
Variable Type Declarationsc..ccccveaveeceresucnimnrmmnrssnisienecssissesnnns 56
INT(letterl-letter2) : STR(letter3-letterd }....cccceevvrererenennnnns 56
Compiled LASEINE ...ccceeieeieiririsiecesieeiecevesiseseessrrssesserseassesssasssersssnsssens 58
Program LATIES ..iiieoeeveesiiriieee e cvvbese s eeeareesisban e e seis e e e e ssabeaeans 58
Symbol Table INfOrmationcoeeeecrsreeirrirerirsrersreresraeseseesressssseees 58
Statistical INformation ... e eeeeevvrieeie e recsieeereeereeeseaesneeeeseenseees 59
Chapter Two: Basic Elements of the Language 60
OVEIVIEW «.cceiceietieeeeteeer st e esstessneesbessasasseseaestasarsensensessssans sesnetsssssansns 60
Basic STmBOLS oottt es e st s s e srba s e nrnenbae s 60
DHGIES (0 = 9ttt ectte et e ee e e s e e e sssssaseer e erenssesssrnnaannse 60
Letters (A - Z, 8 = Z) oo e eecereeeee e s esesssse e eeosbar e eeranranenns 60
Special ChAraCtors. ... cvieeis et ete et sear e eeiessaasceeens 60
SEPATALOTS eevveirteerarieetieireceseestressaeseeereeneessessassesssasssnesnasnsesnsaserasens 60
L0 ¢) o) « HUOUOTUSU OO USSRV 60
COMIINA. ... et ete e e e oot s ssansecrasebasassesanessss snessnesnsenses 60
ParentReSeS . ..ccuiceecce et aeee 61
) T e - YOO R S OO RO RORURRRURUPIN 61
Variable NAMESccvceeeiiieiieeecerriteeeete s se e res st seeemeasnesaennae 61
Variable Data TYPeS.....ucccieevrceiiecriesr et enseiassseenesssrassrasesssesssesseneese 61
Simple Data Types ...cccvoviveeeeecereivieincenns eeeererenraeenrae e eearbraneaennrs 61
BOOLEANS. ..ottt ae e e s ss e s e s saan s e ernaanes 62
L aE 7YY o T OO ORI O RURO U SPRRT 62
ShOrt INteEErS ..vovviveiie ettt cr et cesre e vesnn e aeer e aanne s 63
LONG INEEEETS ceeieieeeeeeeriiireeeineee e teceaaeensseasraesesssessesesennnen 63
Real (Floating Point)ccocoicuvivieiiiceireeeeeesae e essecsneeeeesaee e enane 63
SINZIEe PreCiSiOncoiiiiiieeeeceveieciceee e sseeeeeeissvaeresesesnsasnennss 63
Extended PreciSioneecveeveveviviccieiecenrecevenrresesaesanesasesens 64
Scientific NOtationcccoceivvveiiereveiieieeeireniesieeerersesseesseeesaens 64
SIS v eeeereeteenre et ettt et e sttt et e s aee e eeeebesanaaseseeesessarasraressenannene 64
B ALIC ShOTAZE. cc v ivvieeiiieie i et cveessaeee e e e eeaaeasaeeretsssssearmrtsresaens 64
Dynarnic String Storage.......c.ccocvvvvvivececennne eetrrareaetasastann—natananas 65
Structured Data Types: The ATTAYccovueureercveiiceersese e ssseesenensnas 65

Introduction

viii Table of Contents

DeClaring AXTAYS . ..c.eeieeiceriee et e e e e e er e tat e s s e aesee s e e e e eiaeas 65
Multi-dimensional ArTayScveeeeie e e eeeeseerenenee 65
Array Memory USAZEcccveceeeiiieeeeeeereseeeeseee s ssieeecian oo enenansanas 66
ArTay NeStInG ..ottt e ere e s e r e sb e e rasenns 67
ODEIALOTE ...ouveieiciicicreee e ceeeseeeeie et e s e ee et s ctasesee s esnsansasenanesassnsenebeeraneras 67
Arithmetic OPEratorsoveeiciiiieeeiiesrie e ecer et cneesecennres 67
Relational Operatorso..covevieiiviie i ecee et sovecamreneecene 67
Logical Operatorsoocciecerirrerceiainnin e esseses e e staesaesennnesns e 68
Evaluation of an Expression: Precedence Rules68
Hexadecimal LiteralScooicecreciieirieiscreeceeeecer e ceimas s e aee e s e s e 68
Mixed Arithmetic EXPressionscc..ccocovvvvieeerresesesiesssesesreseeeesneeens 68
Expressions with Simple Variables.......cccooccveniiniinniiiis 69
Expressions with AITayS.....ccoccveeieieieiicricrresenicieneserrin e eeeeeeevessneees 69
Simple Variable Declarationc.cceceeeeevnevevvineeesisanns etarere s aainaaas 69
DECLARE Boolean!, Integer%, Real&, String$.......cccoccevevececenn 70
Variable ASSIENIMEntS . ccouiiieeiieiiiieeieeeeeeeesaiiseeeseeeresttrerseeae s e ssnsarasrares 70
Initializing the Data SPaceccccveveiieemvecveieeecreeerrees e crar e s e e 71
CLEAR ..ottt e etreeeeae e sin v eesnbe s et e saarea st ensnsnaesssstaeeneaesane 71
Chapter Three: Mathematical Functions 72
OVBIVIEW ettt et e e es st e s et e s esn e sensbesnnresansbe s nbesnan 72
General Purpose FUNCHONSooovreeiiieccciecec e cer s e 72
ABS (ABXDI) eviririieeiiieiiieeeestirer e st ae st e e s semraasseeseasssaesse e e e enaes 72
EXP (ACKDE) coveeeeeieierer e ite e s steeeera s seeesrassveseserersssabseessesranesonsanees 72
IINT (ACEDT) cervrnienrereeiestiiee et e e eneen e s sstsaserernrsessasessesnssane s aaneeneenees 72
LOG (AEXPT) cueeceiaiiriiieineeererree et sesees e saracie st asse e seeaesessrrnonses 1
MOD ettt e et et ema e st s be e s et e e e s 73
ROUND (AGRPI)...cceeitiierirceeirererareesesiesessaesessrsessssesaes e saeceseesecmmensseas 73
SGN (ACXDPI) e cvereitiriiiitieetee et crveeen e seseseseesrereraes v e ere it aeaaaes 74
SQR (ACKDYT) ittt ettt aeeaae e ee s s s eeatsearae e eaeraearanes 74

Trigonometric FUNCHIONS. uuveeee oot ceiirsere st ctasnssnermssssnnsnssssnnsnns 74 -
ATN (ABKDI) et tiieeieceei ettt et ee et eeeteseeete st aesssaseaeaeaassrerarannanns 74
COS (ABKDE) «oietieiiereeee et eett s e et asstasses e armtasaetesaenanesaatansasaesansns 75
STIN (ACEDT) cuvveeeereeeeemeieceeeiseieeiitasse e e e st aeemsssesassesereeeessssassrsnseassseans 75
TAIN (ACKDI) cuetieecrreeeeeeeeceeramseseseirresreraresesenssassnesasaesaanseseaasasaness 75
Radian/Degree Conversion Functions..........ccocieeeevviveecveiennnnevennens 75
Chapter Four: Strings....... eteatsebeateseeetenenranreretestasrrnersesarasisnsanransassse 76
OVEIVIEW <.ttt ettt et ee it e eme e vanssaasesaesrsesnsa s anneensrenns 76
String FUunction NOLES......cov.eeeeeveireceeeeectee st eesr e e erseee s saeenans 76
The ASCII Character Set........civeivriiirieieiiieeecesee e e arre e sriesvesr e 76
SEring COMPALISONScooiiiiiireeeeeee et eeee et eresas e v e aasanerareneaeanssenee 77
String Concatenationocooiiuiiie et et e 77
Conversion FUNCtiONSccoc.oovieiieceeieiie e eeree e ee e seeene e 1
ASC (BORPI) ctiitieere ittt e e st a e v ae st s sneesssabenrnnbeamsessnaens 71
CHRE (A RXDT) et ieeeeeaeeeses e e aeaeesteeate e eeevaemsssesaraeannanan 78

Introduction

http:�..............�

Table of Contents
LEN (S€XDT) 1uviereiceriireevrrnrersrreeoisarasssesssaesseessseeranarsssessssssescessssssonsesans 78
STRE (ACKDI)1 cnvreriviciervisrvessseeseieieiessseereesseessneassssssessasssassseransasnerasoas 78
VAL (SEXPT). tteecieirriirreiorrianaassaeriissssesssssesnessesessesssessssseasossneeeseseasasss 78
SErING SEATCRES «oovneeeieceeie et cerere s rtrsse st ae e e errenesssbas e sbeee e nneeane 79
INDEX (SubString$, String$, [AeXPr]) ceceerereneecreiereeermrereeesrenaans 79
String Manipulation...........ccvviiveerereessmrorsesasseesesase e erssesnssinssssssnnsees 80
INSERTS (Stringl$, String2$, Pos_Number)c.ccocevrvrcrrieriionans 80
LEFTS (SVAT, ACKPI) c.erieeeeeieeieeeeveeneressessesssessaessesnrsrensssssssesssessesnssens 80
LOWERS (SVAL) ..o ceectieee e eeeeveesessaeessssenseenrrnas e 80
MID$ (Svar, Aexprl [LAeXDPI2])..ceiiciverrereeaeaerasaresreerssesaesiosesenenens 81
RIGHTS (SVAr, ACKDI)...cciectieeiieceeeieeieeeveerrreseesrasesassranseresesssnsssssone 81
UPPERS (SVAT) oot ivviieivieevecvieiaveceveeeteeeeeveesanssssaasssanssssssasssssssesnas 81
System String Functionsc..oveeiiiriecee e esr e ereceans s 82
DATES ..ottt cre it ssstesrissssassseste s eeneeereassassassssessesssesnsons 82
PREFIXS ... ee st ie st seee e v eevasesssesnssransaensmeassbananes 82
TIMES ..ot et eaees e e ee s aeee s nttesssntsanassasrsssr rersrasbensasaannn 82
String Garbage ColleCtionc.vi e ieceeeeeeeecectvesseseeaessseeeersrererersesann 82
FRE (0) covteeitmiicetmrecinieeeceneerertrees e resessbesesssseassseanerensrssrmsnesssnsssssasaasnne 83
Chapter Five: Making Decisions versssessnsersesare 84
OVEIVIEW ..ot ee e eteeseeseteer s vsastaessntsesnssasantne e ssanseesbneesane 84
Program Indentation.......cccoeeeeeeeieoueiieieiie it cesrieiesie e e eser e s en e ees 84
Single Choice DeCISIONS ..oeveeveiieieiiriraeiieeeee e eeeeevesrserssisssnessnrsassssssssssnes 84
The IF Statementcccuviieeiieriiiecirree e ereree e crssssse e e esnns oo 84
SIMPLE TE ...t ee e e eeve s as s e e s s e rane s snseseaeann 84
Block IF.. THEN..ELSEc.ccctiiiieeereeirreeessserseassssrasseresssnsesanas 85
Multi-Choice DECISIONS ...cc..eocuearvieririinvieisieeereesneeseseesebesasssssnsnsssssesees 86
The CASE_OF Statementcocvuivviruimeccnnaainieneererererresesssesesnseneeens 87
Chapter Six: Basic Input/Output of Informationeeeees. 89
OIVEIVIEW ...ttt e et e e e eae e s e eeeneeeeaabassestas s e sasesssnnsae s ransenns 89
Data INDUL ..ot sttt e 89
Internal Data Entryccccveeeenanenen. eeeeerereeeeraereerreararaaatataneaeerenenraraes 89
DATA Var [[,Var}]t svae e ee e e ee s 89
READ Var [[Var)] oo cae e e eeervasnes 90
RESTORE......ccociiiticieicemeenerrrcerveeemreassasessaessssernrasae e s eae st s sesenans 91
Keyboard EDLTY cueccioceeieeieceie et e ctsesstaesssessesnsanrs e e esnssaes 91
GE T SVAT ..ottt e s e s e sesevssmressbessabeeabsssesneesseenrnsabas 91
INKEY SVAT .t eieorerieee st ie s e cosmrme e s s st s aeae s nnnes 92
INPUT [(“Prompt string”;] Var [{, Var } e 92
String INPut RUIES ..c.oiiiiecccece et srare e 93
Numeric Input Rulesc.ooovmiiieeeceeere e 94
Entry from Other Devices........ccooovvevvevevivceneneierevesneean e eeeeaereaan 94
INSLOT (SI1ot_NUMDBET) ..eeiiieireireeer et e sesvimvecscacieseaeseseareeaeeens 94
DAL OUEDIIE vttt et ee e e e e evan e s se st s esaeneaesenereeeeesanons 94

Introduction

http:Input'OutputofInformation...................�

X Table of Contents
Screen DISplay Controloooeriicvieceiceie e crreae s e ranessmae e e 95
DELAY = ABXDY .oiioiiiieiieeerecretevee e s sraees s e ne s s enasenre e onesnenas 95
HOME......oooooiovtierie e etie e eceeee e aeceessesaestseenae e sesessaeasssesnmeastaans 95
INVERSE ...cueeeieeeeeirrteiestmeeessas s cesateeeeescassesssssseesonsrssssnsssnanraneseas 95
M _TEXTeeeeveecettaeeceineeesnsresaetreceessrssasssasssrnessassbeassasaeernsasens 96
NORMAL.....oooiooie ettt st st essistas s st aeseseeesesnsasassseessrnsas 96
SPEED = ACKDT ...ccvvierrrevrriienreseieaeraeiensisesessste e renesnsessssssssessssase 96
Unformatted Text Qutput.....cccccvvvviiicriiiiiieseereeveremeree e rrese e 96
PRINT [Expr] [;] L] [EXDI] ciireeeeceieceeeiereeee e rreeecanasene e e 96
Formatted Text OUbDUb. ..ot e eve e 97
PRINT USING Mask$; (Expr] [;1 L1 [EXPr] .veeceeeeeieereeenceeee 97
Cursor PoSItIONINGcooieierieeceiecteieeeiecineeernereaes s eeseneanresssnessnsesens 99
POS (A BEDT). e ctieetieeieeree e reeeer e re s er e s e s esesr e essneaessaesanos 99
SPC (AGXDT) .ceneeeeieeeemrerteeiaeeeereer et v v essbens e s s eersssnsesasesses e srsenns 99
TAB (ABXDE) eeveeeieeeiiirreteereeereiesasaanercsssvsssesseaeesanessarsssessneeessasass 99
HTAB (AGZDT) cuvieiiireraearcraicentrsrreeessenssrvecrnseessacensssssssssssesssssessseaons 100
VTAB (ACKPT) c.eeieeererreiei ittt cesssesseeaenurestas e brassnsesssnasssnsssnsascssness 100
Output to Other DeviCes ...covveieiieceeeeeeeecerveeisreeeeeeeseesr e e e nesnenns 101
OUTSLOT (Slot_Number)......cccovvimieiiieiieiieeeeeeesiererssesesseseenes 101
PRTON .ottt cnais s s st s e es e e an e s b e aabeas 101
D G AU UV RSO UUU U UUSUURUPRRNE 102
Chapter Seven: Disk Filingc..cciiiieensuecrcesssscssssesssssassasasssrens 103
OVBTVIBW ettt e ee e s e e e e b e aeseneses e b s antesebasee s saananas 103
FIle MANAZEIIEI .. . teeveeueeeeierimeiaeeaeseeseeaeeessaseeesesssrnreseeesessaessesneneerens 103
AT S ettt e e e s e oo ae et v bt ea s s eneeemeenssanasesassres saasan 103
COPY Svarl TO SvAr2......occcceiieeereeeeceieessiie st e aveensssssassnrseeessaas 104
CREATE SVAT ittt ettt et eset s eesesstssssssa e sanreresasasnsreransess 105
DELETE SVAT ...t sesnrsss s saae e e sn e s s 105
FLUSH ...t ee e e es s sa s ses s snnnas 105
FORMAT SVATccvvvevieeeeeeieeeereectae i ieveerressaasssssssressenseoassseeseesreraens 105
LOCK SVAT .. cerrteecvvieteierressressintcsiastessaseseeeeersesstaesonesessssssresaseseseess 106
ONLINES ..ottt ces e sasse s e e et aan s s er e e sesanens 106
PREFIX SVAT et eeteseesae e rnevees s aesssasnnss s seecsssaenenens 106
RENAME Svarl TO SVAT2 ...ccoovevvrecere et eeceereeee e saee e s ennnaes 107
UNLOCK SVAT ...ttt svte s e snssssa s s e s snensaes 107
Direct Access to the Operating Systemccceeeeciivcrieniieciecre e 107
GS_OS (Operation_Code, PathName$, Integer_Array% ().......... 107
General File ACCESS .o uieceiccetie it ecie e ebe e s sraessre e reneesaenae 109
File Access NUIMDETc.oiiivieeccee ettt et ee e eree e et esanaenns 109
APPEND (File Access NUMDEr)...oocooovievriree e eeetee e eaaenans 109
CLOSE (File Access NUMDBET).cuivariieiiriierreserecevessresseesseesserervessseanes 109
FILE (SVAD) ittt v st et s e asbs s e emne s nnesenne 110
GET (File Access Number) Svar.......c.eeeccveveieceecrenenene. fvrreaneens 110
INPUT (File Access Number) Var [{,Var)]....cccccuuerereeeerrecoreesiansans 111

Introduction

Table of Contents xi
OPEN (File Access NUmMbBer) SVAT........ocoaerrveiveneeenrenreeresaeronerenes 112
PRINT (File Access Number) [USING Mask$;] Var{{,Var}].......... 112
ROPEN (File Access NUmMbBeEr) SVAT ..ocoociiieeeeeeceiiieeeeeetereseeeneeeeras 113
WOPEN (File Access NUmMber) SVATccccvvcviviiiineeeeereesceeeeevvnsesees 113

Sequential File ACCESS.....cocovveiririeiceieeie e eertrerse s eeesansenssssssessssrannneas 113
EOF (File Access NUMDBET).....ccviiiieeeiecentneaecessenseseseenreessessssaneness 113
Random Access FleS...viieiiiciecceteesee e cessbeaessmeeses s asenneenssansans 114
SEEK (File Access Number) Record Number, Record Size........... 114
Chapter Eight: Control of Flow 116
OVEIVIEW ..ot eeertecbeert et ee b e s e sa e ne s e osbeamsnanresasesasesrnsrabantan 116
Program Terminationccvviiiiveieeeeneerersesaeeeesnresasseraesssss s ssnseesenns 116
EXLEINAl FIOW ..oovoceiriie e ceeteeesraeesete ettt essmessnss e sansmna s b stasnan 116
RUN Pathname.......cocciieiveeeiiriiee e cciier e eesseenseeeneseaanesesonnnes 116
Flow Interruptionc.oociieeieeieeecieccceitieenecne st e cmeeeeeecnvevanenreesnraosens 116
END ...t ceeee e cesnbe e e e s se s e tese s asssaserssasaranarenrennnesesabnresssans 116
STOP....... et teste et e eateesreesssasersseseneeessasasasensssansassnsrarassans 117
BYE .ottt ee et e sn st s v st bt s anne e b aaeeenre e saaaann 117
BranChilig......ccoveevirmieeieie et ieees s et et e sn e sbbe e e s b e s neeaensessaneane 118
The Routine Declarationc..coeecieeceieicieiieiceeeevsesesrereereasessseneens 118
ROUTINE I ...ttt ceeeeeceevaaanre e vvesasnseearabasessesenes 118
Unconditional Branching......cccccececveieiieiineneeseeesseeeseesressrvessesennssenes 118
The Dreaded GOTOoviviiiiieeceeeette e cer s e e srae s semeeeeene 119
Selective Branching...........occoveeveeciiiercereciiisieisseesesssessaessssessasseesoess 119
The ON..GOTO Statement.......ccccovevvriviiiseieieirneeeereeessaseeecreseens 119
LLOODS ceveivtereiertieiceereieieseeete e mreeetseas s e s e s e s nn et teeannessaennrsbbaasesnre sab senenees 120
FINIEE LOOPS oieeiiecieiecreecrteseeie e eremresesse e e aea e et e eebenessnseanes 120
FOR .. NEXT LOOPS weerecveeiiiiieinernrirerreesianaseaereressssassssesssesssseesnes 120
NEXT Loop Counter.....cucccecoirirreeieeeeineserecsescsaseeresseessaaressseens 121
FOR .. UNTIL LOOPS. .. cecuiaieeeiireersecnienerensnessesaearseesmensasssnessenns 122
Conditional LoopSc.iicieeaeereereriteseaiieeanisaeeseseesraasesass s nsesesans 123
REPEAT LoODS wvvvvveerrrenerieennnee. eeeeerreeaireere it et asbeee e seaasareaernas 124
WHILE L00D8....c.utieeeeeveesiriiseeseasaseeeerecesesaseserensssrsssssasssesnassens 124
Chapter Nine: Modularization....... . .125
OVEIVIEW ..ot ee et st eeeste s e e ssasaessseneneee st antessaneeeenessane 125
Advantages of ModUlarityccccovvevriieieirieecreveuseaiecneeereeernesnsenssenseeses 125
MOAULE TYPES .. vervreviririiirrimrie e ettt seebe e ers e senesusssssnsesessassassssnensesnes 125
Module Identification......icueoreiiieiceee e eraeseeeneeresteessnee s essessseecene 126
Program Order with Modules.........cccceveeeeeeeeeeeeeeeeeeeresereeeeeneeeeeaenens 126
ROULINGS ..oceececeeeeeeees et s v s b er e e e raraestves e st s smnesane 127
Functions and Procedures ... ecceereeeeeestneeeeeseeseamsesesenoseesnses 129
GENEPAl RULES ..cocoevivieeieeesiceeeeteeeeeeeristoseseseseneeeese st saaesevonsearsnrsenes 128
Global and Local Variables.......ccccoocviiiviieineee e coveseieee e eieeesnneans 128
GlobAl VArTables.....co.viivceeveeeceieeeecre et svia et e easneassnnesns 128
Local Variables......coccvovveeiecieeeceeeee e e 128

Introduction

xii Table of Contents
The Optional Parameter LisSt.....cccocveirriiiieeciieeeieeessine s snrene e 129
Ways of Passing Parameters......co.occeonvieeevcenieneiecccessenensassavoseas 130
Passing by Valueooiiiiiiiiiiiiiicennreinrec e e snsereeaaenns 130
Passing by Addresscceeeecieiinrininrceneciinii s 130
Function Definition ...t se s e s ee s srenniene 131
Procedure DefInitionveeecvevveiriiemeiceeeeeeerererreseiieaeeessmrers e sssenenes 132
Explicit Variable Declarations.....ccccoecveeevercniiiisiseeeeevesessssseasannens 133
Pagging Control t0 a Subroutineoocvvimeeeiceieieiiceccrreiereer e eearees 133
FN Identifier [Parm-1, PArm-n]cccooovereiiiiemieciriiececsvcrecererrenenees 133
GOSUB Identifier [Parm-1, Parm-n]ccccocvriuiireercnrreesssnneenens 133
PO et et ae e et s r e sra e e ae s s 134
PERFORM Routine_Id UNTIL RelOp cccovreerevciieesireeerenneecenae 134
Computed Routine Selectionc.ccvveeivecrerereeireniiee e srveervrerenesenniens 135
ON Aexpr GOSUB Routine_Id1 [{,Routine_Id(n)}]...................135
Module LIbrary USAZEcc..ceocvvveevveeeeieieciiinerrcetveee s sarssessenanns 135
Creation of a Library of Modules.....cccccuimrrreeresvecceacrerreaosneaesevenne 135
INCLUDE Pathnamec.cccceeeveeeeeeviisiiaeeiiriececnneeesineesenneressas 136
RECUTSION ..ottt eeseebaeeeeeaeeessre e ssste s arae e e ssevassmmrasnns 136
Chapter Ten: Graphics 139
OVEITVIEW ..evveevieieeeiecceeecieceeet st issasseessssesnsenesserans s besannsnssssen sensbenssnnanans 139
Low Resolution Graphicscvvveveiieieviveiciniecee e cevveorieseaesneeaneens 139
L€) U T s TSROSO RO R 139
COLOR = Color _NUIDEToeiiiccciirieceee e veceteisriieeeee e vvass e s snneeenras 139
HLIN X-Coordl, X-Coord2 AT Y-Coord......cccocvemmmrrimrereresescnneenenras 140
PLOT X-Co0rd, Y-Coord......ccoovvuerririmmrreeeeeeeceensesesssnseseseessssssasesnans 141
SCRN (X-Coord, Y-Coord).....cococeemereeereimreieeeraeeieececsrssssssesvecesranes 141
g D 4 OO SUU U RO OTO R TPTRU SRR 141
VLIN Y-Coordl, Y-Coord2 AT X-Coordcccoeovieeeirieeeeerereresirnrnens 142
Super High Resolution Graphics........cccvveeeviveveeercureeoeoseessseeseeerereinas 142
HGR and HGR2uoie ettt se e v ae e smsans 143
BEKCOLOR = Color_NUmMDBEr......c..cooovevvererieeieeecrevrseeiereseeesinranes 143
HCOLOR = Color_NUMDBET ...oveeeceiieiireeceeseeeeeeeessraressisesesesmnessssnses 144
DRAWSTR (SVAL) ..ot es s vt s seesse e eas e s s s veaseenresnns 145
HPLOT X-Coord, Y-COOrd.....coocvvivrrireeiecriiernreereeivieisnsesseessneennees 145
HPLOT TO X-coord, Y-CoOTA ..veeeeererirriirirriisiireeee e sevessassesseeernveesssnes 145
Super High Resolution SHapes........cccevveeiemvrramrrrceirecieeceeenevenenns 146
Joystick and Paddle Controlscocueeeivieeieieieeieesseeeeeeeeeesesesreennes 148
PDL (Paddle NUMDEI) ..ot cietiiciee e e cessanssssnenessnraenens 148
Paddle and Joystick Buttonscooeeviveeeecini it 148
Chapter Eleven: The Sound of MUSIiC ... eecrerererecserenensssrassosee 149
OVEIVIBW .ttt et e et e s e et e e e e e es e s aneaeneneresaasssananne 149
AUQIO QULPUL ..ottt vesaes e sebe e e mesaennees 149
BELL .ottt ettt s st et ssane s st e e aaanraan 149

Introduction

Table of Contents xiii
SBOUNA. ittt esbevstas e e s areraerer s aesrbeeeaneeraaesnbaeeseenanens 149
W aVEOITIS. ..ottt ae s e st e e eenebbssesaenae e s ee s saseanan 150
The Default WaveforDvvvieiceecciieirieeere e veerrevnveieeesessasaseens 150
Creating your own WaveforTovveveeerverveicieerinercrveveanasaracereesens 150
WAVE = Wave_Numberscovvvviviieie e e e ererevanee 150
Making the Soundcoueeevveciiiieiiecccitesetr e ervatsessts e seeanrnraeeens 151
NOISE (Generator, Pitch, Volume)cc.coccveeeveviviiveieiaaearerernene 151
IVIUSIC oeuiveverireniireccninisiensi s saeseesssseesesreeesesnee et sasesansnsnsssasarsvassersnansernrnossen 152
INSEIUMIEIES 11ivveviiciiii it ettt e e e snre e sare s e sreee s s ee e naesssbanea s e ersnns 152
Default Instriment.........occiiveieieieceievsereeeceeeercernesssnarasesessnnssons 152
Creating Other Instruments.........ccueeeeveiereeiecreneeerreee e e eeseee s 152
INSTRUM = ACKDY 1vecevrererereaarmrareraresssnesasssssenesenssossosessacsseess 152
Making the MUSIC.....cc.eiveceveeeirere e reeeete e eie s e e vassesseesse e ereeesssesscens 156
MUBSIC (Generator, Pitch, Volume)coocoererriienvieeecaiacveveninnns 156
StOPPING SOUNASociiieeiie et cecetecerarssssisessssecssssssaassssassrnnarassstassas 157
QUIET (GEIETALOT) weveeeceeeiececrieee e eeeeeeevvsssassesnsaeresessesrasaesssnsesssesens 157
Turn Them AL Offc..oo e resvie e e s sreestb e s e sere e 157
SILENCE. ...t ieeceeececeteseere e cesvsssessssasanseeasnee e sesstsasssnenanssaasssss 157
Chapter Twelve: Creating The Human Elementccceeee.e. saeeec 158
OVBIVIEW ..eeecittiecetecaie et s saaresestaseeeeneeeanssssssassssesaseeraensantsassnsennsersnaane 158
Pseudo Random NUIMNDETIS......c.c..vivvvievieeiieee e eeeveesiisesseresenesesssesasses 158
Integer Pseudo Random NUmbersc.ccvvvveeivivcienriecsinmnenreeenns 158
Integere = RND (AGXDPE) c..coiievcemiriererrreerssessrsinsssineseeevessesaesscences 158
Real Pseudo Random NUmMDBETIScoccvvrvvvereeiieiieieieeeie s essesasae e 159
Real& = RIND (AGXDI) ..ccuiiiceieceeierisrieeeieeeeeeesessnssaasassnseseessnes 159
Controlled Uncertainty™cooceeereeeeeeeisisesaeaeereereenesssiesseaesnssnssses 159
Setting the Uncertain Condition......c.cccoveieececrrerreesiiessreesenssrnes 159
Chapter Thirteen: Direct MemoOry ACCESSveerereessssnsesaecrarasess 162
OVEIVIEW ...t eeete et ee et sa e e snsassss e em s eeeesssass st sansenseantensrans 162
Examining and Changing Memorycecerevenseerrrereeannen. eere et 162
PEER (AGEDT) o oitiieeieiceieieeeeeeee et sstesvssssssaeaeanesonessesssessasnsrsrrbnsssaesan 162
POKE AeXPrl, ACXPI2 ..ocoeeeeeceieeerieeiectveaesraseeveeeeererasssesiesaasrennevesses 162
Finding the Address of a Variable or ArTayccoceeveveeiviecceeveerrees 163
ADDR (Variable [(1) .ovo e eeeeeeeaieeeeeereeeeeeeeeeeesasseaessceresensanesesesasssnnns 163
Memory Images and FIleS.......ocuciceeeeeeeeeeeeceeessasansoereeresnassssessssssrans 164
BLOAD Svar, Start_Address, Bytes_to_Loadcceeceevvieiienneenn. 164
BSAVE Svar, Start_Address, Bytes_to_Savececreeeeeveecierenns 165
Memory Managementccc.oueeereeeeieeseeeeeecsessesssasseeeereonssasessessnns 165
The User ID NUMDBET ... cee st esasessenvsee st ceseasensessaeae s 165
GET_MEM (Handle&, Location&).......ccoeemrereverrrrnsrversienseensenns 165
FREEMEM (HABRAIE&)......cocveiiaeeeeereieeieeeeeeestsasessasessesee s canesareennan 167
MOV_MEM Start_Addr, Num_of Bytes AT Dest....... preresrearbrnras 167

Introduction

Xiv Table of Contents
Chapter Fourteen: Run Time Error Handlingcccoemcecseanens 168
OVEIVIEW ...ttt ettt e ieestesesase e aesesobreanesassssssresseranse s annrns 168
Handling the Error.....c oo essenmecnasesererenernenaesasee s 168
ONERR GOTO Module_Id......covvieiiimiimreieeee e eeererraesenearaieasnnenns 169
RESUME ...t ceceeeeeceeeerree s s estassesssa s sssssassnesessnrnsssssessssnrassrn 170

Part Four: Creating the Apple IIGS Desktop

Chapter One: Desktop Programming ... s 171
OVEIVIEW ..ot ceaesee e e e s b e s osbassassasat sessassansensanesnssessnsssnseeasnras 171
The Desktop ENvVILODMENt.....ccccoeiiiiiieieeieieciieiereeeeve s eseeeesereeascneeas 171
Desktop Commandscoecccciiiiiieiireieecececere s esssersasesseneseee s 172
Monitoring the DesKtop ...c.c.ceeeeieeiceei et 172
MOUSE (Integer ATTAY { }ooeeeeieceeeeeeeeeecenevececeessneereesasnnssesssssesenenan 172
Chapter Two: MEIUScccveeeerressrsassesassnanssssasecsssersesses veseasssescranesse . 174
OVEIVIEW w.evtreeeecnmeenreeeeste e e verevecatsessssasssssasasassssssreessssssrsssnsssssnsrarssns 174
MeERU SPECITACS c..ooeieeererreieieeece e enrerirereresssasssestsesrser s ebesssasseasasraressined 174
Defining @ MENt .. eeeic e eeieieeeceveeireiessssssssssssesasnsesssnrsssstssssssssnassnreesrns 174
Menu Definition SymEax.......ueerieciieirereeeiereerrrrnessstsssesseessessnnes 174
Menu Title and Item Identification Numbers.......cccceeeeeereecnvrrrnnnn 175
N - NUDET.......viveeieetecceeeceeie e eestveessreseaesnasssnresresebasessssensaeanes 176
H - Hexadecimal......coeeeieeeeiiiieeeeececiiece e ee e se st e see e e 176
Menu Attribute Characterscociuviciiiceceie i seseeseseeeeeveereeees 176
* . Keyboard EQuivalent........cccoiiiiiiiieecneeeceeveeseossessenreeeeneneeans 177
Specifying Defaults. ..ot e s e e 178
D - Disable and Dim a Menu Title/Itemcooeevveeeceeeeenee 178
C - Item Selection INdicatorcccccevviverrvicenaiiniirercneien, 178
Separating Groups of Menu Itemsc.ccvvearerveceeerserecneneeans 179
V - Underline ..o ieeeecciei it ceeeeee e ree st e e e e sannenen 179
- (Dash) - Dividing Linec.coccerorrrmrrerreeseiriesenenen ererriraen 179
Font Style Menu Item Characters....c.coocevvvvceieiecereceeeeee e 180
B - BOLAfACE......uvceeirreivetieiervvisraennt e cvcsiees eeverenaeerenasenrenans 180
I - TRAIICS ettt e srce e sae s st are e e e esaneseesnsane e 180
O - OULINE coecvvece ettt ee e e e s e sr e eabaesssassansesnnas 180
S - BRAAOWeveiirrrree et esrets e st nenavs s 180
U - Underlme.. i et ieoeeeesaee e st seseeeeesassesesssesrenes 180
X - Restore Menu or Item Color(s)ccccoverveirenriieesincinnnns 180
Apple Menu IHemseooi et e 181
The About Program_Name Itemccceeiviieiieiveeereeenrerecenns 181
The Help... IEem oceiireeere et sven e sea e 181
Defining the MEMU .ooveei e eeeev et s s eeseeemesenenesesrsnansans 182
MENU (EventRecord% (,DesktopArray$ ().erceeceevernerenrereens 182
How to Use the Menu Control Numbers........ccccooveeeveeveeevernennn, 183

Introduction

Table of Contents b4

Remove a Mentt LiSt (0) . coeeeeverieeeeececciniene e e e e eceeroneicnnenes 183
Create the Menu (1).....cococvriiiicrieeecrireeeescnaee e sereeeeseaneae s 183
Reserved for Future Expansion (2)....ccocccvviiniirnnenennennen, 184
Reserved for Future Expansion (3).c.ceeveeoveeneeiriniiccnenna. 184
Enable a Disabled Menu List or Item (4) ...coceecvereveenceeerennne 184

Disable a Menu Title or Item (5).......oveeeiiveviicisnererenaeeseenens 184 .
Remove a Menu Item from a Menu List (6).....cccceeeennnee..... 184
Add New Desk Accessories (7). erveieranserareeeaoeeesaaennss 185
Unhighlight 2 Menu Title ...cccoovieviierieee e rceeeceneerrer e e e 185
Monitoring the MENUcccvececviieieeeirerrieesteeessneeeeseireecenvsasseaessranansans 185
MOUSE (INtegeTAITAY () covvueeeeiee e feceeeeeeereireeeeesrveeseessssensessiassanns 185
Chapter Three: WindOWS...cccceieercesensorasssssssscssesssssassssosassesss 188
OVETVIEW ..couiiertriirrieireecrieiseeeeeneeestrssesssesresebvestanasssesansssssansssasastsentssasanes 188
What are WINAOWSc.c..ooveeeereirriicceenirceecesraestie e v b ee e eassaeessssonvesnees 188
Managing WINAOWS ..uuiiereeeieeeeeeerrieressrsaeicscessroraeesssseessissassarssseessrsesssnns 188
WINDOW (Integer_Array (, String_Array$ ().cceevevieererenne. ..188
Creating the WInAOW.........coovreveciiiirrieccrrecsecesennssse s senesaracsanens 189
Creating The WInAOW....uueeiiceorcieireieins e essvseseaeceesaesssnsssessssens 191
Setting WIramebitsocccevieeeeeevieerecerreesseeecreane s sseeeneeanns 191
Closing 8 WINAOW ...eeeeeieieeiieceeecerecee ettt e e a et e e e neaes 194
Using A Specific Windowcocoevvvviiinniieieviiniseeereessasesenreeae s 195
Obtaining the Pointer of @ WiRAOWccccvveiviereneecenrereeeesreranri 195
Obtaining the Number of 2 Windowccceceevirnreeiincncnneniinns 195
Monitoring WINAOWSc.ceeeeiceieeeeiiviisiieieereeeesre e seee e e eaeensassabennes 196
MOUSE (Integer_ATTAY {)ovvveeeeoeieieieeeevveeeresessssstesaseneesssaesessnessnnes 196
Window Watching Information ...c..ccveeeveivirervrcccscreecreee e 197
Handling Window Updates........ccovmvvmrcnicieercercoi s 198
Drawing in 8 Window.........ccceeeceeiiemevecinverieenenne teraraee e e rae et 200
Note to Advanced Programmersc.ccooeveviveesnsreenrereessesieareessnsanssens 201
Chapter Four: Dialog "oxes exsassesnnnasesse 202
OVEIVIEW ottt sttt e ee e ssar s et anessab st et sbsabesrnsmasssererns 202
Dialog Box Definitior oo e eeeeeeseeeeeeeee e eere e eeeeeeeeeesonsessaneeeeesseananes 202
Controls and Labels.............cvveoviciieeiieee et sseeere e tese e 202
The Push Buttom...viecueieieeieceieceeeieeris e eeeeieseessrssassesersnessssensnenns 203
The CRECK BOX ..vioveeeeiieieeieetteeeveeec st sme et e snse s srneesbannanen 204
The RAadio BUttOn...cc.cceeeeeviiircr i eetierc st se e eevesssne s rersannne s 204
The SCrOLL BAT . ..ceieuieceteeieecteeictieteercete et saeaee e caeres s saen e sreaae 204
The Static LiNe....c.viicviieiieeececeest et s tesneesessceveeeesssseeeecanns 205
The EdIf LINE 1o et cvveesaseeeraee e e saraesnenon 205
Defining the Dialog BoxX .. .covcoiseieeiiieiceee e esree et s st cenasnesenasanes 206
DIALOG (IntegerArray (, StringArray ()...oveeveevevrenns et 206
Dialog Control NUMDBETScooceoveeeeieiieivineeeeee e svesreesneevesnens 206

Introduction

xvi _ Table of Contents
Close the Dialog BoOx (0)...eiieeeeieeeeeeecieete et seseevaeseaeeinaenes 206
Create the Dialog Box (1) .oooiieieeiieeeeceeeeeeeeeeie e 207
Add a Part to a Dialog Box (2) «..ccocoinminiiiiieca -.209
Remove a Part from a Dialog Box (3) cccuevvvecerccinincicrenreenn, 209
Enable a Part in a Dialog Box (4) c.ccooiiieeeiieieceeeeneceen 209
Disable a Part in a Dialog Box (5)...ccccceeeeiiieceecrreciiee 210
Monitoring the Dialog BoX......cccuieeiiiiieeiecieneieeiveessesaresesesnsaesereessneneneas 210
MOUSE (IRteger_AXTaY ().veeeececeeeeireeirctveieeireieviseeeeeereesesrnsssssnsanasens 210
Part Five: The Apple IIGS ToolBox
Chapter One: Direct TOOIDOX ACCESS «ueeeererencesercrasesoncass vemsssesases 212
OVEIVIEW oviviiiritrseceeeceeeeeeerer st s evte s e eeeaeeeeeereesstbesnnssnssessessnssnresreevirer 212
Defining the ToOLBOX......ccvcvciioiiiiriieeieeeieeeeeceererrebessasseseaneneesenenenes 212
The Universal TOOLBOX Commandc.ccccveeveeeveeiivrerernseseesannernnns 212
TOOLBOX (ToolNum, FuncNum [:Push List] [;Pull List])........... 212
Determining the Tool and Function Numbersc.cccceveennennn. 213
The Push T8E....ooeieeeeeeee ettt et aaa e e 213
The Pull TiSt...cveeeeeeeeeee ettt e 214
Error Checling.....ocooiiiiiiiiiiiiinrie ettt eevasis st 214
TOOLBOX and Long INtegersco.ceeeeureeeereeeceeareesnessasaranas 214
Future ToolBox Additions.......cccceeeeviveveeiiiire i sreeeee e 215
Allocating ToolBOX BUIFeTscooiueeieeieeeeeeeeeee et csetecsin e eeren e 215
Chapter Two: Tool Set Tables.....cccoeeiicrinccrcensereerssonsessnsssssasasesees 217
Part Six: Program Management
Chapter One: Program Debugging.......ccccoeeeeeecrrsersae .221
OVEIVIEW ...ttt ettt eraea e st sesteaaeeseeaesaees s s erseennrmeaantsaaeanas 221
Debugging StatemMEnts. . .cociaiiee et eeee e e e e erreeeeeeerevesoesssrsesaerans 221
BELL oottt ettt een st b bn b et e arae s 222
PRIINT ettt e e e e s e s saresrs s s nesbe e nrmaneastaeabsanseen 222
STOP ettt ee et e e e se e st es s ss e e s st e reesasb bt atsneane e 222
TRACE ..ottt e e e s e sre s sane st s tasate st searbesnne s 222
STRACEocoiitiiiritintcteeecr e eeve v e ssesersvenbass stsesssnsasessasararensens 223
NOTRACE .ttt eeeecteeeeeeeeee et et rne st e s e ares e et be et a st ee s aensen 224
Chapter Two: Program Optimization........eeeerecesrenes versssassvanens 220
OVEIVIEW ettt ettt ve e sse et bbb aasesssrne s srneneabee 225
SAVIING MEIIOTY «.en oot ee e e e e e e ereeenen s eeetseresnrssasaeane 225
Working within the Editor’s Workspace.......ccoeceveeveereveenens eeeerirrens 225
Saving Space in 8 Programviiieceieneeererere e 225
Speeding Up YOur Programscccocuvevveerirriecoreieeiesseissassessesssenseeneoses 226
Chapter Three: Program Segmentation........ceucienseceressersesssnes 227
OVEIVICW ...ttt bttt st e st seetaetaeeae s senrenneesan 227
Chaining Source Code Fles .o ieeeeeeeeeeeeeeeeeeerereeeeeeeeeseesesasesaes 227

Introduction

Table of Contents xvii

Segmenting the Source Code Files....ccccvvveieiinienrevecirieceerveeriniiees 227
CHAIN String_Literal.....ccccciiieeivicirreiraieeiierecoseseesecsnesenenenenes 227

How to Debug a Chained Programccccoeeeveiiiimmnniciiiennnennns 228
Segmenting Executable Code FileS.....coiiiirocnrinecncrcnnreeiinnnnnnns 228
How to Segment a Programccocvvenmiesiccneciniicncniiiininnenn, 229
SEGMENT [IAentifier].....ccooroemicrimrirmriesiriesnesnacesresscesssssesneans 229

- Using a Segmented Programcccooceviveceicmenviniciinnevosnennnnna. 229
CALL Segment NUMDErcucviiiieiiiererireneenseaeeeeererseranenes 230
LRETURN L.t itioicteceieer et eete e ieee e sesssesearsresasesaseeresrasasaees 231
Chapter Four: Linking Assembly Language Programs.......... 232
OVBIVIEW ..o cteecee et eees e eceee e e eese e v e st ee s e vsssbe s ssra e ra s saeecasssnsannees 232
Linking in the Assembly Language Program.......ccccccovveviiccccnnenae 232
LINK PathINAme........cocveieiririeeecciererreieecearernrsssscseseneeesrsosaes sreneeeans 232
Getting & DIrect PAge........oiccoaoieeeieeeceeeivierenne e renasssesseressnesseenesseesesin 233
How to Use this Direct Pageccoceeovree e e eeiessienenenene 233
Chapter Five: Creating Independent Programs.......... cesssnsannens 234
OVEIVIBW ..ovvesreieeeecreieeeiesr e e eteesuvessssnsasanssenseessensassnaseasaesbasssemnarasonsaneones 234
Creating a Startup Disk for Launchable Programs......c..cceuueeeee.. 234
Hard Disks and Launchable Programscceveveicncmncncuinnennnn. 234
Stand Alone Micol Advanced BASIC Programs...ccccocvevecveeeneeeeraeenns 235
How Micol Advanced BASIC BOOLScoveeeveeereeecrvrescneie e cvveeeennis 235
Creating a TurnKey SyStemcocveoiiiiiicceieece e e serenan e e 236
Creating GS/OS Applicationscveeveicreeirieeanrirmerreriaereereeennene 236
Creating Classic Desk ACCeSSOTIOS ...vviivrivvrvrieeciniieraresreesisneenneenns 238
Chapter Six: Converting Applesoft Programs 239
OVBIVIEW ...ovevetireeeeeeeeeeresressterets et seeseeeseesnssssessaesssarnraesseasasansensvesasasnsens 239
Source File CONVETIBIONcceevveireeriieieniecteereseeeseesserersessaeaseesessrasesssrne 239
General Conversion RUlescocvvevicieinieeciiiciieceiee e se e seenes 240
DIM Statements vuviaceeceiieereneiercmreraesiessesrrreeesessesessnesesssassssensesenns 240
DATA Statements...uvcciivieieeceeeecrcee e seaiseae e s esesasesrarnes 240
Strings.....cccoeeeeeeee N ereereterettetiaeaaaaaanananteassaeaes era s abennnnrntrresenieein 240
Slot INPU/OULPUL c.vvveeer e cve st sn e 240
Turning the Printer Onand Offoovimiiiiiiee e 241
PRINTIDG ..cveeeteiveerecrceeenenreenreasseeererrreesrsseseessessnnesssesssassassnes ssanssessecs 241
FLASH Commandccveviieieceeiceiecuieeerrioasseseeeennrsesssessinernsessessnees 241
CursSor PoSItiONIngocveeiiieirecieeece e creveeeesieseeesavesssssseenressaresenesenens 241
COnLIOl Of FlOW....ioiieiieiece et cese s e r ettt m s 241
High Resolution Graphics.........ocoviiermeieieeeceesisssneesarecaeessennens 241
PEEKS and POKESc.cccoiiiiiiiiieeeceecntevesesecaeerneesrsseesneraseeessseenes 242
FUDCEIONS ..c.eiiitiiiii it saae s s e s s cenresbasssase s s s rbaaasns 242
ISR LI oot eeres e eereee e seeseeseessosneaeasaseseesanaesnnsaeesmraessnn 242
GO FOF T .. ettt e b a et st man b s s sennenan 243

Introduction

http:CreatingIndependentPrograms....�.�...��......�..�

xviii Table of Contents
Appendices
Appendix A: Memory USAZE .cicceeereesrasccorssissesssnssnsesssussassaresannessse 244
Appendix B: Screen Output..... o, er 247
Appendix C: Run Time Exror CodesS....amrioiisorssscseasiosaesss 248
Appendix D: GS/OS EXrror Codesccaremmeneccecacrerrerrosesscssassssssosasss 251
Appendix E: Compiler Reserved Wordsccueemmiernanssnaaienees 253
Appendix F: ASCII Character Codes. ... wimmiomnicssnsnenane 256
GlOSBATY cevciremeanecresccasorosisascesesarerssessersesrsarsssssnsssasesasrressssssassssnonsrasassase 257
INAEX 1ovmiiisemsncororsssasrsnnssssorsnsaresssssssssnnensessossans essssassssarnrares vessessessennersane 261

Introduction

Chapter One: General Review 1

Part One: Overview of the Language

Chapter One

General Review

Comments on the Second Edition

We are proud to present the Second Edition of the Micol Advanced BASIC for the
Apple IIGS reference manual. This manual has been completely reorganized to make it
easier for everyone, especlally the novice, to use.

If you are one of those who owns a First Edition copy of the manual, take the time to
carefully look at the table of contents and the index to see where the changes were made.
The table of contents and the index have been greatly expanded to make it easier for you
to find the information you are looking for.

Take the time to read the manual through. You will find many programming tips
written by people who have discovered and are already enjoying the power of the Micol
Advanced BASIC Structured Language.

This reference manual has program examples throughout the entire manual. We
recommend you study these program examples very carefully. You may also wish to
compile and execute some of the more important ones. This way the explanations will
become clearer to you and you will get practice in programming.

Send us your suggestions, comments and criticisms. We read all the letters we
receive, even if we cannot reply to all of them. We will answer you if you include a
self-addressed envelope with your letter.

Overview

The purpose of Part One is to give an overall look at Micol Advanced BAST C so you
will get a general idea of what this language system has to offer.

Mico! Advanced BASIC is a full-featured, compiled language system. Its purpose is
to let you develop structured BASIC language programs for your Apple IIGS.

The BASIC program is created using the full-screen editor. Communication with the
GS/OS operating system is done by means of the Command Shell. The Compiler and
Linker translate BASIC source code into binary instructions which the microprocessor
can directly execute.

Some Advantages of the Language

Micol Advanced BASIC needs only 768K of random-access memory to function, and
yet all its components (the Command Shell, the Editor, the Compiler/Linker, and the

Part One: Overview of the Language

2 Chapter One: General Review

Run-Time Library) remain in memory during development. While developj.ng your
programs, no long delay will occur for one of the components to be loaded from disk.

The executable load files created by Micol Advanced BASIC use a special fast load
format and may only be loaded by the loading software supplied with this product.

Micol Advanced BASIC may be used to produce Classic Desk Accessory files just by
using a utility program provided. Stand-alone Micol Advanced BASIC programs use a
common library located in a specific folder on the stand-alone disk.

A Stand-alone Micol Advanced BASIC program may also be executed on an Apple
IIGS connected to an AppleShare network. Micol Advanced BASIC can also produce
516 (OMF) files that may be launched with the GS Finder.

Source code files created with the ITe/Ilc version of Micol Advanced BASIC are highly
compatible with those created with the GS version; only a few changes are needed to use
the full power of the IIGS version.

Micol Advanced BASIC can use all the memory available to your Apple IIGS and 1s
written in assembly language, the fastest code possible on your computer. Little time is
spent compiling or linking, giving you more time do to what you can do best... program.

The Components of the Language System

1. The Command Shell

The Command Shell (or Shell, for short) allows the user to interface with the rest of
the language system. Through the Shell, for example, it is possible to see the contents of
a disk, invoke the text editor, compile a program, etc.

The Shell also has the capability of accepting commands from a file on disk. Utilities
written by the user may alsoc be added to the Shell. Because of these utilities, the
possibilities of tasks the Shell can perform are almost unlimited. The Shell has the
following features:

- Easy to remember commands

* Full complement of filing commands

+ Testof compi’ d programs

+ Commands executed in a Shell Batch program
+ AutoExec batch file

+ Uses commands written in BASIC

» KEasy-to-read help screen.

2. The Source Code Editor

The Source Code Editor lets you create, and modify BASIC source code files. The
editor has word-processor-like features to ease the maintenance and revision of the
source code files. The editor can read standard TXT ($04) or SRC ($B0) type files. The
editor has the following features:

Part One: Overview of the Language

Chapter One: General Review 3

= 80-column, full-screen editor

« 128 kilobyte buffer (large enough for a file with about 4000 lines of code)
+ Word-processor-like commands

+ Fast and easy copy/movement of text

» Saves source code files in normal ASCII format

» Decimal to hex (and back) converter

+ Easy-to-read help screen

3. The Full-featured Compiler and Linker

The Compiler reads the source code created using the source code Editor and
generates an object code file which the Linker will convert to a machine usable format.
The Compiler has the following features:

* Rapidly generates 65816 code

» Uses FastLoad to bring programs into memory fast
» Easy-to-remember Compiler Directives

« Ultra fast screen displays

+ Support of source code libraries

+ Link to assembly language programs

» Easy creation of large programs

» Easy creation of startup disk

» Utility to create Classic Desk Accessories

4, Full-featured Structured BASIC Language

With Micol Advanced BASIC, you can write programs that are more understandable
than almost any other BASIC language. The use of meaningful variable names,
indentation, structured loop control, improved data file handling, and many other
features will make the creation of your programs a breeze. Now you can write those
GOTOless programs that were impossible to do under Applesoft BASIC.

Micol Advanced BASIC can produce graphics and sounds that could never have been
done before on an Apple II using Applesoft BASIC. Both Super High Resolution graphic
modes (320 X 200 and 640 X 200) are supported with graphic text. capability. Micol
Advanced BASIC can also play back digitized noise, music or speech. _

Micol Advanced BASIC gives you the ability to easily create applications that exploit
multiple Windows and pull down Menus made famous with the Apple Macintosh™
computer. The Micol Advanced BASIC language systems offers the following features:

+ Upward compatible with the Applesoft BASIC language
+ Optional line numbers

* Dynamic character strings up to 1023 characters

+ Simple variables and arrays of type boolean

Part One: Overview of the Language

Chapter One: General Review

Ultra fast and sophisticated string manipulation

True integer calculations (no conversion to real and back)
Calculations of extended values: both integer and real
MouseText character display

INKEYS input and PRINT USING output
IF.THEN..ELSE, CASE_OF conditional statements
REPEAT. UNTIL, WHILE.. WEND conditional loops
Pascal language-like Functions and Procedures
Support of recursive calls

Low and Super High Resclution graphics

Mixed text and graphics

Great sound capabilities

Complete and easy-to-use GS/OS file handling
SuperTrace™ debugging command

Easy Desktop program definition

Complete and easy use of the Apple IIGS Toolbox
Exclusive Controlled Uncertainty™

How this Manual is Organized

This manual is divided into eight distinct parts:

First is the Copyright pages and Table of Contents. We have taken pains to
make this Table of Contents as useful as possible. We hope you agree.

Part One (this part) gives you a general overview of Micol Advanced BASIC
(MAB), and how to use Micol Advanced BASIC with the usual equipment. There
is a brief tutorial in Chapter Two all beginners should try.

Part Two discusses the Programming Environment: what is needed to write and

~use a Micol Advanced BASIC program: Shell, Editor, Compiler/Linker, Library.
-Part Three is the most important section and describes the Micol Advanced

BASIC language itself.

Part Four describes the Desktop commands and some guidelines on how to write
a Desktop-based program. This section should be ignored by beginning
programmers as it is gquiet involved.

Part Five discusses the Apple IIGS ToolBox and how to access it from Micol
Advanced BASIC. This section should be ignored by beginning programmers.
Part Six discusses program management. Management includes debugging
techniques, code segmentation, code optimization, and using assembly language
routines with your Micol Advanced BASIC programs.

Last come the Appendices, Glossary of words and Index. The Index is very
complete, so if you have trouble finding something, feel free to consult it.

Chapter One: General Review 5

Special Note

Special paragraphs marked “Programmers”, “NOTE”,
“IMPORTANT”, and “WARNING” will be contained
within a paragraph such as this one. These paragraphs
describe tricks of the trade, indicate some special things
to watch out for or alert you to a potential dangerous
gituation. “Programmers” denotes advanced topics that
novices may ignore.

The Micol Advanced BASIC System Disks

You have received with this product:

« The Micol Advanced BASIC GS Reference Manual, Second Edition

¢ One system disk labeled Master Disk.

* One system support disk labeled /MAB.SUPPORT

= A product registration card

+ Information about the Micol Advanced BASIC Users Group (MABug)

« Other Product information

The first disk labeled Master Disk contains the Micol Advanced BASIC language
gystem itself. The second disk labeled /MAB.SUPPORT holds folders containing

example programs, utilities, tool sets, fonts, devices drivers, etc. normally unused with
Micol Advanced BASIC.

IMPORTANT

Please make backup copies of both system disks before
starting your program development. Use the copied
disks for your work and store the original disks
somewhere safe.

The Micol Advanced BASIC language system consists essentially of four files
(contained in folder MICOL.ADV.BASIC on the disk labeled Master Disk) and the
Utilities folder: COMPILER.SHELL, EDITOR, LIBRARY, MICOL.ADV.BASIC and
UTILITY/ folder. COMPILER.SHELL is the integrated Compiler, Shell and Linker.
EDITOR is the source code Editor. LIBRARY is the run time Library and
MICOL.ADV.BASIC is the Micol Loader, necessary to load stand-alone Micol Advanced
BASIC programs.

The UTILITY folder will contain the external Shell commands you may write later
to add more functionality to the Command Shell. The file AutoExec will tell you about
any updates to the Language System or the Reference Manual.

The MAB.SUPPORT disk contains the following folders/files:
« folder Demo.Files

Part One: Overview of the Language

6 Chapter One: General Review

» folder MAB.TO.S16 (see Part Six, Chapter Five)

» folder MAB.TO.CDA (see Part Six, Chapter Five)

+ folder SYSTEM (contains GS/OS files not needed m Micol Advanced BASIC)
+ an optional text file named INFO.DOC

IMPORTANT T"

e Demo. Files folder contains the source code of
numerous example programs that could be very helpful in
your understanding of this language. It is very important
you look at these files in some detail. The fractal
mountain generator is in the Fractal.Samples folder
under the name Mt.Fractal. There is also a very nice
demonstration game written in Micol Advanced BASIC in
the folder MABug. DEMO (read the READ.ME file).

File INFO.DOC contains the latest product information which is not contained in
this manual. If this file is absent, the manual is complete.

Micol Advanced BASIC also uses the Apple IIGS Tools in the proper folder. The
other files or folders are used by the GS/OS operating system which Micol Advanced
BASIC uses to communicate with your hardware.

What You Need to Know

Before you continue reading this manual, you should know:
« How to set up and use your Apple IIGS system (see the manuals that came with
your computer)

« Some knowledge and understanding of the ProDOS file structure and use of
Pathnames to access these files

« How to use GS/OS to manipulate disk files (see the Apple IIGS System Software
- User’s Guide)

+ Some knowledge of Applesoft BASIC or any other dialect of BASIC
+ Advanced programmers should know about the Toolbox of the Apple 1IGS.

Hardware Requirements

To use Micol Advanced BASIC for the Apple IIGS, you need one of the following
computer systems:

« An Apple IIGS with ROM 01 (or later) and a minimum of 768K of RAM
* An Apple Ile with GS Upgrade and ROM 01 and a minimum of 768K of RAM

With:

Part One: Overview of the Language

Chapter One: General Review 7

+ One 3.5 inch disk drive :
« A monochrome monitor capable of displaying 80 columns
+ GS/OS, the DOS required by Micol Advanced BASIC, is supplied on disk.

Suggested Additional Hardware

- A printer

+ More memory on the expansion card (see below)
« A second or more disk drives

« Ahard disk drive

« A color monitor

Run Time Memory Needs of Stand Alone Applications

o Text only apPlCAtION: .ueveeeeeerrerreeeneereessesesesssessessressnsseeriesessassenns 512 kilobytes

+ Text and picture files................... e O 768 kilobytes

+ Text and animated graphicsccoeoeeveririersrerrrersssnassvescessnesnsenssnns 768 kilobytes

+ Text, pictures, and sound files.........cecevvevevsriricrrereresrririnieee e sreens 768 kilobytes
Graphic text and picture files........occeerrverreereeeeeceeerrreessessescanaens 768 kilobytes

+ Graphic text and animated graphics.......ecececverereeeecerecneneeseesnans 2048 kilobytes

« Graphic text, animated graphics, and sound filesccccccverennne. 2048 kilobytes

« Simple Desktop programs (15-35K without Library) 768 kilobytes

* Regular size Desktop programs (36-50K without Library) 1024 kilobytes

The amount of memory may vary depending on the size of the program, the numbers
of arrays, picture files, sound files, etc.

Setting up Micol Advanced BASIC on a Hard Drive

1. Boot a GS/OS System Disk which brings you into the GS Finder. The Finder has
the facilities for this task.

2. Create a subdirectory called Micol. Adv.BASIC under the volume directory of your
hard disk (choose New Folder under the File Menu or press <Apple>N).

3. Copy the Micol Advanced BASIC system files:

a) Copy the files MICOL.ADV.BASIC, COMPILER.SHELL, EDITOR, LIBRARY,
and the UTILITY folder from the Master Disk (folder Micol.Adv.BASIC) to the
subdirectory Micol.Adv.BASIC you just created on your hard disk. Lock these
files.

b) Copy the file Micol.Icons from the Master Disk to the ICONS folder of your hard
drive.
4. Put the original Micol Advanced BASIC disks away in your archive box.

Part One: Overview of the Language

8 Chapter One: General Review

Using Micol Advanced BASIC with the Finder

1. Open the Micol. Adv.BASIC folder by clicking on it twice or by clicking once and
pressing Apple-O to open the folder.

2. Drag the Micol. Adv.BASIC icon onto the Desktop. Close the folder and Window.
Dragging the icon onto the Desktop allows easier access to MAB.

3. Start the Micol Advanced BASIC language system by quickly clicking twice on the
Micol.Adv.BASIC icon or by clicking once and pressing Apple-O to open the
program.

Using Micol Advanced BASIC With a RAM Disk

Micol Advanced BASIC recognizes the RAM card created by the RAM Disk option of
the Control Panel.

If Micol Advanced BASIC for the Apple IIGS detects a RAM disk with at least 192K
of free space, it will use this RAM disk for its scratch work for compiling and linking. If
there is no such RAM disk, the scratch work will be performed where the final linked
program is created.

WARNING

If Micol Advanced BASIC detects a RAM disk with a free
space greater than 192K, it will use this RAM disk for its
scratch files. These files are normally deleted at the end
of compilation and/or linking. However, if an operating
system error should happen during compilation or
linking, these files will not be deleted. You should then
delete these files yourself manually from the Shell,
otherwise this RAM disk may not be used again.

Use of a RAM disk is highly recommended as it greatly speeds up the program
development cycle: edit, compile/link, (execute), correct.

Using Micol Advanced BASIC With. Your Printer

Micol Advanced BASIC allows you complete access to the Control Panel of the Apple
IIGS. If you used the Control Panel’s Printer or Modem Port controls to configure your
printer, the printer should function properly because Micol Advanced BASIC uses the
gsettings of the Control Panel. Refer to your Apple IIGS Owner’s Manual to see how to
change the settings.

Chapter One: General Review 9

Configuring Your Printer Using the Control Panel

You may use the Control Panel while working with Micol Advanced BASIC to alter
the panels parameters. These parameters work with the built-in serial port or with a
printer interface in the proper slot with the slot setting to “Your Card”.

Because of the nature of laser printers, Micol Advanced BASIC will not work with
them. If you are using the Network Version of Micol Advanced BASIC, the program
output may be printed using the network spooler.

WARNING) ..
Some third party printers may need a device driver in the
directory Drivers/; otherwise the printer may not function
correctly. See your printer’s manual if you are uncertain.

If You Need Assistance
Four good rules to follow are:

1. Don't panic. Take a deep breath and relax for a minute.
2. Go through the following checklist to delimit the problem

a) Seeif you computer meets the minimum hardware requirements (see Hardware
Requirements)

b) Make certain that your hardware and peripherals are connected correctly and
that all connections are secure. If a particular peripheral needs a device
driver, make sure that it is installed on the boot disk

¢) Get your reference manual and consult
— the Table of Contents and/or Index
— find and read carefully the sections pertinent to your problem. More than

sixty percent of all calls for technical support can be answered simply by
reading the manual.
3. Ask a friend who has a computer to come and help you. Your friend may have
enough experience to explain what you do not understand
4. Contact us at Micol Systems. You can communicate with us by mail or by phone.
We provide free technical support to our registered customers:
a) By mail, write to Micol Systems Inc. 9 Lynch Road, Willowdale, Ontario
CANADA M2J 2V6. We will answer your letter by mail if you include a
self-addressed envelope
— Please include: a description of your hardware (computer brand and model,
size of memory on expansion card), and the list of the peripherals in the
computer

— acomplete listing (preferably on disk) of the program causing the problem.
Determine where the problem is and clearly mark its location. If this is
not done, we cannot help you. '

Part One: Overview of the Language

10 Chapter One: General Review

b) By phone, call our office at (416} 495-6864. You can reach us during normal
business hours Monday to Friday, 9:00 AM to 5:00 PM Eastern Time. There
is no fee to pay except for the long distance call, if applicable. Sorry, we
cannot accept collect calls.

Compatibility Overview

Applesoft BASIC

Micol Advanced BASIC is not a simple compiler of Applesoft BASIC progrars and
should not be thought of as such; it is much more than that. However, since Micol
Advanced BASIC is a language system based upon Applesoft BASIC, you may convert
your Applesoft BASIC programs to Micol Advanced BASIC programs with very little
effort. Most programs written under Applesoft BASIC will run under Micol Advanced
BASIC with modest changes. Please see Chapter Six, Part Six for more information.

You will have to modify the portions of code using:
« Disk filing
+ Graphics
» Machine language routines
+ Special memory locations (PEEKs and POKEg)
+ Error handling
Program segmentation

By malking additional changes, you may take advantage of additional memory for
programs or data, create better graphics and sounds, etc.

Micol Advanced BASIC for the Apple Ile/llc

Micol Advanced BASIC for the Apple lle and Apple Ilc source code files are highly
compatible with Micol Advanced BASIC for the Apple IIGS. You may use the same
source files. Since you have a much greater programming space, you should be able
add the features you want in your programs.

You will have to modify the portions of code using:

+ Graphics and Sound

» Machine language routines

- Special memory locations (PEEKs and POKESs)
+ Error handling

= Program segmentation

NOTE ‘
Programs developed under the Apple Ile/c version must

be recompiled under the Apple TIGS version.

Part One: Overview of the Language

Chapter One: General Review 11

Earlier Versions of MAB for the Apple IIGS

Most programs developed with Micol Advanced BASIC GS v2.0 to v3.7.2 are
compatible with Micol Advanced BASIC v4.0. You may use the same source code. Of
course, all programs developed with an earlier version of Micol Advanced BASIC for the
Apple IIGS must be recompiled to execute under Version 4.0 of Micol Advanced BASIC.
Please note that there has been a major change to the WINDOW command. Check
Chapter Three, Part Four for details.

Syntactic Symbols Used in this Manual

Within this manual we will follow certain syntactic rules which you must know
before reading this manual. The rules are:

Brackets [] are used when something is optional.

NOTE: Brackets are used in the syntax of some statements.

Braces { } are used to indicate that something is optional and may be repeated.

NOTE: Braces are also used to delimit comments.

Bold capital letters are used whenever a reserved word is denoted.

Aexpr is used to denote an arithmetic expression either integer or real An Aexpr
may simply consist of an integer or real variable.

Alop is used to denote an arithmetic operator. An arithmetic operator may be a + - *
/~ MOD.

Relop means a relational operator. A Relop is a: <, >, <>, >=, <=, = and may also
include the logical operators: AND, OR, NOT

Sexpr is used to denote a string expression. An Sexpr may simply be a string
variable.

Expr is used to denote any expression, integer, string or real. In short, an Expr is an
Aexpr or Sexpr.

~ Identifier is used to denote a Function, Routine, Procedure, Program or variable
name. An identifier is made of letters, digits, undersc re, ampersand, dollar sign,
percent sign to a maximum of 62 characters.

Letters are either uppercase or lowercase and are case insensitive (no distinction is
made between A and a).

Unop is a unary logical operator. It may be a plus sign, minus sign and NOT
operator.

Filename is a string of alpha-numeric characters no longer than 15 characters in
length.

Volume name is a string of alpha-numeric characters no longer than 15 characters
in length. A slash (/) precedes the actual name.

Pathname is a string made of a volume name, directories (if any) and a file name. It
may be no longer than 64 characters in length including slashes.

Part One: Overview of the Language

Chapter Two: Getting Started 12

Chapter Two

Getting Started

A Brief History of BASIC

The original BASIC was written in 1964 under the direction of John Kenemy and
Thomas Kurtz at Dartmouth College, New Hampshire, United States of America.

BASIC is the acronym for Beginners All-purpose Symbolic Instruction Code. It was

. intended to be relatively easy to learn and inexpensive to implement. The original

BASIC was an interactive language, so that the programmer would get instant results.
BASIC was originally intended as a teaching tool, so its capabilities were very limited.

Originally, a program line in a typical BASIC program had to begin with a line
cumber. Subsequent implementations of the BASIC programing language required no
line numbers and featured structured programming statements like REPEAT. UNTIL
and WHILE..WEND.

Applesoft BASIC was installed in the Apple II+ computer in 1979 as the successor to
the primitive Integer BASIC. Apple hadn’t yet developed a disk operating system, so
Applesoft had no built-in DOS commands, among many other limitations.

Micol BASIC was released in 1985 by Micol Systems as a structured and compiled
BASIC language system based on Applesoft BASIC. Micol BASIC was designed to run
on an Apple IT+, ITe (64K) and Ile. Although Micol BASIC was much more powerful than
Applesoft BASIC, it still was designed for a computer with limited abilities.

Micol Systems entirely rewrote Micol BASIC for the Apple IIGS and added numerous
enhancements and improvements which became Micol Advanced BASIC, version 1.0, for
the Apple IIGS in 1988. The next year, a special version for the Apple Ile (128K), II¢,
and Laser 128 computers was released which took advantage of the better graphics and

auxiliary memory in these computers and has most of the features found on the GS
version. '

Writing Your First I rogram in Micol Advanced BASIC

Okay, let’s write a simple program in Micol Advanced BASIC. This program won’t do
much, but it’ll be a start. Just follow these simple steps:

1. Insert a copy of the Micol Advanced BASIC system disk marked Master Disk into a
3.5 inch drive. Turn on the monitor and the computer.

a) The GS/OS operating system (the program that tells the computer how to use
the devices connected to the computer) will load and execute

b) The Micol Advanced BASIC Language System will load and execute. The
Command Shell prompt (}) will be displayed with the Command Shell waiting
for a response from the user.

2. Enter HELP<CR> (<CR> means press the key marked Return). This command

Part One: Overview of the Language

13

3.

8.

Chapter Two: Getting Started

lists all the commands known to the Shell. Take the time to read the commands
that are available. Enter HOME<CR> to remove the Shell’s Help display.

Insert a work disk into a drive:

a) Ifyou have a second disk drive, insert an already formatted disk with little or

no information on it and go to step 4

b) Remove the Micol Advanced BASIC (Master Disk) disk and insert an already

formatted disk with little or no information on it. (The disk containing the
sytem will not be needed for program development).

Enter PREFIX /Name.of.Disk<CR>. Replace Name.of. Disk by the name you gave
the disk when it was formatted. PREFIX tells the Shell to use the disk
Name.of.Disk as the default disk. The Command Shell does not care where the
disk is, as long as GS/OS can find it; otherwise the message “Volume not found”
will be displayed. Unless otherwise instructed, the system always uses the
“prefized” disk. To see which default directory the system is using, enter
PREFIX<CR> without a disk name. To see the names of all of the volumes
available in the system, enter ONLINE<CR>.

Enter EDIT<CR>. This Shell command will bring you into the Micol Advanced
BASIC Source Code Editor.

Press <Apple>H (hold down the key with the white apple on it and the H key at the
same time). This command shows the commands known to the Micol Advanced
BASIC Source Code Editor. Press any key to make this screen disappear.

Enter the following program; be certain to press Return after each line. Press
Delete to erase a character. Press the Arrow keys to move the cursor. Press Tab
to make an indentation in a program line.

PROGRAM First Program
HOME
INPUT “Hello, I'm your Apple IIGS, what’'s your name? ”; Name$
PRINT “Nice to meet you ”; Name$
PRINT “Watch me count from one to tenb
PRINT “But first, press any key so I can start”
GET Any Key$
FOR Count% = 1 TO 10
PRINT Count$%
NEXT Count%
PRINT “Good-bye ”; Name$; ", I hope we meet again”
END

Take the time to check and revise what you entered.

Press <Apple>S to save the program to disk. The Editor prompts for a program
name. Enter any name (letters only) of no more than eleven characters and
press Return. The program will be saved to disk.

Press <Apple>Q to quit the Editor and return to the Shell.

Part One: Overview of the Language

Chapter Two: Getting Started | 14

10.

11.

12.

13.

Enter CATALOG<CR>. The contents of the disk directory will be displayed on
the screen. Notice the name of the file you just saved.

To compile your program, enter the word COMPILE followed by a space, followed
by the name you gave the program in step 8, followed by a Return. The

Compiler will display “Compiling...<Program name>". If you have entered the
program correctly, your program will be transformed into a format that can be
executed. If there is an error in the program, the message “Continue

compilation, Edit program, or use Shell (C/E/S)?” will be displayed on the screen.
Press “E” to return to the Micol Advanced BASIC Source Code Editor and

correct the mistake. Continue with Step 8.

After the program has compiled without any errors, you will receive the message
“Execute the program (Y/N)?”. Press “Y” to cause the program to load and
execute.

The program will ask you for your name. Enter your name followed by the Return
key. Notice the action on the screen. That was all caused by the program you
just wrote.

When the program has finished execution, control will be returned to the Shell.

Congratulations! You have written and executed your first Micol Advanced BASIC
program,

Entering Program Examples

Some program examples within this manual cannot fit in the manual’s page the
same way they would appear on the screen. If you see the Program Line Continuation
character, the backslash (\), this indicates that the remainder of the line is continued on
the next line (you may also enter the program lines exactly as they appear in the text if
you wish, the Compiler can handle this syntax).

Example:

PROGRAM Example

HOME ‘

INPUT “Enter name: ”;Name$

INPUT “Enter age: ”;Age%

INPUT “Enter any floating-point value: ": \
Numbers

END

Enter the line(s) containing a backslash as if the line(s) were continuous (do not
enter the backslash, in this case). If the line has more than 80 characters, the Editor
will follow you by scrolling the display from left to right. The Editor will reposition the
display to its usual place when you press the Return key.

Part One: Overview of the Language

15 Chapter Two: Getting Started

Suggested Manuals

Apple Computer Inc., Apple IIGS Toolbox Reference Volume I, Reading, Mass.:
Addison-Wesley Publishing Co., 1988. 776 p. ,

Apple Computer Inc., Apple IIGS Toolbox Reference Volume II, Reading, Mass.:
Addison-Wesley Publishing Co., 1988. 700 p.-

Apple Computer Inc., Apple IIGS Toolbox Reference Volume III, Reading, Mass.:
Addison-Wesley Publishing Co., 1988. 1100 p.

Apple Computer Inc., Human Interface Guidelines, Reading, Mass.: Addison-Wesley
Publishing Co., 1987. 160 p. (This is the book needed to write software that conforms to
Apples guidelines.)

Apple Computer Inc., Standard Apple Numerics Environment (SANE) Manual. 2nd
ed., Reading, Mass.: Addison-Wesley Publishing Co., 1988. 320 p. (This manual contains
the details of other SANE functions that can be implemented in Micol Advanced
BASIC.)

Apple Computer Inc., GS/OS Reference Manual Vol. 1, Reading, Mass.:
Addison-Wesley Publishing Co., 1990. 528 p. (This manual contains the details of other
GS/OS calls that can be implemented in Micol Advanced BASIC.)

Little, Gary B., Exploring the Apple IIGS, Reading, Mass.: Addison-Wesley, 1987. 552
p. (The examples in this book are written using APW macros.)

Little, Gary B., Exploring Apple GS/OS and ProDOS 8, Reading, Mass.:
Addison-Wesley Publishing Co. 1988. 369P (we frequently use this book for reference).

Gookin, Dan and Davis, Morgan, Mastering the Apple IIGS Toolbox, Greensboro,
North Carolina,: Compute! Publications, Inc., 1987. 642 p. (outdated, but excellent for
learning the Apple IIGS Toolbox. This book appears to be out of print, but if you should
find a store that still has one in stock, we recommend you buy it.)

Acknowledgments

Micol Systems Inc. wishes to thank the following people for their generous
assistance:

« All our beta testers, especially Peter Cameron.

+ A special thanks to Michael Yost for his assistance and advice on Windows and
his support software as well as help with this manual.

= Walter Torres-Hurt for his selfless dedication over the years. We also wish to
thank him for the Micol Advanced BASIC Users Group (MABug).

« CodeSmith Software Inc. for its assistance in improving the 640 mode graphics.
« Michael Crawford for his generous support and assistance.

+ Benoit Bernard of Programmation Sur Mesure Inc. for his help.

« Ann Hendersen, Eddie Drueding, and Bernard Claing for their time and effort.

« And all of those who took the time to write or phone to provide us with their
comments, suggestions and constructive criticism.

Part One: Qverview of the Language

Chapter One: The Command Shell 16

Part Two: The Programming Environment

Chapter One

The Command Shell

Overview

The Command Shell is the control program. Through the Shell, you can do basic disk
filing, enter the Source Code Editor or compile, link and execute a program. The
Command Shell performs a similar function to the ProDOS 8 command interpreter, file
BASIC.SYSTEM, performs under Applesoft BASIC.

The Right Brace character “}” is the prompt character of the Shell.

Line Editing Commands

These commands allow you to edit the commands entered from the keyboard.

Up and Down Arrow Keys (T!)

The Up and Down Arrow Keys are not used in the Shell.

Left and Right Arrow Keys (—¢«)

The Left and Right arrow keys will work only within the range of an input field.

The Return key

The key marked Return terminates a command and may be pressed anywhere in an
input field without loss of characters.

The Delete key

The Shell recognizes two deletion modes, true delete and destructive backspace. By
default, the Delete key performs a destructive backspace. To toggle between the two
deletion modes, press <Apple>Delete.

The destructive backspace mode erases the character to the left of the cursor. The
true delete mode erases the character under the cursor. All characters on the right of the
cursor are moved to the left. The shape of the cursor is not changed.

Part Two: The Programming Environment

17 Chapter One: The Command Shell

The delete mode will remain until it is modified by another <Apple>Delete or until
the system is restarted.

<Control>C (Break)

Pressing <Control>C will terminate a listing of a text file started with the LIST
command.

<Control>C may also be used to interrupt the execution of a program while it is
running.

<Control>R (Repeat)

Pressing <Control>R diéplays the last command executed. The command is not
executed, but is displayed so it may be modified if necessary. Press Return to execute
the command again.

The Shell “remembers” the previous command, even after using the Editor.

<Control>S (Space/Stop/Start)

Pressing <Control>S inserts a space character at the current cursor position, moving
every character after the cursor one position to the right.

This command may also be used to stop and start a file listing or program execution.

<Control>X (Cancel)

Pressing <Control>X cancels the command being entered. A backslash character (\)
appears as the last character on the line to indicate that the previous command has been
cancelled.

Built-in Shell Commands

These commands allow you to perform the basic tasks of the Command Shell.
Additional Shell commands may be written using Micol Advanced BASIC.

BATCH Pathname

The BATCH command allows Shell commands to be read from a text file on disk and
executed as though the commands were entered from the keyboard. The Pathname is
the name of a text file in a directory currently online.

The Batch file is usually created by the Source Code Editor, and is simply a text file
containing the Shell commands described here which are to be ‘executed by the

Part Two: The Programming Environment

Chapter One: The Command Shell 18

Command Shell. The commands are displayed as they are executed.

Any shell command except another BATCH command is a legitimate entry into a
batch file. An EDIT or COMPILE command will execute, but will end the batch
stream.

Any line in fhe Batch file beginring with a semicolon (;) will be considered a
comment.

<Control>C will cancel the execution of a Batch file.

BATCH is particularly helpful to users who are doing their program development on
a RAM disk and wish to set up their system to their own needs.

AutoExec File

When Micol Advanced BASIC is first booted, the system checks for a Batch file under
the Micol Advanced BASIC folder called AutoExec. If this file is present, the Batch
stream contained within AutoExec is executed, otherwise the system simply enters the
Shell.

The system disk marked Master Disk has an AutoExec file on it, so you may wish to
examine this file to better understand AutoExec files.
Example:
LIST INFQC.DOC
;Erase or rename the AUTOEXEC file to stop
; INFO.DOC from appearing again.

The batch file AutoEzec lists the INFO.DQC file on the screen.

CATALOG [Pathname]

CATALOG and its abbreviation CAT are used to display the contents of a volume or
any of its directories. The directory information indicates if a file is locked or not, lists
its name, type, size of the file in blocks, its date and time of creation, its date and time of
modification and t'2 size of the file in bytes. The quantity of blocks used and unused are
listed after the list of the contents.

If a Pathname is stipulated, the directory will be read from the stipulated volume. If
the Pathname does not begin with a slash (/), the default prefix will be used with the
stipulated directory name. If a Pathname is not stipulated, the directory of the default
prefix will be displayed.

Example:

CAT /RAM6
CATALOG SUBDIR/
CAT

Part Two: The Programming Environment

19 Chapter One: The Command Shell

COMPILE Pathname [, Pathname]

This command invokes the Compiler. The first Pathname is the source code
Pathname of the file you wish to compile. If the source code Pathname cannot be found,
an error will occur and the Shell prompt will return.

If the Pathname is followed by a comma and another Pathname, then the object code
file will have this stipulated pathname with the appropriate extension added. After the
compilation is completed, the filename containing the compiled program will end with a
“LNK” extension.

If a syntax error is detected, the BASIC source code line will be displayed in inverse
video. You will be prompted “Do you want to Continue, Edit or return to the Shell
(C/E/S)?. To continue the compilation, press "C". The Compiler will continue the
program’s compilation. To edit the error, press “E”. The Editor will place the cursor on
the line and approximate character where the compilation error occurred. To return to
the Shell, press “S”. The prompt of the Shell will appear.

COPY Pathnamel TO Pathname2

COPY duplicates the contents of the file Pathnamel by creating a new file and
giving it the name Pathname2. If the original file and the duplicate file are in the same
directory, Pathnamel must be different from Pathname2.

Example:
COPY /Disk/0ld.File TO /RAM5/New.File

The file Old.File in volume /Disk will be copied to volume /RAMS with the name
New.File.

CREATE Pathname

CREATE generates a new directory file (folder) under the main or a subdirectory
with the name stipulated by Pathname. The directory created is locked.

Examples:
CREATE /RAM6/DIRECT.1

CREATE /Library/Math/Trig

In the first example, the subdirectory Direct.1 will be created on volume /RAM6. In
the second example, the subdirectory Trig will be created on volume /Library in the
subdirectory Math/.

DELETE Pathname

DELETE erases a file from a directory. A subdirectory file must be empty before it
can be deleted. The disk must not be write protected and the file must be unlocked.

Part Two: The Programming Environment

Chapter One: The Command Shell 20

Example:
DELETE /RAM6/Filename

EDIT [Pathname]

The EDIT command summons the Source Code Editor. The stipulated file must be
of type TXT ($04) or SRC ($B0) to be edited.

If the command EDIT is entered without a Pathname and no file is being edited, the
Editor will appear. No file name appears on the Data Line as there is currently no file
being edited.

If EDIT is entered without a Pathname and a file is being edited, the Editor will
appear to let you continue the editing process. The cursor will appear in the identical
line and position as when you last left the Editor. The Pathname of the file is displayed
on the Data Line.

If the EDIT command is followed by a Pathname and no file is being edited, or the
file being edited has not been moodified since the last save, the stipulated file will be
loaded from disk into the Editor’s workspace. The file’s Pathname will appear on the
Data Line,

If EDIT is followed by a Pathname and the file currently being edited has been
modified without being saved, the Command Line of the Editor will prompt “Save
current file before loading new one (Y/N)?”. If “Y” is pressed, the file currently in the
Editor will be saved to disk, the workspace will be emptied and the specified file will be
brought into the editor. If “N” is pressed, the file currently in the Editor will be erased
from the editor’s workspace and the specified file will be brought into the editor.

Example:
EDIT/RAM6/TXT,.FILE

FORMAT Volume_Name

To initialize a storage device, use the FORMAT command. The initialized device will
have the name stipulated as Volume_Name.

When this command is invoked, the Shell displays the location and the names of all
devices connected to the computer. Select the appropriate device with the Up and Down
Arrow keys and press Return to display the GS/OS Formatting Dialog Box.

Set the controls of the Dialog Box to “ProDOS” for the operating system (if necessary)
and “800K 2:1" for the interleave. Press Return to start formatting the device.

For optimum performance with the white UniDisk 3.5 drive only, use 800K 4:1
interleave.

WARNING
Be very careful with the FORMAT command. Once

FORMAT is executed, any valuable information
contained within the medium will be lost.

Part Two: The Programming Environment

21 Chapter One: The Command Shell

Example:
FORMAT Work.Disk

HELP

HELP lists the built-in Shell commands available with a brief description.
User-written Shell commands are not listed.

Example:
HELP

HOME

HOME is simply used to erase the contents of the screen and place the cursor at the
upper left corner.

Exambple:
HOME

LIST Pathname

LIST displays the specified source file on the screen, so you may preview it without
entering the source code editor. Only files of type TXT ($04) will be displayed.

Pressing <Control>C ends the listing; pressing <Control>S pauses the listing.
Pressing any key after that will restart the scrolling of the listing.

Example:
LIST /RAM6/INFO.DOC

LOCK Pathname

LOCK protects a file from being deleted or modified. When a file is locked, an
asterisk (*) precedes the file name when a directory is displayed.

Exzample:
LOCK /RAM6/FILE

ONLINE

ONLINE displays the names of all the block devices such as floppies, hard drives,
RAM drives and CD-ROM drives connected to the computer. ONLINE displays the
names of the devices and the names of the volumes.

Chapter One: The Command Shell 22

Example:
ONLINE

PREFIX [Directory_Name]

The command PREFIX indicates the path used by the system or sets a different
default prefix. The default prefix contains part of the path leading to a specific file.

The default prefix is the prefix that is used unless another path is specified. If the
Master Disk is booted, at startup, the (default) prefix is set to
/Micol. Adv.BASIC/Micol Adv.BASIC/.

The names of the volumes or directory files must be from online volumes. If not, the
previous prefix will remain in use. The error message “Volume not found” will be
displayed if the volume is not online.

If Directory_Name is preceded by a slash character (/), the prefix will be changed to
this new volume name.

If Directory_Name is not preceded by a slash character, the current prefix will be
used with the Directory_Name appended to form the path leading to the directory.

Examples:

PREFIX {Displays the current prefix}

{Adds System/Desk.Accs/ to the current prefix}

PREFIX System/Desk.Accs/

{Prefix becomes /Micol.Adv.BASIC/System/}

PREFIX /Micol.Adv.BASIC/System

PREFIX < [<]

This PREFIX command lets you move back one or more levels within a path by
adding one or more less than symbols (<) with no separating spaces. One less than
symbel (<) equals one directory level.

Use PREFIX with a Pathname to go “outside” any subdirectory.

Example 1:
PREFIX < {Go back one level}
PREFIX {Display the current prefix}
PREFIX << {Go back two levels}
Example 2:

If the current default prefix is /VOLUME/FIRST/SECOND/THIRD/FOURTH/, the
command PREFIX << will set the new default prefix to /VOLUME/FIRST/SECONDY/.

Part Two: The Programming Environment

23 Chapter One: The Command Shell

PRINTER

PRINTER sets the port or slot number through which the printer output of the
Editor and Compiler will be sent. The slot number entered must be a digit in the range
one through seven.

The default output is set to slot/port one.

Example:
PRINTER
Send output through which slot? (1-7)7?

QUIT [Pathname]

Use QUIT to leave the Micol Advanced BASIC language system. If QUIT is not
followed by a Pathname, you will be prompted: “Are you certain you want to quit (Y/N)?".
If “N” i8 entered, this command will be ignored and the Command Shell prompt will
return. If “Y” is pressed, control will be returned to the opcrating system. Once you
have entered “Y”, you will leave Micol Advanced BASIC.

If QUIT is used with a Pathname, that GS/OS application will load and execute. No
prompt requesting you to confirm your choice will appear, 80 make sure that the disk
containing the program launcher is online; otherwise, you will receive an error.

Example:
QUIT
Are you cerxrtain you want to quit (Y¥/N)?

Some program selectors (the Finder included) require
that the startup disk be online before the GS/OS
application can successfully execute. Do not attempt to
execute these files unless the startup disk is online,
otherwise the system will crash!!

If Micol Advanced BASIC was already started using a program launcher, use QUIT
without specifying an application name.

If you have only a single drive system, you may copy the Finder from the
/MAB.SUPPORT disk to a RAM disk and access the Finder from the RAM disk with the
Micol Advanced BASIC system disk in the drive.

Example:
QUIT /MAB.SUPPORT/SYSTEM/FINDER

If the second system disk, as well as the startup disk, is currently online, the Finder
will load and execute.

Part Two: The Programming Environment

Chapter One: The Command Shell 24

RENAME Pathnamel TO Pathname2

RENAME changes the name of a file, directory or volume. If the paths are on the
same volume, this command may even be used to move a file to another directory. To
rename, Pathnamel must be unlocked and Pathname2 must not already exist.

Example:
RENAME /RAM6/FILE TC /RAM6/NEWFILE

RUN [Pathname]

RUN [Pathname] loads and executes the compiled and linked program specified in
Pathname. The Pathname is usually the name of the source file of the program (the
“LNK” extension is added by RUN).

The RUN command may be entered without the Pathname to reexecute the previous
program.

Whenever a program is RUN, the values of all booleans are set to false, numeric
variables are set to 0 and all string variables to empty before executing the first line of
the program.

Examples:

RUN /MICOL.ADV.BASIC/MT.FRACTAL

UNLOCK Pathname

UNLOCK removes the protection on a file, so it may be modified, deleted or
renamed. A space rather than an asterisk will precede the filename when the proper
directory is displayed.

Example:

UNLOCK /RAM6/FILE

Adding Your Own Commands to the Shell

When the Command Shell receives a command it does not understand, it assumes
the command is the name of a Utility, a compiled Micol Advanced BASIC program, in
the folder UTILITY directly under the Micol Advanced BASIC folder, and attempts to
load and execute it.

If there is no such program name in the Utility folder, the Shell will display the
message “Illegal command line”. This filename is treated as equivalent to a built-in
Shell command.

Part Two: The Programming Environment

25 Chapter One: The Command Shell

How to Write a Shell Utility

The first step in writing a Shell Utility is simply to write a Micol Advanced BASIC
program, compile and hink it.

After your Shell utility program is thoroughly debugged, take the compiled code an.d
use the RENAME command to give the utility a meaningful name (no extension is
necessary). Copy the completed program into the folder UTILITY.

To access this utility from the Shell, just enter the name of the command exactly as it
appears in folder UTILITY.

Passing Parameters to the Utility

Micol Advanced BASIC Utilities may accept parameters. This parameter is a string
entered by the user after the Utility name when the Utility is invoked. This parameter
may not contain any spaces because a space is also a delimiter within the Shell (there
must be a space between the Utility name and the parameter on the command line).

Example (from Shell command line):

Get _Help Help.File

The optional parameter, a simple ASCII string ended by a carriage return, will be
placed into a buffer terminated by a zero (without the <CR>). The address of this buffer
will be placed into locations 212 - 214 in the usual LSB, MSB, Banlk format. To access
this string, concatenate the values starting at the address contained in locations 212,
213 and 214 using the CHR$ function until a zero is detected.

Example:

PROGRAM My Utility
Param$ = “”~
Address& = PEEK (212} + 256 * PEEK(213) + 65536 * PEEK(214)
REPEAT

Number& = PEEK (Address&)

IF Number& <> 0 THEN BEGIN

Param$ = Param$ + CHRS (Numberé&)

ENDIF

Adress& = Adress& + 1
UNTIL Number& = 0 {Your utility code follows]}

The parameter may then be used within your Utility program for any purpose you
require.

See the INDENTER program on the /MAB.SUPPORT disk for a realistic example of
a Utility. This program also is included as a Shell Utility on the disk labeled Master
Disk. If you enter INDENTER<CR> from the Shell, this Utility will execute; you will
then be able to get instructions on INDENTER’s usage.

Chapter Two: The Source Code Editor 26

Chapter Two

The Source Code Editor

Overview

This full-screen Editor has word processor like features plus easy Compiler access
and debugging assistance. The Editor has easy-to-remember, two-keystroke commands
that ease the entry and revision of the source code.

The Editor retains the current file even while using the Command Shell, compiling
or executing the program.

Entering and Quitting the Editor

Entering the Editor (EDIT [Pathnamel])

To summon the Editor, enter EDIT or EDIT Pathname at the Command Shell level.
The Editor may also be entered by pressing “E” from the Compiler if an error is detected,
or from a program if a run time error occurs while executing a program.

Quitting the Source Code Editor (<Apple>Q)

To leave the Editor and return to the Shell, press <Apple>Q. If the file being edited
has been modified since the last save, the Editor will beep when <Apple>Q is pressed. If
you hear this beep, you may wish to reenter the Editor (simply enter EDIT<CR>) to save
the file before continuing.

Description of the Editor’s Display

The screen display of the Editor consists of 24 lines. The Command Line is at the top
of the screen. A reference ruler appears on the second line. Directly under the Reference
Ruler is the Editing Display Area where your program will appear. At the bottom of the
screen on line 24 is the Data Line.

The Command Line.

The Command Line displays prompts and messages when the Editor needs to get or
return information.

The Editor’s Command Line uses the following keys to edit the input to a command:
Left Arrow, Right Arrow, Delete, <Control>S3, and <Control>X.

Part Two: The Programming Environment

27 Chapter Two: The Source Code Editor

The Reference Ruler

The second line displays a ruler. This line may be used to align text within the
screen.

The Editing Display Area

The Editing Display Area is a window that uses 21 lines of the screen to show the
text being edited. When necessary, this window moves up and down and from side to
side to show text that cannot be entirely displayed within one screen.

The Data Line

This inverse video line gives information about the text file being edited:

+ Line Counter
— This number represents the cursor’s current line position in the text buffer.
It is affected by up and down cursor movements and the Goto Line function
(<Apple>QG).
+ Column Counter
— Entering characters or moving the cursor left or right causes the column
counter to increase or decrease between 1 and 254.
» Line Length
— The Line Length counter shows the total number of characters in the
current line.
Pathname Indicator
— This area has a Pathname in it only after an existing file is loaded or after
a new file is saved to disk. The Pathname will be truncated to fit the
display if it is too long. This Pathname display remains until a new file is
loaded or the text buffer is emptied.
- Calendar/Clock Display
-~ The date and time will be displayed on the lower right side of the screen.
When a file is saved, the date and time are automa’ :ally stamped on the
file’s directory entry.

The Sound Indicator
The editor will beep when the wrong command key is pressed.

Basic Editor Commands

Control Command Keys

These Control key commands allow editing on a single line of source code.

Chapter Two: The Source Code Editor 28

<Control>B Erase to start of line

<Control>B deletes the portion of the line from the cursor position to the beginning of
the line.

<Control>X Erase current line

<Control>X deletes the line where the cursor is.

<Control>Y Erase to end of line

<Control>Y deletes the portion of the line from the cursor position to the end of the
line.

The Apple and Option keys

The Apple key and the Option key are used in combination with another key to give
commands to the Editor. Either the Apple or Option key plus the other key must be
pressed at the same time for a commmand to be executed.

NOTE

The Apple key is also called Command or Open-Apple.
The Option key is also called Closed-Apple. On the Apple
IIGS Upgrade, the Option key is called Closed-Apple. In
this manual, <Apple> will refer to the White Apple key
and <Option> will refer to the Black Apple key.

Escape key (Esc)

The Esc];ey may be used to cancel most commands at any time.

Return key

When the Return key is pressed, the cursor moves down to the beginning of the next
line and the file is shifted down one line. If the cursor is in the middle of the line, the
part to the right and under the cursor will be moved to the next line. The left side of the
line will remain as it was.

Deletion Mode (<Apple>Delete)

The Editor recognizes two deletion modes: true delete and destructive backspace. To
change the deletion mode, press <Apple>Delete. <Apple>Delete toggles from destructive

Part Two: The Programming Environment

29 Chapter Two: The Source Code Editor

backspace to true delete. By default, the Delete key performs a destructive backspace.

The destructive backspace mode erases the character to the left of the cursor. The
true delete mode erases the character under the cursor. All characters on the right of the
cursor are moved to the left. The shape of the cursor is not changed. Destructive
Backspace mode is shown by a Caret symbol (") on the command line. True Delete mode
is indicated by a Less Than symbol (<) on the command Iine. The Deletion mode
character is displayed at the left of the Copyright notice on the Command Line.

The delete mode will remain until it is modified by another <Apple>Delete or until
the system is restarted.

Delete Key

To delete a character, press the Delete key. The character will be erased and the line
will move to fill the blank. If the cursor is over a line with no characters, this line will be
erased and the following lines will move up one line. If the cursor is at the end of a line
in the True Delete mode, or at the beginning of a line in Destructive Backspace mode,
the previous and the current line will be merged and that section of the file will move up
one line,

Help screen (<Apple>H or <Apple>?)

To see a summary of the commands available to you, press <App1e>Shif"c-/ﬁ or
<Apple>H. The contents of the Editing Display Area will be replaced by the list of Editor
commands. To remove the help screen and resume editing, press a key.

The key Help is supported on any ADB compatible extended keyboard.

Enter/Overstrike Mode (<Apple>E)

To alter the edit mode, press <Apple>E. Pressing these keys changes from Enter to
Overstrike mode. Overstrike writes over existing characters without inserting other
characters; Ent- » mode automatically inserts the character. The default setting is Enter.
Enter mode is indicated by a flashing inverse space. Overstrike mode is shown by a
flashing underscore.

Upper/LowerCase Mode (<Apple>X)

<Apple>X allows the user to enter uppercase characters without having to press the
Shift key even when the Caps Lock key is in the Up position.

To activate this feature, press <Apple>X; the “C” in the copyright symbol on the
command line will change to a lower case “”. The upper/llowercase entry will be
reversed from what it was. To enter lowercase characters while using this feature, press
the Shift key. To deactivate this feature, press <Apple>X again.

Chapter Two: The Source Code Editor 30

Moving in the File

Cursor Control (Tl«—)

All arrow keys are functional. For any line greater than 80 characters, any attempt
to move the cursor past the right edge of the screen will cause the display to shift to the
left. If the screen has been shifted left, any attempt to move the cursor past the left most
position of the screen will cause the display to shift right. Upward and downward
motions work in the regular manner.

Think of the display as being an 80 column, 21 line window to the text file, with the
cursor keys allowing you to move anywhere you want within the file.

When the cursor is moved up or down, you will eventually reach either the top or
bottom of the screen display. When the cursor reaches the bottom, the file scrolls up.
When the cursor reaches the top, the file scrolls down.

Move Down one screen (<Apple>l)
Move Up one screen (<Apple>T)

<Apple>Down-Arrow (1) will move the cursor to the bottom of the screen, or if the
cursor is already at the bottom of the screen, it will scroll the display one screen page (20
lines) up.

<Apple>Up-Arrow (T) will move the cursor to the top of the screen, or if the cursor is
already at the top of the screen, it will scroll the display one screen page (20 lines) down.

NOTE)
The screen scrolling commands may also be used while |

selecting a block of source code that will be moved, copied

or deleted using the <Apple>C, <Apple>D or <Apple>M
commands.

The keys Page Up and Page Down are supported on any ADB compatible extended
keyboard.

Move To Beginning of Line (<Apple>«<)
Move To End of Line (<Apple>-3)

<Apple>Left-Arrow («) will move the cursor to the first character of the current line,
scrolling the display to the right if necessary. <Apple>Right-Arrow (=)} will move the
cursor one character past the end of the line, moving the display to the left if needed.

Part Two: The Programming Environment

31 Chapter Two: The Source Code Editor

Move to Previous Word (<Option><)
Move to Next Word (<Option>—)

<Option>Left-Arrow () moves the cursor to the first character of the previous word
on the line, scrolling the display to the right if necessary.

<Option>Right-Arrow (—) moves the cursor to the first character of the next word on
the current line, moving the display to the left if needed.

NOTE

Pressing the <Apple> key instead of the <Option> key

will not enable this command.

Relative Motion within the File

(<Apple>1 through <Apple>9)

Because a program source code file grows larger with every line you enter, the Editor
“separates” the file into 9 parts. Each part is recalculated as you add lines to your file.
Pressing <Apple> and a digit key will bring this “relative” portion of the file to the
display window.

To move to the beginning of the file, press <Apple>1. To move to the middle of the
file, press <Apple>5. To go to the end of the file, press <Apple>9.

The keys Home and End are supported on any ADB compatible extended keyboard.

Go to Program Line (<Apple>G)

To move quickly to a specific sequential program line, use <Apple>G: the Goto Line
command. The command line prompts for an input. Give a line number and press
Return. Tbe line will be displayed on the first line of the display. This command helps
locate the . rors signaled by the Compiler.

WARNING

Do not confuse the sequential program line numbers with
the optional BASIC source code line numbers. The
sequential program line numbers are created by the
Editor and the Compiler and are in no way related to any
line numbers the user may create.

Setting Tab Stops (<Apple>Tab)

To set tabulation positions, press <Apple>Tab. The current tabulation marks are

Part Two: The Programming Environment

Chapter Two: The Source Code Editor ' 32

indicated by diamonds on the Command Line. The default tab settings are placed one
every fifth position. Tab stops may be set only for the first 80 columns.

To set or delete tab stops, move to the desired position using the Right-arrow key
(Left-arrow will move back to position one) and press the Tab key. The first Tab pressed
will set the first position, the second pressed, the second tab position, and so on up to the
80th column. Press Return to confirm the new tab settings.

Tabbing (Tab key)

Use the Tab key to indent your source code. To tab to the next tabulation position,
press the Tab key. The default tab settings are every fifth position and may be altered as
desired by <Apple>Tab. If the curgor is past the current end of line, pressing Tab will
expand the current line to one character less the required Tab position, then the cursor
will move to the required position.

NOTE . X
If the next Tab stop is currently occupied by text, pressing

the Tab key will simply reposition the cursor without
indenting.

Text Block Editing Commands

Copy Text Block from Buffer (<Apple>C)

This command is designed to copy a block of text from the copy buffer to the text
area. You must have first moved the required lines to the copy buffer using the Move
Block command (<Apple>M) described below, otherwise you will receive an error. Move
the cursor to the line just after the position where you want to place the lines, then press
<Apple>C. The lines will be copied from the copy buffer. You may copy 2 maximum of
32,767 characters (32K).

Delete Text Block from Code (<Apple>D)

To delete a block of text, press <Apple>D. Then press the Down arrow key to “mark”
the lines to delete. The Up arrow key will unmark the lines. To confirm the deletion
command, press the Return key. The marked text will be deleted.

This command operates on whole lines only: the Delete Block command cannot be
used to remove a portion of a line.

Part Two: The Programming Environment

33 Chapter Two: The Source Code Editor

WARNING .
The Editor cannot recover deleted text once this

command is executed. Use the Move Text Block command
(<Apple>M) instead if you wish a possible recovery later.

Move Text Block to Buffer (<Apple>M)

To move a block of text to the copy buffer for later copying, and optionally, to delete a
block of text, press <Apple>M. To mark the lines to be moved, press the Down-arrow
key. To unmark the lines, press the Up-arrow key. Press the Return key to move the
marked text to the copy buffer. You will then be prompted if you wish to delete the
marked text. Accepted input is “Y” for yes and “N” for no. A copy of the moved text will
remain in the copy buffer until this command is used again or you leave the Text Editor.

The keys F2, F3 and F4 are supported on any ADB compatible extended keyboard.

Find/Replace Commands

Backward Find/Replace (<Apple>B)
Forward Find/Replace (<Apple>F)

The Backward Search and Forward Search commands are used to quickly move the
cursor to a specific word or to search for and replace that word. A search always begins
at the current cursor position.

These commands can search for a specific word or phrase (from 1 to 64 characters in
length).

If the occurrence(s) of the word you want to search for is near the beginning of the

file, use <Apple>F (Forward Search and Replace). Use <Apple>1 to start from the
beginning of the file, if necessary. If the occurrence(s) of the word you want to search for
is near the end of the file, use <Apple>B (Backward Search and Replace). ""se <Apple>9
to start from the end of the file, if necessary.

We will use Forward Search (<Apple>F) in the examples (backward search works the
same way). The Editor prompts: “Forward search: Find which string?”. Enter the word(s)
to find, then press Return. The text must appear exactly as it appears in the source code.

“Case sensitive search (Y/N)?". Press “N” to find all occurrences regardless of the
case. Press “Y” to find only occurrences having the same upper and lowercase pattern as
the one entered for the search string. A case sensitive search will look for word(s) with
the exact combination of upper and lowercase letters that match the character string you
are looking for.

The prompt “Replace with” asks for the string that will replace the word(s) you are
looking for. If you are looking for a word, not replacing it, press Return without entering
anything; otherwise, enter the replacement string.

Do an “Automatic replacement (Y/N)?” If “Y” is entered, all matches will be replaced

Chapter Two: The Source Code Editor 34

without user intervention. If “N” is entered, the user will be prompted to confirm the
replacement of each occurrence as it is found.

If the Editor finds the word(s) you are looking for, it will show the occurrence in the
center of the editing area displayed in inverse video. The editor will prompt if you want
to “Continue the search (B/F/Q) ?”. To continue the search forward, press “F”. To
continue the search backward, press “B”. To quit the search, press “Q”.

Example:

{Looking for a function}

Forward search: Find which string? FUNC
{Any case pattern}

Case sensitive search(¥Y/N}? N

{No replacement}

Replace with (Press Return)

{Prompt for every occurrence?}

Automatic replacement (Y/N)7? N

WARNING

Because this command may make extensive changes to
your file, we recommend you save your file before using
the automatic replacement feature, Until you are
familiar with this feature, it is easy to make mistakes.
Just reload the file to “undo” all the changes, if it did not
do what you wanted.

Filing Commands

New Source Code File (<Apple>N)

To clear the text buffer and start anew press <Apple>N. You are prompted for
confirmation. If you respond “Y”, you will be us if you had just entered the Editor.

WARNING
Once this command is executed, the text cannot be

recovered unless it has been previously saved to disk.

Insert Source File from Disk (<Apple>I)

To insert or merge another text file into an already existing text file, move the cursor
to the line preceding the insertion/merge position, then press <Apple>l. You will be
prompted for a Pathname. Enter the Pathname and press Return. If the file does not
exist, you will be notified. The text will be read from the disk one line at a time. Each

Part Two: The Programming Environment

35 Chapter Two: The Source Code Editor

time a line is entered, the screen displays this new line. The cursor will remain on the
line it was on before the command was given.

WARNING
Never use <Apple>I to insert a file at the last line of the

current file as Insert cannot be used to Append text.

Create a dummy line as the last line and Insert to just
before this line.

Save, Kompile and Execute File (<Apple>K)

This command will perform a Save (<Apple>S), compile, link and execute the file
being edited without the operator’s intervention as long as no compilation or linking
€ITOr OCCurs.

If a compilation error occurs, the process is stopped, and tbe Compiler prompts:
“Continue Compilation, Edit file or Shell (C/E/S) ?”. An “E” entered here will return the
user to the Editor at the position where the error occurred. A “C” will continue the
compilation, and an “S” will take the user to the Shell.

If a run time error occurs during execution of the program, you will be prompted
whether or not you wish to reenter the Editor to fix the problem. A “Y” will place the
cursor at the line containing the error. An “N” returns control to the Shell.

Regular use of this command is highly recommended as it
greatly simplifies program development.

Load Source Code File (<Apple>L)

IMPORTANT

To load a text file into the Editor, press <Apple>L. This will bring up the command
prompt line allowing a 74 character Pathname. Enter the Pathname and press Return
to load the file. Loading a file into memory removes the previous file in the text buffer.
After the file has been loaded, the Editor will display the first 21 lines starting from line
one. The line and column counters will display one. The Pathname is shown on the data
line before the clock display.

If you want to load a new file after having made changes to the current file, the
Editor will prompt you to save the current file before loading the new file.

If you try to load a file larger than the text buffer can hold, the part which will not fit
in the buffer will be cut.

Part Two: The Programming Environment

Chapter Two: The Source Code Editor 36

IMPORTANT

The <Apple>L command does not erase the text contained

within the copy buffer. Use this command to copy text
from one file to another, if necessary.

Save File as TXT type file (bit 7 on) (<Apple>S)

To save to disk the program you are currently editing, enter <Apple>S. This is the
usual file save command. If you save to an already existing file, this file will be deleted
first, then the new file will be saved in its place.

The Save command “remembers” the last Pathname entered. To reuse this previous
Pathname, simply press “Y” to the prompt.. The file saved with <Apple>S is of type TXT
($04).

WARNING

The Compiler generates the object file from the file on the

disk, not from the Editor buffer, so be certain to save your
file before you call up the Compiler.

Save File as SRC Type File (bit 7 off) (<Apple>T)

<Apple>T saves the source code text file as an ASCII file. The file saved with
<Apple>T is of type SRC ($B0). The text file created can be read by most
word-processors. This command works the same way as <Apple>S.

Printing Commands

Print Source Code (<Apple>P)

To output a program listing to your printer, press <Apple>P. The command line will
prompt you for the line number to start printing. Enter any positive number. Simply
pressing Return is a line one. The command line will prompt you again for the line
number to stop printing. Enter the second line number, or simply press Return as this is
an implied last line. The printing of the listing will start immediately. To print the
entire file, press the Return key twice. The Esc key may be used to cancel a print in
progess.

Example:
First Line: 100<CR>
Last Line: 701<CR>

Part Two: The Programming Environment

37 Chapter Two: The Source Code Editor

Text Window Printout (<Apple>W)

To print the text appearing in the text window, press <Apple>W. This command is
most useful when you want a quick printout of the Editing Display Area.

The key F13 (Print Screen) is supported on any ADB compatible extended keyboard.
To cancel the printout in progress, press the Esc key.

Miscellaneous Commands

Convert Decimal to Hex (<Apple>#)

To convert a decimal number to hexadecimal, press <Apple># (<Apple>Shift-3). The
command line will prompt you for input. Enter the decimal number to be converted to
hexadecimal and press the Return key. Only valid numeric (0-9) characters will be
converted properly as no error checking is done. Press any key to restore the command
display.

Convert Hex to Decimal (<Apple>#)

To convert a base 16 number to base 10, press <Apple># (<Apple>Shift-3). The
command line will prompt you for input. Enter a dollar sign ($) as the first digit to
indicate that a base 16 number will be converted, then the base 16 number followed by
the Return key. Only valid alphanumeric (0-9, A-F) characters will be converted
properly. Press any key to restore the command display.

Version Information (<Apple>V)

By pressing <Apple>V, the Editor’s Editing Display Area will clear and something
like the following display will appear:

GS/0S Version 3.3

Micol Advanced BASIC GS version 4.0

Last Modification Date 1 March, 1992
Bytes free in editor 23453

Bytes available in copy buffer 10009
Lines available for editing 2000

The Editors’ maximum buffer size is almost 128 kilobytes: enough for about 3800 to
4000 lines of code. You may copy a maximum of 32,768 characters (32K) to the Editor’s
copy buffer.

Chapter Three: The Compiler 38

Chapter Three

The Compiler

Overview

The Micol Advanced BASIC Compiler is a one pass compiler.; it reads the source
code only once while generating the objéct code. The Compiler translates the ASCII file
containing your BASIC program into an intermediate code which can be linked, then
executed.

This chapter is short, but don’t assume any lack of importance to the Compiler
because of this chapter’s short length. This chapter is simply a brief overview. The
Compiler is the heart of the language system. Part Three, the longest Part, is a
description of the language the Compiler can accept and in many ways is a description of
the Compiler.

Invoking the Compiler

You may invoke the Compiler by using the Shell command COMPILE or by
<Apple>K (Kompile) in the Text Editor (please see the appropriate section for details). If
you do not use <Apple>K from the Editor, be certain to save your file before exiting the
Editor as the Compiler works on the disk file, not the file in memory.

Example One:

{Default prefix is /Micol.Aadv.BASIC/}
COMPILE DISK.UTIL

The file DISK.UTIL will be compiled onto the volume Micol. Adv.BASIC as file
DISK.UTIL.LNK.

Example Two: .

COMPILE DISK.UTIL, /RAMS5/FILER

The file DISK.UTIL will be compiled as file FILER.LNK (a .LNK is always
automatically appended) on volume RAMS.

WARNING

Never forget that four characters are always appended to
the object filename during compilation. If the total
number of characters in the object filename results in
more than 15 characters, you will receive an,error at
compilation time. To avoid this minor problem, always
specify a source code filename of 11 characters or less.

Part Two: The Programming Environment

39 Chapter Three: The Compiler

During compilation, the Compiler generates three scratch files for its work. These
scratch files are:

+ <Filename.COD> the object code file

« <FileName.LIT> the file where literal constants are stored

« <FileName.LN> the file where forward references are stored.

The above three scratch files are then used by the Linker to create the executable
load module, <FileName> . LNK

WARNING
As soon as the compilation and linking processes are

completed, the three scratch files are deleted. If however,
during compilation, you should receive a disk full
message, it is because there is not enough storage for
these scratch files as well as the other files on the disk.
In this case, you will have to delete some files or direct
compilation to another volume.

NOTE

Before the Compiler begins the compilation process, it
checks for the existance of a RAM device with 192K free
space or more. If such a device is detected, three scratch
files are created: A.COD, A.LIT and A.LN on this RAM
disk instead of the three scratch files described above.
Compilation is much quicker if the scratch work can be
done to a RAM device instead of a permanent storage
device. If you have the available memory (more than one
megabyte), it is recommended you configure the Control
Panel RAM Disk to at least 192K.

Compiler Commands

The Micol Advanced BASIC Compiler has three Control key commands that may be
used while a program is being compiled.

Aborting a Compilation

Pressing <«Control>C stops the compilation in progress; control is returned to the
Command Shell. If you use this command, you will probably notice several error
messages generated by the Compiler. Simply ignore these messages as the compilation
was not completed.

Part Two: The Programming Environment

Chapter Three: The Compiler 40

Compiled Listings to the Screen

If you press the letter “L” during compilation, the Compiler will send a compiled
listing to the screen. This listing may be turned off by pressing the letter “L” again and
may be paused by pressing <Control>S. Pressing any other letter will continue the
compilation. This compiled listing is the same as that generated by the compiler option
LIST described later in this manual.

Compiled Listings to the Printer

If you press the letter “P” during compilation, the compiled listing will be directed to
your printer. This listing is the same as that sent to the screen described above.

WARNING

The printer must be online at the time of compilation. By
default, the printer must be connected to slot one or the

system may hang. This slot number may be altered by
the Shell command PRINTER.

Dealing with Syntax Errors

Unlike the Applesoft BASIC interpreter, Micol Advanced BASIC has dozens of
different error messages, only one of which is the dreaded “Syntax Error”. When the
Compiler cannot make sense of a particular statement, it will send to the screen, in
inverse video, the source code line as far as it could “understand” it, and relate what the
Compiler “thinks” is the problem. The Compiler is sometimes wrong, but it is more often
correct. In any case, you easily should be able to determine the real cause of the problem
by taking time to read the error message and the line of code carefully.

You may be tempted to ask, when the Compiler gives you a message like “’ (’
expected in line <line number>”, that if the Compiler knows what to expect, then
why doesn’t it simply insert t' character and continue?

Do not attribute any intelligence to the Compiler. It is little more than a very
sophisticated pattern matcher and code generator. Some compilers do insert the
character they “think” is missing, usually with very bad results.

The problem is that the Compiler often does not know what is really expected. With
the information the Compiler has at the time, it is usually correct about what is needed.
But maybe the cause of this error happened earlier.

For example, the programmer may have mistakenly entered a reserved word and
used it as a variable name. The Compiler might expect a left parenthesis when what it
actually found was an equal sign. If the Compiler had replaced the equal sign with a left
parentbesis, the situation would be worse, not better.

Part Two: The Programming Environment

Chapter Three: The Compiler

" Code Generation

As you probably know, the BASIC program you write is really only a representation
of the actual code that is executed by the computer. This is true whether your program
is compiled as under Micol Advanced BASIC, or interpreted as under Applesoft BASIC.

If you believe that Applesoft code you entered is what is actually executed, try this
little experiment. Write a small program in Applesoft, then do a CALL -151 to get into
the machine language monitor. Begin looking at the code starting at location $301 (2049
decimal). You will not recognize much; it is a special tokenized code.

The Micol Advanced BASIC Compiler scans your code and writes assembly language
code as 1t goes. This is true of most (but not all) compilers.

With most language systems, code generation is regarded as a sort of black box. All
you need to know is that a particular program will generate the necessary machine code
to performs its task. You seldom get to see the code that is generated; you have to look
upon it as a sort of magic.

Micol Systems takes a different approach. We believe that if you can see the coade
generated, you will better be able to understand what is going on and therefore write
more efficient programs.

In order to speed compilation and save disk space, the Compiler writes an
abbreviated assembly language code to disk. If you were to look at the file
<FileName>.COD file generated by the Compiler, you would not recognize very much,
even if you knew 65816 assembly language. However, if you specify the CODE compiler
option at the top of your program, the Compiler will display this code in an assembly
language format (see Part Three, Chapter One for additional information).

You will need a basic understanding of 65816 assembly language to understand 1.;his
code, but as most of the detailed work of the compiled program is done by the run time
Library routines, you won’t need very much.

Most of the generated code is either setting encoded addresses and calling Library
routines to perform the task, or generating code to control the flow of the program.
Because of CPU limitations, most of the work performed by your programs must be
performed by the Library routines.

Man+ Library routines used by the compiled program fall into one of three
catagories: integer, real or string. The Compiler generates subroutine calls according to
the following criteria: if the Compiler recognizes an operation to be integer, it appends
an “I” to the function name stem. If it recognizes real arithmetic, it appends an “R”, and
it appends an “S” for string routines. If the Library routine R+ is being called, for
example, real addition is being performed. Some important Library routines are:

LNOUT Saves the line number information

MVARY Used with array manipulations

FASS Places FOR loop counter values onto its stack
FOR FOR loop controls

NEXT Decrements the FOR variable stack pointer
LDAC Gets the boolean result from the stack

Part Two: The Programming Environment

Chapter Four: The Linker 42

Chapter Four

The Linker

Overview

The Micol Advanced BASIC Linker will be summoned automatically if no error is
detected during compilation. Because of this, the task of the Linker is mostly
trangparent to the user.

After the source code file has been compiled, the program is still not yet ready for
execution. Three intermediate code files were created by the Compiler. These files
contain all the information the Linker needs to generate the executable module.

The Linker will read files created by the Compiler from the volume where these files
were written and create the file FileName.LNK in the appropriate folder.

How the Linker Works

First, the Linker reads the jump table (FileName.LN) that contains the names and
relative addresses of all Functions, Procedures, Routines and other possible forward
references in the source code.

Second, the Linker creates the binary load module FileName LNK by reading the
FileName.COD file. The Linker replaces the references to all the names of the
Functions, Procedures, Routines and internally generated labels with their addresses,
and generates the necessary code as it goes. The Linker sends a period to the screen for
every 250 lines of code it has processed.

Third, after the generation of the executable code, the Linker converts the literal
values written in the file FileName.LIT into binary and places this code at the top of the
executable code module. These values will be loaded into their proper locations at
initialization time (when the program is first executed).

After the linking process, the Linker will then try to delete the three scratch files
generated by the compiler and used by the Linker, as they are no longer needed.

How to Use the Linker

As was already mentioned, the Linker is invoked automatically by the Compiler. The
Linker does, bowever, require some user input after its task is finished. _

If the Linker was summoned via the Shell using the COMPILE command, and the
link is successful, you will receive the prompt, “Execute the file (Y/N)?". If you enter “Y”,
the program will load and execute. If you enter “N”, you will be taken to the Shell.

If the Linker was called via the Editor with the Kompile (<Apple>K) command, the

Linker will automatically load and run the esecutable object file after a successful link
process.

Part Two: The Programming Environment

43 Chapter Four: The Linker

Linking Errors

When the Linker detects an error, usually a non-existent Function, Procedure or
Routine call (FN Module.Id or GOSUB Module.Id), the Linker displays “Undefined
subroutine <ID>” in inverse video. <ID> refers to the name used to define the Function,
Procedure or Routine in the program.

You are prompted to fix the error in the editor, “Edit the linker error (Y/N)?”. A“Y”
response to the prompt will bring the Editor to the screen with your file waiting to be
edited. If you enter “N”, you will be taken to the Shell.

Because the Linker does not know at which line the error occurred, the cursor is
placed at the beginning of the source code file. Use the Forward Find/Replace command
(<Apple>F) to locate the module call with the “undefined” subroutine <ID>.

Part Two: The Programming Environment

Chapter Five: The Run Time Library 44

Chapter Five

The Run Time Library

Reference Section

The run time Library, file LIBRARY on the system disk, is the workhorse of the
compiled program. The Library contains all the routines needed by the compiled code to
accomplish its tasks. The functions performed by the run time Library may be anything
from doing integer multiplication to string garbage collection. The Library uses the
floating point math routines of the Standard Apple Numerics Environment (SANE)
contained in the Apple IIGS Toolbox as well as the Toolbox’s graphics and sound
capabilities, etc.

The run time Library is brought into memory when Micol Advanced BASIC is booted
and remains in memory until you leave the language system. As is the case with the
Compiler, the Editor and the executable load modules you will create under Micol
Advanced BASIC, the Library is relocatable. This means the Library is loaded where
the GS Memory Manager tells the Micol Loader memory is available. The Library is
then referenced within a program by a jump location that is set at a fixed address in
memory ($E100F0).

The Library consists of scores of run time routines and buffer memory. It comprises
about sixty-four thousand bytes of code. Because most of the work the Library performs
is done by internal routines, the speed of these routines is greatly increased.

The Micol Systems Licensing Agreement

The purchaser of Micol Advanced BASIC has the right to make backup copies of the
Micol Advanced BASIC software for his/her one personal use. This software may not be
given to another party except with express written permission of Micol Systems.

The purchaser of Micol Advanced BASIC has the right to make and distribute copies
of the Micol Advanced BASIC Program Loader, the Micol ..ons, and the Run Time
Library to execute a program developed by the legal owner of the Micol Advanced BASIC
Language System if one of the two specifications below is followed. The Micol icons, the
run time Library and the Micol System Loader (files Micollcons, LIBRARY and
MicoLAdv.BASIC) consist of copyrighted code belonging to Micol Systems Inc.

That person or commercial entity owning a legal (non-pirated) copy of Micol
Advanced BASIC is hereby granted a license to distribute free of charge compiled Micol
Advanced BASIC programs provided one of the two conditions below is followed:

1. The Micol Systems Copyright notice is displayed while Micol Advanced BASIC is
booting.
2. Anegotiable, one time fee is paid to us before the release of the product on the

commercial market. Once this fee is paid to us, you will receive a copy of a
“Commercial Distribution License” from us to use the Run Time Library, the

Part Two: The Programming Environment

45 Chapter Five: The Run Time Library

Micol Icons, as well as the Micol Systems Loader which does not display the
Micol Advanced BASIC Copyright notice, to be used with a specific product.

You do not have the right to use the Micol icons, the Micol
Advanced BASIC Run Time Library or the Micol
Advanced BASIC System Loader with a program
intended for commercial purposes unless you have met
one of these two conditions. -

IMPORTANT

Educational and Industrial Site Licenses

Micol Systems Inc. offers to companies and school districts and boards the possibility
of making unlimited copies of Micol Advanced BASIC by purchasing a site license.

The site license package consists of:
+ The Micol Advanced BASIC disks: Master Disk and /MAB.SUPPORT. These

disks contain special, fully networkable versions of Micol Advanced BASIC, not
otherwise obtainable

- Two copies of the Micol Advanced BASIC reference manual

- Asite licensing agreement which allows you legally to make unlimited copies of
the system disks and manuals for use with the specified site

A product registration card
» Theright to purchase additional manuals at a reasonable cost.

District and Board licenses are also available. For further details, contact the Micol
Systems office during regular business hours.

Part Two: The Programming Environment

Chapter One: Compiler Rules and Directives 46

Part Three: The Advanced BASIC Language

Chapter One

Compiler Rules and Directives

Overview

This chapter describes the general rules for writing Micol Advanced BASIC
programs. You must pay special attention to this section as there is nothing in Applesoft
of a similar nature. This ¢hapter also describes special features of the language that can
greatly aid you in your program development.

General Information

The programs you create with the Micol Advanced BASIC cannot be as free form as
those created with Applesoft BASIC. You must follow certain rules regarding the
sequential order of certain statements. This is something inherent to compiled
languages.

A Micol Advanced BASIC program consists of a series of program lines. Each
program line consists of one or more program statements. A program line may have a
maximum of 250 characters and must end with a carriage return.

Multiple Statements per Line

A colon may be used to separate two or more program statements on the same line.
Try to avoid this usage as it hinders program clarity.

Example:
TEXT : HOME

Line Numbers

If you wish, you may precede each program line with a line number as under
Applesoft BASIC. Line numbers may range between 1 and 65535.

Part Three: The Advanced BASIC Language

47 Chapter One: Compiler Rules and Directives

Line numbers are NOT required by Micol Advanced
BASIC and their use is NOT recommended. Line

numbers are no longer useful, and were retained solely
for compatibility with Applesoft BASIC. Unless line
numbers are referenced within a program, they will be
ignored. Use of line numbers within a program is entirely
up to the programmer.

IMPORTANT .
When the Compiler or run time routine refers to a line in

your program, it is referring to sequential line numbers
given to the source code by Micol Advanced BASIC, not to
any line numbers you have specified in your program.

Program Line Continuation Character (\)

The Editor and Compiler accept source code lines up to 250 characters long. The
Editor’s display will scroll from left to right when a source line of more than 80
characters is entered. To keep the program line within one screen, you may divide a
source code line into two or more parts by terminating the line with a backslash (\).
Enter the remaining source code line anywhere on the next line.

The backslash (\) must be the last character on the line and may appear only where
extra spaces could appear. It may not be used to break reserved words or identifiers.
The backslash may not be repeated on the same line, or you will receive an error.

Example:
PROGRAM Math
HOME
Number% = (1 * 6) + \
(2 * 5)
PRINT Number$
END

Commenting Your Programs

Micol Advanced BASIC provides two ways to help you document a program:
comment statements and comment delimiters.

Use annotations to better understand what the program does in order to make
changes, corrections, or add new features to the program at a later time.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 48

NOTE
Unlike Applesoft BASIC, Micol Advanced BASIC does not

generate any code for the comments in a program (except

perhaps for line number information). Write whatever
comments which aid in the understanding of the

program.

Comment Statement (Old Method)

The REM (for remark) keyword instructs the Compiler to ignore all characters until
the beginning of the next line. REM provides compatibility for programs originally
written in Applesoft BASIC.

Example:

REM You may write comments like this as in Applesoft,
REM but the method described next is much better.

Comment Delimiter Characters [{}] (Preferred Method)

Comments may also be enclosed within brace brackets [{ }], which may be placed
anywhere in a program where extra spaces could be written. These comments may cover
multiple lines if you wish.

NOTE

Comment delimiter characters may be nested. An
annotated section of code may be “commented out”
without having to worry about the comments already
written. “Commented out” code is treated like any other

comment,.

WARNING

The right brace bracket (}) closes the comment and is
extremely important. Do not forget to terminate the
comment with a right brace bracket [}]; otherwise, the
rest of the program will be considered a comment.

Examples:
PROGRAM Show_Comments
{This is a comment
covering a couple of lines}
HOME

Part Three: The Advanced BASIC Language

49

Chapter One: Compiler Rules and Directives

{{This FOR loop will not be in the program}

FOR Counter% {Comment here too} = 1 TO 100
PRINT Counter$

NEXT Counter%}

END (Show_Comments}

Program Order

A Micol Advanced BASIC program must begin with a program name. Compiler

options are the next statements to be included, if needed. ALIASes, then DATA
statements are declared thereafter. The optional identifier’s type declaration follows
next. Array declaration statements round up the program declarations.

Except for the program name, the lines just mentioned are optional, but if compiler

directives, DATA statements or array declarations are used, they must not appear out of
the order mentioned above, otherwise Compiler errors will arise.

Example:

PROGRAM Definition {Program Identifier}

{Compiler Options}

@ LIST, EXTEND

ALIAS “UNTIL 1 = Q0" = “FQOREVER"

DATA 1, 1.0, “1" {DATA statements}

{Identifier’s Type Declaration}

INT (I - N}: STR (S - 2)

DIM Alpha% (2), Beta (3), Coma$ (4) {Array declarations}
{Actual Program Start}

END

Program Name

The first line of each program must begin with the reserved word PROGRAM

followed by a program identifier. The name of the program must begin with a letter and
may only consist of letters (A-Z), digits (0-9) and underscores (_), and may not be a
reserved word.

This line is not optional. Ifit is left out, the Compiler will return an error.
Note that a period (.) is not allowed in a program identifier.

Examples:

PROGRAM First_ Program
PROGRAM Test.file {Not Allowed}

Chapter One: Compiler Rules and Directives 50

Compiler Directives

Compiler directives are special commands given to the Compiler to tell it to do a
special task, such as sending a listing to the printer. Compiler directives consist of both
compiler options such as LIST, and other instructions to the Compiler such as ALIAS.

The fact that the Compiler must see all the code before any program can be executed
allows it to do certain things an interpreter is incapable of doing, such as giving more
precise syntactic error messages. A thorough knowledge of these directives will help to
get the most out of the compiled language and make programming more enjoyable.

Compiler Options

To use one or more compiler options, the line must begin with an at sign (@) followed
by one or more options separated by commas (,). The compiler options may appear on
separate lines, but the lines must be consecutive.

Example:

PROGRAM Example
@ LIST, CODE
<Program Code>

BANK_NO = Integer_Literal

This option is used to increase the memory allocated at run time for the string buffer
and will probably only be necessary if you have very large string arrays.

The memory is reserved in memory banks of 64K. By default, a program has one
bank for its string storage. Under most circumstances, one bank should be sufficient.

BANK_NO accepts integer values between 1 and 15. This means that as little as
one bank (64K), or as much as 15 banks (just over a megabyte) may be allocated for
string storage. If the computer does not have enough memory for the number of banks
specified, there will be an error when the program begins to execute, not when it is .
compiled.

At the end of compilation, the Compiler indicates how many banks of memory for
string buffer storage will be allocated for the program.

Example:
PROGRAM Example
@ BANK NO = 4

In the example above, the program will allocate four banks (256K) of RAM for string
buffer storage.

CODE

This option lets you see how assembly language code is generated by the Compiler as

Part Three: The Advanced BASIC Language

51 Chapter One: Compiler Rules and Directives

it processes the program. Assembly language programmers will be able to see the code
generated, and may be able to write better programs. CODE is included for the benefit
of those who have an interest in learning more about how a compiler generates code.

To see the code generation displayed to the output device, use the CODE option. The
Compiler writes the object code to disk in a compact assembly language-like format.
With this option, the code will be expanded on the current output device to look like true
assembly language.

Example:

PROGRAM Example
LIST, CODE

HOME

END

The Compiler produces this code for this simple program:

2 (0] O $00G0 HOME
JSL LIBRARY
BYT INIT
BYT 00
WOR 0000
BYT 00
WOR 0000
JSL LIBRARY
BYT HOME

3 (0] 100 $0010 END
JSL LIBRARY
BYT LNOUT
BYT 00
WOR 0003
JSL LIBRARY
BYT END

ERROR

If a RESUME is used in a program which causes it to continue execution at the same
line where a run time error occurred, the ERROR compiler option must have been
specified to make the program function properly.

This option causes the Compiler to generate six (6) extra bytes of code for each line or
loop. If you are short of memory, don’t use it.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 52

NOTE
ONERR GOTO branches will work without this compiler

option, but the program will not be able to RESUME

execution.

See also the RESUME command in Part Three, Chapter Fourteen.

Example:
PROGRAM Example
@ ERROR

<Program Code>

EXTEND

Use this compiler option to increase the range and accuracy of all real simple
variables and arrays from 7 or 8 places to 19 or 20 places. This is especially useful in
scientific or technical programs in fields such as microbiology, engineering, and
astronomy.

Normally, four bytes of memory are allocated for each real simple variable or real
array element, but if the EXTEND compiler option is used, ten bytes of memory will be
allocated for each real variable or array element. Each real value will have an accuracy
to 19 or 20 places, with a range of +10™0% Because floating point calculations are
always carried out using extended arithmetic, there will be little difference in execution
speed if this option is used.

Example:
PROGRAM Example
@ Extend
<Program Code>

LIST

The LIST compiler option instructs the Compiler to generate a source code listing as
the program is being compiled.

A compiled source code line consists of the sequential line number, the nesting level,
the relative (not actual) address expressed in decimal notation where the first byte of
this line will reside, this address expressed in hexadecimal notation, and the source code
line. A symbol table dump of the variables followed by the memory usage information is
displayed after the program lines. See “Compiled Listing” later in this chapter for
additional information.

LONGINT

Use this compiler option to increase the range of all integer variables and integer

Part Three: The Advanced BASIC Language

83 Chapter One: Compiler Rules and Directives

arrays from five to ten places. If you are not using extended real numbers, the accuracy
(but not range) of long integers is actually greater than that of real numbers, but their
execution is much faster. This may be an important consideration for you.

Two bytes of memory are normally reserved for each integer variable or integer array
element. When the LONGINT compiler option is used, four bytes of memory are
allocated for each integer variable or array element. Each integer value will have a
range of +2,147,483,647.

NOTE

Because integer arithmetic is very fast, there will
probably be little difference in execution speed if this
option is used. However, twice as much memory is
required for integer storage. This is only a factor if you
have limited memory and very large integer arrays.

Example:
PROGRAM Example
@ LONGINT, CODE

NOGOTO

This compiler option is intended for teachers who wish to restrict their students to
structured programming without using GOTOs or POPs. By specifying this option,
GOTO and POP statements will become illegal and cause a compiler error if used. The
reserved words GOTOQO and POP may then be used as variable names.

The ONERR GOTO statement is not affected by the NOGOTO compiler option.

Example
PROGRAM Example
@ NOGOTO

NOT_C

This compiler option turns off the <Control>C interrupt command ability during
program execution. Pressing <Control>C from the keyboard during a program’s
execution will have no effect on programs if this option is used.

Example:

PRCGRAM Example
@ NOT_C

IMPORTANT

Do not use this compiler option until the program is

thoroughly debugged. '

Chapter One: Compiler Rules and Directives b4

OPTIMIZ

The compiler normally generates line information to let the programmer know where
a run time error has occurred in the program.

This compiler option turns off the consecutive line information usually generated by
the Compiler. This gives programs a small, but noticeable increase in execution speed.
Use it to speed up the program once it is completely debugged.

IMPORTANT i
The most important function of OPTIMIZ is to conserve
memory. A program using OPTIMIZ is about one-third
smaller than one without it.
PRINTER

This option functions the same way as the compiler option LIST, except output is
directed to the printer instead of the screen. Output is directed through slot one unless
changed by the Shell PRINTER command. The listing is printed according to values set
in the Control Panel.

Example:
PROGRAM Example
@ PRINTER

VARZ

This option restricts to two (or three if an exclamation mark (!), a dollar sign ($), an
ampersand (&) or a percent sign (%) is at the end of the variable name) the number of
significant characters in a variable name, as in Applesoft BASIC.

NOTE e
Use this compiler option only if you are compiling source
code files converted from Applesoft BASIC programs and
do not wish to modify the variable names.
Example:
PROGRAM Example
@ VARZ2

Part Three: The Advanced BASIC Language

55 Chapter One: Compiler Rules and Directives

Compiler Aliases

ALIAS “User statement” = “BASIC Expression”
~User Statement

The ALIAS compiler directive lets the programmer change a Micol Advanced BASIC
statement or expression to another statement or expression of his/her choosing.

ALIJAS definitions are placed after the compiler options and before the variable type
declarations.

The purpose of Aliases is to give more meaning to your programs. For example, if
you have a loop which you wish to execute as long as the computer is on, you may
_substitute Forever for the Micol Advanced BASIC code that actually creates this
condition.

An Alias is defined by using the keyword ALIAS followed by the replacement
statement, followed by an equal sign, followed by the statement that the Compiler will
substitute. Both strings on either side of the equal sign must be enclosed in quotation
marks ("").

To make the replacement within a program, use the tilde (~) character followed by
the user replacement string (without the quotation marks). When the Compiler detects
the tilde, it will search the ALIAS list (created at the top of the program) for a match
and make the replacement during compilation.

An Alias substitution may not be the first executable line or the Compiler will issue
an error.

IMPORTANT

All string literals used with Aliases are case sensitive; the
Alias definition and user statements must exactly match,
or no change will occur. No error will be flagged, but as
no substitution will occur, an error condition will
undoubtably arise when the line is compiled.

Example:
PROGRAM Example
ALIAS “Pi” = “3,14159"
ALIAS “Forever” = “UNTIL 1 = 2"
ALIAS “Clear Screen” = “HOME”
INT (A - Z)
(Start of executable code follows)
Trig Const = ~Pi
~Clear Screen
REPEAT

Chapter One: Compiler Rules and Directives 56

PRINT “Trig_Const = "”;Trig_Const

~Forever
END
NOTE])
If two Alias declarations beginning with the same lettexrs
are declared, the wrong match may be made. This
problem may be avoided by declaring the longer Alias
declaration first.
Example:
PROGRAM Example
@ List

{Note the corder here, it’s important,
if reversed, only first Alias matched]}
ALIAS “Pi_Long” = "“3.14159"

ALIAS “Pi” = "“3.14"

ALIAS “Circumference” = “20.0"

{Note! Order here is unimportant}
Diameter = ~Circumference / ~Pi
Diameter = ~Circumference / ~Pi Long

NOTE
When the Compiler generates a compiled listing, the Alias
substitution made during compilation will be displayed. |
If you are getting error messages that don’t make sense to
you, try generating a compiled listing.
Variable Type Declarations

INT(letterl-letter2) : STR(letter3-letterd)

The variable type declaration allows the programmer to write the integer and string
identifier’s of simple and structured data types (simple variables and arrays) without the
percent (%) or string ($) character required by Applesoft BASIC. These statements are
optional and are placed before the arrays are declared.

To declare a range of variables, specify the data type (INT for integer or STR for
string) followed by a range of letters in parentheses. Separate the variable type
declarations by a colon (:).

The range of letters used for integer variables must be different from the range used
for string variables. If the declarations between the integer and string data types should

Part Three: The Advanced BASIC Language

57 Chapter One: Compiler Rules and Directives

overlap, the Compiler will indicate that an error occurred.

Any possible implied declaration with the following characters, a “%” for integer “&”
for real, “$” for string and “!” for boolean after the variable name, will override the
declaration types mentioned above. These characters are still significant. Note that
there is no implicit declaration for booleans.

NOTE o
A one letter range may be declared by specifying the same
letter twice in the declaration.
Exzample:

PROGRAM Examplel
INT (K~-K): STR (S-5)

Variables beginning with the letter K and having no special character at the end will
be integer variables, while variables beginning with the letter S and having no special
character at the end will be string variables.

Example:

INT (I-R): STR (S-2)
First§ = “#

Second = *”

Second$ = W
Second% = 0

Third we

Forth 0.0

Ninth = 0

Ninth& = 0.0

First$ is a string variable

Second s a string variable

Second$ is a string variable different from Second

Second% is an integer variable

Third is a string variable

Forth is a real variable

Ninth is an integer variable

Ninth& is a real variable

In the above example, all variables which begin with letters A through H will be real
variables (unless followed by the character !, % or $). All variables which begin with
letters I through R will be integers (unless followed by the character &, ! or $), and all

variables which begin with letters S through Z will be string variables (unless followed
by the character &, % or !). Second and Second$, although string variables in the above

Chapter One: Compiler Rules and Directives 658

example, are different variables.

Compiled Listing

Whenever you use the LIST or PRINTER compiler options, you generate what is
called a compiled listing. This compiled listing contains much information that may be
of use to you during your program development.

Here is an example of a compiled listing:

PROGRAM Example
Compiled listing of Example

3 [0] 0 $0000 HOME

4 [0] 16 $0010 FOR Counter = 1 TO 10

5 (11 56 50038 PRINT “Counter = ”;Counter
6 (1] 84 $0054 NEXT Counter

7 [0] 100 $0064 END

No errors in compilation

SYMBOL TABLE DUMP
1 RO205 10 R0209 Counter R0201

530 bytes required for variable storage
1 bank required for string storage
118 bytes code generated

Program Lines

The first position in the program line is occupied by the sequential line number.
This is the number that is used whenever a line is referenced.

The second position in the program line is occupied by a number in square brackets
({1). This number is the level of nesting in which the program line appears. For
example, this number tells you how many FOR loops or IF statements are currently
active at the beginning of the line. This can be very valuable debugging information.

The third value displayed is the relative address in decimal, followed by the relative
address in hexadecimal, followed by the actual program line itself.

Symbol Table Information
After the program lines, the Compiler displays the list of all types of simple and

structured variables used in the program. ,
The Symbol Table contains the relative hexadecimal addresses of all simple boolean,

Part Three: The Advanced BASIC Language

59 Chapter One: Compiler Rules and Directives

integer, real and string variables, numeric constants (literals), and arrays.

The capital letter in the address indicates the type of the variable. B indicates the
address of a boolean, I indicates the address of an integer, R indicates the address of a
real, and S indicates the address of a string

The local simple variables (accessible only to Functions or Procedures) are the first
variables listed in alphabetical order. The values assigned to simple and structured data
types are listed second, also in alphabetical order. The simple and structured data types
are listed third, also in alphabetical order.

During compilation, the names of all variables have been converted into uppercase
letters and so appear in the Symbol Table. The name of a local simple variable is
preceded by a number sign (#). An array name is followed by a left parenthesis [(].

Statistical Information

After the Symbol Table bas been displayed, there appear a few lines which give a bit
of helpful information. These lines are:
530 Dbytes required for variable storage
1 bank required for string storage
118 Dbytes code generated
The first line indicates how many bytes of memory were used by the boolean, integer,
floating point, and string variables and arrays, and all literals. The second line shows

how many banks of memory are allocated for the string buffer. The third line shows how
many bytes of program code were generated by the Compiler.

NOTE
The program will actually occupy a bit more memory than

is specified by the last statistical information line. This is
because some memory will be occupied by code generated
by the Linker to store initialization information. The first
line of statisical information (bytes required for variable
storage) will give you a rough idea of how much more.

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 60

Chapter Two

Basic Elements of the Language

Overview

In order to understand any computer language, you first have to learn the basic
elements comprising the language. This chapter will deal with these basic elements that
you will need to build upon to create Micol Advanced BASIC programs.

Basic Symbols

Micol Advanced BASIC uses letters of the alphabet, digits, and special characters to
form the symbols of the language.

Digits (0-9)
Digits are used to form numbers, keywords, identifiers, and character strings.

Letters (A-7Z,a - z)

These characters are used to make keywords, identifiers and character strings.

Special Characters

These characters (1, @, $, %, &, _, ~(,) {,}) may be used to give a specific meaning
to identifiers, declare an array, specify a comment, etc.

Separators

Colon

The colon (:) separates two statements on a line.

Comma

The comma (,) separates two or more constants or variables on a line.

61 Chapter Two: Basic Elements of the Language

Parentheses

The parentheses [()] separate complex string and math expressions as well as array
element designators.

Space

A space specifies where one symbol ends and another symbol begins.

Variable Names

A variable name consists of letters, digits and the underscore character. A variable
name may have up to 62 characters, but it is wise to limit its length to about 20
characters or less. Unless the VAR2 compiler option is used, all characters are
significant,.

The variable name must begin with a letter of the alphabet. Characters may be
either in upper or lowercase, but lowercase letters will be converted to uppercase during
compilation.

A variable name may not be a reserved word and should be meaningful. By
convention, variable names are easily destinquished from reserved words in that
reserved words are entered in uppercase letters while variable names are in lowercase
with only the first character in uppercase.

Unlike Applesoft, a variable name under Micol Advanced BASIC may contain a
reserved word within it. For example Go_Home and For_Ctr are legal variable names.

Examples:

Factorial, General Ledger, Tax, Price
instead of variables like
z13, XYZ, Al23

which are not meaningful.
These variables are not legal:

General.Ledger, 10% Tax, Home

Variable Data Types

The data type defines the interpretation of values that simple variables, arrays, and
expressions may have. Micol Advanced BASIC has four simple data types and four
structured data types, one for each simple data type.

Simple Data Types

Micol Advanced BASIC supports boolean, integer, real and string variables as simple

Chapter Two: Basic Elements of the Language 62

data types.

Booleans

A boolean variable is assigned either a value of TRUE or FALSE. The function of a
boolean variable is to be set to one state or the other, so that necessary action(s) may be
taken later (this is often called a flag or switch). A boolean occupies only one byte of
memory. The initial value of a boolean variable is FALSE.

The normal convention for variable names applies, but an exclamation mark g!) must
be added at the end of the variable name to force the Compiler to type the variable as
boolean.

Boolean variables may also hold an indefinite value if necessary. See Controlled
Uncertainty in Chapter Twelve of this Part for details.

Examples:
Flag! = FALSE {Init flag for test)}
Number = 10

IF Number > 6 THEN Flag! = TRUE
IF Flag! TREN BEGIN
PRINT “Number is greater than Six”

ENDIF
NOTE .
The keyword TRUE or FALSE is displayed to the current
output device when a boolean variable or relational
expression is evaluated within a PRINT statement.
Example:

PRINT 1 <> 2 {Will print TRUE}

Integers

An integer value represents a numeric value that has no fractional part and has a
limited range. The initial value of an integer variable is 0.

The normal convention for naming variables applies, but a percent sign (%) must be
added at the end of the identifier to force the Compiler to type the variable as integer
unless an INT variable type declaration is in force.

Example:

Dividend$% = 1
Divisor% = 3

PRINT Dividend% / Divisor% {Result is 0}
Micol Advanced BASIC for the Apple IIGS has two ranges for integer values: Short

Part Three: The Advanced BASIC Language

63 Chapter Two: Basic Elements of the Language

Integer and Long Integer.

Short Integers

Micol Advanced BASIC can represent short integer values in the_ range 1327 §7 :
Negative values are represented as two’s complement numbers. A short integer occupies
two bytes of memory.

Example:

Short_Integer% = 32000

Long Integers

Micol Advanced BASIC can represent long integer values in the range
12,147,483,647. Negative values are represented as two's complement numbers. A long
integer occupies four bytes of memory.

Long integer arithmetic is activated with the compiler option LONGINT. See also
Chapter One in this Part under Compiler Options.
Example:
Long_Integer% = 2146493697

Real (Floating Point)

Areal number represents a value that can represent a large range of values and may
have a fractional part. The default number of significant digits that may accurately be
represented is seven digits. The initial value of a floating point variable is 0.0.

The normal convention for naming variables applies, but an ampersand (&) may be
added at the end of the identifier to force the Compiler to type the variable as a real to
override an INT or STR variable type declaration.

Examples:

Dividend& = 1

Divisor& = 3

PRINT Dividend& / Divisors
{Result is 0.,3333333}

Micol Advanced BASIC TIGS has two ranges of precision for floating-point numbers:
Single and Extended.

Single Precision

Single precision reals can represent values in the range +3.4 X 1058, Seven digits
are significant in calculations. A single precision real variable uses four (4) bytes of
storage.

Examples:
PRINT EXP(1.0) (Prints 2.718282}

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 64

PRINT EXP (2.0) (Prints 7.389056}

Extended Precision

Extended precision reals can represent values in the range +1.0 X 10%4%%6 Nineteen
digits are significant in calculations. A real variable occupies 10 bytes of storage in
memory. :

Extended precision arithmetic is activated with the compiler option EXTEND. See
also Chapter One in this Part: Compiler Options.

Examples:
PRINT EXP(1.0) {Prints 2.71828182845504522}
PRINT EXP(2.0) {Prints 7.38905609893065022}

Scientific Notation

Large real values that are too large to be represented in decimal format (more than
seven digits using single precision) may be represented using scientific notation.
Scientific notation representation uses a multiple of 10 raised to a power of 10. Values
may either be set or displayed using scientific notation.

Example:
Real& = 4E6 {Equivalent to 4,000,000 or 4 x 106}
Real& = 4E-6

Strings

A string is a sequence of characters including letters, digits, special characters, the
space character and control characters.

The normal convention for naming identifier applies, but a dollar sign ($) must be
added after the variable name to force the Compiler to type the variable as string. The
dollar sign may be omitted if the STR Variable Type Declaration applies to the variable
identifier in question.

The length of a string is equal to the number of characters inside it. Each string
variable occupies three (3) bytes in data memory plus four (4) bytes of system
information in addition to the characters in a separate string buffer. The maximum size
a string can grow is 1023 characters. However, a string literal can only have 251
characters.

Micol Advanced BASIC uses two types of string storage: static and dynamic storage.

Static Storage

Static strings are used when a string of characters is encased in double quotation
marks (") within a program.

65 Chapter Two: Basic Elements of the Language
Example:

Name$ = “Steve”

Dynamic String Storage

Dynamic string storage is used in all other cases. A dynamic string variable holds
the address where the actual string is in memory, but the actual string is stored in a
special buffer area reserved for this purpose (see the compiler option BANK_NO for
additional information).

Structured Data Types: The Array

Micol Advanced BASIC has four kinds of structured data types: Arrays of boolean,
infeger, real and string.

Declaring Arrays

DIM Array_Name [1,%,&,8] (Size) \
[{, Array_Name [1,%,&,3] (Size) }]

Arrays are always declared and dimensioned at the beginning of the program after
the optional compiler options, the ALIAS declarations, and DATA statements.

An array is a set of data of the same type. Each piece of information is called an
element. Access to each element is made via a subscript (an index number to the array).

The DIM statement will allocate to the array the number of elements plus one,
element 0 being the first array element.

NOTE

Unlike Applesoft, all arrays, no matter how small, must
be declared before they are used. If an array needs mor-~
memory than is available to the computer, an “Out of
memory” error message will be displayed when the
execution of the program begins. DIM sizes may only be
numeric constants, not variables,

To declare an array, use the reserved word DIM, give the array any legal variable
name followed by its size between parentheses.

To declare more than one array, separate each array name and size by a comma.

Multi-dimensional Arrays

DIM Name [1, %, &, $] (Size [{, Size}]) \

Chapter Two: Basic Elements of the Language 66

[,Name[!, %, &,$]1(Size[{,Size}])]

A multi-dimensional array is an array having two or more dimensions. A different
size may be used for each dimension.

To add another dimension to an array, enter a comma followed by another size value
after the first size dimension. To declare more than one array, separate each array name
and size declaration by a comma.

Example:

PROGRAM Month Temp
DATA 23, 34, 32, 12, 11, 22, 20
paTa 18, 14, 17, 15, 16, 13, 12
DATA 11, 10, 7, 3, 0, =3, -6, =14°
paTta -17, -19, -15, -12, -10, -8
DIM February (3, 6)
HOME
Temp Totals& = 0
FOR Week = 0 TO 3
FOR Day = Q TO 6
READ Temperature% {Must read integer data}
February (Week, Day) = Temperature$
Temp_Total& = Temp Total& + February (Week, Day)
NEXT Day
NEXT Week
Aver_ Temp = Temp Totals / 28 '
PRINT “The average temperature for February is: “;Aver_ Temp
END
Although it is possible to have an array with more than three dimensions, it is rare

that one has to use such arrays. Review the logic of the program if such a large array is
required.

Array Memory Usage

A boolean array uses one byte to hold the number of dimensions, two bytes per
dimension size plus one byte times the number of elements plus one.

An integer array uses one byte to hold the number of dimensions, two bytes per
dimension size plus twice the number of elements plus two bytes (four times the number
of elements plus four bytes, if the LONGINT option is used).

A real array uses one byte to hold the number of dimensions, two bytes per
dimension size plus four times the number of elements plus four bytes (ten times the
number of elements plus ten bytes if the EXTEND option is used).

A string array allocates one byte to hold the number of dimensions, two bytes per

Part Three: The Advanced BASIC Language

67 Chapter Two: Basic Elements of the Language

dimension size plus three times the number of elements plus three bytes.

Array Nesting

Under most circumstances, integer index variables should be used with boolean,
integer and string arrays; real index variables should be used with real variables to
reduce array access time.

WARNING

If arrays are nested, that is, an array element is used as
an array counter, you must nest arrays of the same type
or an error will result. This means you may only nest
real arrays within real arrays and integer arrays within
string, integer and boolean arrays.

Operators

Micol Advanced BASIC has three types of operators: arithmetic, logical and
relational.

Arithmetic Operators

Arithmetic operators are used with either integer or real variables. The arithmetic
operators are addition (+), subtraction (-), multiplication (*), division (/), exponentiation
(A) and modulo (MOD). Here are some general rules to note:

1. An overflow error will be indicated when the result of any calculation is over the
allowed range for that variable type.

2. Exponentiation works only with positive numbers; negative numbers will result in
an error. Zero raised to any power is zero. Any positive number raised to the
power of zero equals le.

3. The asterisk (*) is used in many programming languages as the operator for
multiplication to avoid confusion with the capital letter X.

4. The unary minus sign (-) indicates the change of sign when it is used with one
operand. Unary plus (+) is redundant and is ignored by the Compiler.

Relational Operators

A relational operator tests relationships between two conditions and produces a
boolean result (TRUE or FALSE). It is this operation, more than anything else, that
allows your programs to “think”.

The relational operators are: less than (<), less than or equal to (<=), equal to (=), not
equal to (<>), greater than or equal to (>=) and greater than (>).

Chapter Two: Basic Elements of the Language 68

Logical Operators

Logical operators operate on relational expressions to produce a boolean result of
TRUE or FALSE.

The logical operators are: NOT, AND, OR.
Example:
IF (Real < 5.3) AND (NOT (Integer% > 20)) THEN \
Flag! = TRUE

Evaluation of an Expression: Precedence Rules

The evaluation of an expression is done following a priority list established by math
conventions. If the priority of the expressions is equal, the evaluation is done from left to
right. The established math priorities are as follows:

1. Expressions between parentheses Q)

2. Unary operators “»+

3. Exponentiation operator A

4. Multiplication, Division, and MOD operators */MOD

5. Addition and Subtraction operators + -

6. Relational operators >, >z, <=, <, <> =
7. AND logical operator AND

8. OR logical operator OR

9. NOT logical operator NOT

You may wish to use parentheses to make certain an expression is evaluated in the
intended order. An expression may contain any number of parentheses.

Hexadecimal Literals

A hexadecimal number may be assigned to any integer or real variable. A
hexadecimal number is a base 16 number and is always preceded by a dollar sign ($) and
consists of the digits 0 through 9 and the letters A through F.

Example:

Hex_ Number% = $12FF
Real = $FFFFFF

Mixed Arithmetic Expressions

What dictates how the Compiler evaluates a line of code? Basically, the Compiler
determines the type of calculation to perform by the first data type (real or integer) it

69 Chapter Two: Basic Elements of the Language

encounters in a statement.

Micol Advanced BASIC handles mixed arithmetic very well, but extra code will need
to be generated which requires extra time to execute. If possible, it is best to be
consistent with your variable types when coding.

Expressions with Simple Variables

Example:
Real_Var& = Integer% * 3 + Reals
Because this assignment is made to a real variable, the above formula will be treated
as a real formula. The integer value in variable Integer% will be converted to real.
Example:
Integer% = Reall& * Real2& / Reall& + Realds
In this example, each real value must be converted to its integer equivalent before
the expression can be evaluated. It would be better to assign the formula to a real
variable, then reassign the real variable to an integer variable in another statement.
Example:
Real& = Reall& * Real2& / Real3s& + Realde
Integer% = Reals

Expressions with Arrays

As with simple variables, the Compiler determines the type of calculation by the first
variable type it encounters. What is different with arrays is that the array counter is
also effected. It is best to maintain the same type of array and array counter. Integer
arrays should have integer counters, and real arrays should have real counters. String
and boolean arrays should use integer counters.

Example:

Array& (Realg&) = 3

Array% (Int%) = Integer%

Array$ (Int%) = “String”

Array! (Int%) = TRUE

Any other choices from the above examples will force a

conversion to the other type before the correct array element can
be accessed.

Simple Variable Declaration

In Micol Advanced BASIC, simple variables may be declared in one of two ways:
implicitly and explicitly. Implicit declarations are done simply by using the variable.

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 70

The Compiler determines whether a variable has not been used before and automatically
allocates space for it if need be. This is the method used by Applesoft BASIC.

Micol Advanced BASIC also offers the option of explicitly declaring a simple variable,
similar to the way arrays are explicitly declared. This means, you must state within
your program, that you are using this particular variable. This is similar to the system
used in Pascal and C. This method almost completely eliminates the possibility that you
will later enter this variable incorrectly.

Explicit variable declarations are also a very good idea for documentation purposes,
as you can easily determine all variables used within the program. You may wish to
include comments to better explain the variable’s usage.

Although the explicit declaration adds some complexity to the language, it is
probably preferable to use implicit declarations as program maintainance is made easier.

DECLARE Boolean!, Integer%, Real&, String$

To explicitly declare a variable, enter the reserved word DECLARE followed by a list
of simple variables separated by commas. A program may have as many DECLARE
statements as needed, but they must be the first and only statement on a program line.

If no DECLARE statement is encountered in the
program, all simple variables will be placed automatically
into the Symbol Table. Once a DECLARE statement is
detected in the program, all subsequent variables, not
already defined, must be declared by a DECLARE
statement; otherwise, the Compiler will signal an error.
If you attempt to DECLARE a variable a second time,
you will receive an error at compile time.

L~ ______________ |

Example:
PROGRAM Declaration
DECLARE Real, Integer$%, String$
Reals = 5.0
Integer% = 25
String$ = “This variable has been declared”
Any_Thing¥% = 23 (Error here, not in DECLARE list}

Variable Assignments

[LET] Avar = Aexpr
[LET] Svar = Sexpr

Part Three: The Advanced BASIC Language

71 Chapter Two: Basic Elements of the Language

The assignment instruction is the equal sign (=) and is used to assign an expression
to a variable. The equal sign also implicitly declares this variable if it has not been used
before (if DECLARE is not being used). The expression is always located on the right
side of the equal sign. The result is stored in the variable to the left of the equal sign.

The reserved word LET may be used to specify an assignment. LET was retained

solely for compatibility with Applesoft BASIC and is ignored by the Compiler. Use LET
only if you wish to stay within the original definition of Dartmouth BASIC.

Examples:
Number& = 35.1
Number% = 10 * 2 / 5

String$ = “This is a small message”
Boolean! = TRUE

Initializing the Data Space

CLEAR

CLEAR will reinitialize all simple and structured variables. All numeric variables
will be set to zero, all strings will be set to empty and booleans will be set to FALSE as
was the case when the program was first executed.

Example:
Variable = 10
PRINT Variable {value is 10}
CLEAR
PRINT Variable (Value is 0}

An implicit initialization is done at ‘*he first line of
executable code. Branching to this line of code will reset
all variables to zero or null as if the program restarted.
Do not use CLEAR from any segment other then
segment zero or you will crash the computer.

b

Part Three: The Advanced BASIC Language

Chapter Three: Mathematical Functions 72

Chapter Three

Mathematical Functions

Overview

The mathematical functions under Micol Advanced BASIC have been classified into
two categories: general purpose functions and trigonometric functions. All use integer or
real arguments and yield integer or real results.

All calculations are made using single precision arithmetic unless the EXTEND
and/or LONGINT compiler options are used (all examples use single precision).

General Purpose Functions
ABS (Aexpr)

ABS (Absolute) returns the absolute (positve) value of the argument. The argument
may be negative, zero or positive.

Example:
Number% = ABS (-10)
PRINT Number$% {Will print 10}

EXP (Aexpr)

EXP (Exponent) yields the value of the constant e (2.718281828) raised to the power
of the argument. An argument smaller than zero always returns zero. An argument of
zero returns one.

Example:
Exponent = EXP(10)
PRINT Exponent

INT (Aexpr)

INT (for integer) returns the whole number portion of the argument, discarding the
fractional part, if any.

Part Three: The Advanced BASIC Language

73 Chapter Three: Mathematical Functions

NOTE

INT does not convert a real argument to an integer as the
function name implies, but simply truncates the value. A
real value remains a real value after INT has performed
its work. In Micol Advanced BASIC there are no
functions to convert values from real to integer and
integer to real, but rather this conversion is done
automatically and need not concern the user.

Examples:
Real Num& = INT (95.9)

LOG (Aexpr)

LOG (for logarithm) yields the natural logarithm base e (e = 2.718282) of the positive
argument passed to it. If an argument equal to zero or negative is passed, a run time
error will occur.,

Example;

Logarithm = LOG (10)

MOD

MOD (for modulo) returns the remainder of the real or integer division of the
nominator by the denominator.
Example:
Nominator% = 25
Denominator% = 4
Remainder% = Nominator% MOD Denominator%
PRIN. Remainder$% (Wrifes a l}

ROUND (Aexpr)

ROUND returns the rounded value of the argument. For a positive value, if Aexpr is
between x.5 to x.9, the result is rounded upward. If the value is between x.0 to x.4, the
number is rounded downward.

For a negative value, if Aexpr is between -x.5 to -x.9, the number is rounded
downward. If the value is between -x.0 to -x.4, the value is rounded upward.

If the number to be rounded is assigned to an integer result, the value will be
returned unchanged.

Chapter Three: Mathematical Functions 74
Example:
Kappa& = 1.8
Delta& = ROUND (Kappa&) (Delta& will = 2)
Kappa& = 1.4
Delta& = ROUND (Kappaé&) {Delta& will = 1}

SGN (Aexpr)

SGN returns the sign of the argument. A negative argument returns a negative one.
If the argument equals zero, SGN returns a zero. A posifive argument returns a one.

Example:
Result = SGN (0) {Equals zero}
Result = SGN (-123) {Equals negative one}
Result = SGN (123) {Equals positive one}
SQR (Aexpr)

SQR returns the square root of the argument. The argument must be a positive, real
or integer expression, otherwise a run time error will occur.

If the value returned by SQR is multiplied by itself, the result may be less than the
initial value. The loss of precision occurs because of truncation.
Example:
FOR Count% = 1 TO 10
Product% = Count% * Count%
PRINT Count$%, Product%, SQR (Count%)
NEXT Count%

Trigonometric Functions

Micol Advanced BASIC has four trigonometric functions. All arguments or results
are expressed in radians (not degrees).

ATN (Aexpr)

ATN yields the arc tangent (inverse tangent) of the parameter. The value returned
represents an angle expressed in radians in the range tn /2,

Example:
Tangent& = TAN (Radians)
Inv_Tan& = ATN (Tangenté&}

Part Three: The Advanced BASIC Language

75 Chapter Three: Mathematical Functions

COS (Aexpr)

COS returns the cosine of the argument. The cosine is the ratio of the length of the
adjacent side to the length of the hypotenuse (in a right-angled triangle). The argument
is the angle as expressed in Radians.

Example:

Cosine& = COS (30 * Pig / 180)

SIN (Aexpr)

SIN yields the sine of the argument. The sine is the ratio of the length of the
opposite side to the length of the hypotenuse (in a right angled triangle). The argument
is the angle as expressed in Radians.

Example:

Sine& = SIN (60 * Pi& / 180)
PRINT Sineé&

TAN (Aexpr)

TAN returns the tangent of the argument, (a number between 0 and the accuracy
limit of the data type used). The tangent of 90 degrees is infinity.
Example:
Tangent& = TAN (Radiansé&)

Radian/Degree Conversion Functions

Most of you are used to working with degrees instead of radians. You may find the
following conversion Functions useful to use within your programs.
{Take Degree as input}
FUNC DegreeToRadian [Degreeé&]
Pig = 3.14159265
Radian& = Degree& * (Pi& / 180)
ENDFUNC [Radian&] {Return Radian as output}

{Take Radian as input}
FUNC RadianToDegree [Radiani]
Pi& = 3.14159265
Degree& = Radian& * (180 / Pig)
ENDFUNC (Degree&] {Return Degree as output}

Part Three: The Advanced BASIC Language

Chapter Four: Strings 76

Chapter Four

Strings

Overview

A string may be thought of as text. Each word or sentence of this manual may be
thought of as a string. All data sent to the screen or the printer are sent as strings.

Under Micol Advanced BASIC, strings are dynamically stored. This means that
string lengths do not have to be declared in advance.

This section deals with strings and string manipulation functions at your disposal
under Micol Advanced BASIC. You must pay special attention to this chapter as some of
the string functions operate somewhat differently than under Applesoft. Also, there are
several additional string functions that give the string handling abilities of Micol
Advanced BASIC much greater power than any other language you have probably seen.

String garbage collection, a topic not well understood by many users, is also
discussed in this chapter.

String Function Notes

Here are some things to pay special attention to:

1. No string shaping function such as LEFT$ may be used until the string argument
has been explicitly given a value.

2. String shaping functions assume integer arithmetic and will make the conversions
from real to integer as needed. The sole exception is STR$ which assumes a real
value as its parameter and will make the conversion from integer to real as
needed. Therefore, any real number within string functions, except STR$, will
be converted to integer before the manipulation is done. Since the type
conversion delays the programs a bit, use integer values whenever practical.

3. Strings may grow to a maximum length of 1023 characters. .Iowever, static strings
such as “This is a string” may only have a maximum length of 251 characters.

The ASCII Character Set

Each character has a numeric value, and this numeric value is used in order to
evaluate strings.

“A” < “B” and “B” > “A” are true. If you look at the ASCII chart (Appendix F), you
will see that “A” has the numeric value 65 and “+” has the numeric value 43. These
numbers are used to evaluate string expressions.

Part Three: The Advanced BASIC Language

77 Chapter Four: Strings

String Comparisons

Strings are compared using relational operators to determine if, for example, one
string is the same or is different from another string. Comparisons are made using the
ASCII numeric value of each character in both strings.

Examples:

“Ronald” = “Ronalgd”
“Ronald” <> “RONALD”
“Ronald” < “Steve”
“Walter” > “Steve”

By comparing one string with another, strings may be sorted in alphabetical order or
inverse alphabetical order. See also the ASC and CHRS conversion functions.

String Concatenation

Concatenation is the act of merging two or more strings into one. The concatenation
operator is the plus sign (+). The maximum length a string can grow under
concatenation is 1023 characters. Any attempt to create a string greater than 1023
characters will result in an error during program execution.

Examples:

String$ = “This is ” + “one big ” + “string”
Stringl$ = Stringl$ + String2$

Conversion Functions

The following functions are used to return numeric results for string arguments or
string results for numeric arguments.

ASC (Sexpr)

ASC returns the ASCII value of the first character of the string argument. If the
string is empty (has no characters in it), a value of zero will be returned.

The value returned is always between 0 and 127. Most characters, however, are
actually stored internally with a value greater than 127. To know the true value of the
character, PEEK at location 202 (True_Value) in direct page immediately after using
the ASC function. (See Appendix F: the ASCII chart.)

Example:
Letter$ = “A”
ASCII = ASC (Letter$) {Prints 65}

Chapter Four: Strings 78

CHRS$ (Aexpr)

CHRS$ takes the numeric argument and returns the character corresponding to its
ASCII value. The argument must be between 0 and 255 or a run time error will occur.
Values greater than 128 will repeat the text mode character set. (See Appendix F: the
ASCII chart.)

Example:

Lettex$ = CHRS (65)
PRINT Char$ {Prints the letter A}

LEN (Sexpr)

LEN (Length) returns the number of characters within a string or string variable. If
no character appears within Sexpr, LEN will return a zero. All strings have a length of
zero initially. You may need to use LEN to check the length of a string when using a
string shaping function, as a possible error condition may arise.

Example:

String$ = “Micol Systems Inc.”
PRINT “Number of string characters is:”; LEN (String$)

LEN returns a value of 18.

STR$ (Aexpr)

STRS$ converts the numeric argument into its string equivalent.

Example:
Stringl$ = STRS$(12.34)

NOTE]
The string “12.34" and the real number 12.34 will appear
the same when they are displayed; however, inside the
computer’s memory, they are stored quite differently.
VAL (Sexpr)

The VAL function converts the contents of the string argument into its numeric
equivalent. VAL removes any leading spaces from the string argument before doing the
evaluation.

If VAL evaluates an argument with non-numeric characters, VAL will convert and
return all the digits appearing before the non-numeric character or space. If the first
character in the argument is non-numeric, VAL yields a zero. '

Part Three: The Advanced BASIC Language

79 Chapter Four: Strings

Example:
String$ = “12.34"
Real& = VAL (String$)

String Searches

The following function is very useful and has no equivalent in Applesoft. Its purpose
is in searching for sub-strings within a string, but this has very many applications
seemingly unrelated to string searches. Examples throughout this manual will
demonstrate some of these uses.

INDEX (SubString$, String$, [Aexpr])

INDEX will return the position number of the first character where SubString$
occurs in String$ from one to the length of String$. If SubString$ does not appear
within String$, a zero will be returned.

An optional occurrence value ranging from 1 to 255 may also be specified. The match
will not be made unless the stated instance of SubString$ exists.
Example 1:
String$ = “This is a string”
PRINT INDEX (™ is “, String$)

The PRINT statement will display 5. The first space character is the fifth character
of the string.

Example 2:
Alpha$ = “abcdebxyz”
Beta$ = “b”

PRINT INDEX (Beta$, Alpha$, 1)
PRINT INDEX (Beta$, alpha$, 2)

The first PRINT will show that the first occurrence of “b” is at the 2nd position and
the second occurrence will show the second “b” at the 6th position in the string.

Example 3:
Allowed$ = “AEIOUaeiou”
REPEAT
GET Char$

UNTIL INDEX (Char$, Alloweds$) > 0
PRINT Char$

This code will allow only a vowel to be entered.

Part Three: The Advanced BASIC Language

Chapter Four: Strings | 80

String Manipulation

The following functions will allow you to manipulate strings in any manner required
by your program. This string shaping ability is one advantage BASIC has over almost
any other language and Micol Advanced BASIC has more than most BASICs.

INSERTS$ (String1$, String2$, Pos_Number)

To write over a portion of a string using the contents of ancother string, use
INSERTS$. Both string arguments must be string variables. The contents of Stringl$
will be used to write over the characters of String2$ starting at the specified position.
Each character will be copied over String2$ until all characters are copied or the end of
either string is reached.

Example:

Stringl$ = “Italy”

String2$ ="The rain in Spain falls mainly on the plain."
INSERTS (Stringl$, String2$, 13)

PRINT String$

This code will print “The rain in Italy falls mainly on the plain.”

LEFTS$ (Svar, Aexpr)

LEFTS yields the number of characters specified by Aexpr starting from the left side
of Svar. If the number of characters requested is greater than the string length, a run
time error will occur. If in doubt, check the string length with the LEN function before
executing this function.

Example:

String$ = “Micol Systems Inc.”
PRINT LEFTS$ (String$, 5)

The word “Micol” will be printed.

LOWERS$ (Svar)

LOWERS changes all the uppercase characters of a string into lowercase characters.
All other letters in the string variable are left unaltered. A string variable is the only
argument accepted.

Example:

String$ = “ABCDEFGHIJ”
Low$ = LOWERS$ (String$)
PRINT Low$ {Will print abcdefghij}

Part Three: The Advanced BASIC Language

81 Chapter Four: Strings

MID$ (Svar, Aexprl [,Aexpr2])

MID$ returns a substring of Svar starting at Aexprl. If Aexpr2 is not present, the
entire string is returned from Aexprl to the end of Svar, otherwise MID$ returns the
number of characters specified. If the starting character position is beyond the last
character of Svar, a run time error will occur.

Example: '

String$ = “Micol Systems Inc.”

PRINT MIDS (String$, 7, 7)
The word “Systems” will be printed.

RIGHTS$ (Svar, Aexpr)

RIGHT$ returns the characters specified by Aexpr starting from the right side of
Sexpr. If the number of characters requested is greater than the length of Svar, a run
time error will oceur. If in doubt, check the string length with the LEN function before
executing this function.

Example:

String$ = “Micol Systems Inc.”
PRINT RIGHTS$ (String$, 12)

The words “Systems Inc.” will be printed.

UPPERS$ (Svar)

UPPERS$ will change all lowercase characters of a string into uppercase characters.
All other characters in Svar are left unaltered. A string variable is the only parameter
accepted.

Example:

String$ = “abcdefghij”
Up$ = UPPERS (String$)
PRINT Up$ {Will print ABCDEFGHIJ}

WARNING

Avoid writing string manipulation functions on both sides
of a comparison operator, where both sides return a string
result. A problem arises because a single string
manipulation buffer is maintained for all string
manipulation functions which allows only one function to
be performed at a time. This greatly increases the speed
of the operations as string transfers are minimized.

Part Three: The Advanced BASIC Language

Chapter Four: Strings 82

System String Functions

These functions let you use some system functions by converting the information into
a character string. You may manipulate these string data as any other string.

DATE$

DATES returns the date in the format stipulated by the Control Panel settings.
Example:

Day$ = DATES

PRINT Day$

Something like 25/Fety92 will be displayed.

PREFIX$

PREFIXS returns a string with the name of the current default prefix.

Example:
Volume name$ = PREFIXS
PRINT Volume Name$

TIMES$

TIMES returns the time from the AppleIIGS clock in the format set by the control
panel, for example HH:MM:SS.
Example:
Clock$ = TIMES
PRINT Clock$

The time is displayed like this: 10:24.:23

String Garbage Collection

Garbage is memory which was once used for a purpose, but is now unused and lost to
the system.

When a string is reassigned another value, the new string must be built in another
area of memory. The pointer (or address) to the old string is changed to point to the new
string, and the area in memory to which the string variable originally pointed becomes
lost, or garbage. Eventually, most of the string memory will become garbage and need to
be reclaimed. This reclaiming is done using a process called “String Garbage Collection”.

Part Three: The Advanced BASIC Language

83 Chapter Four: Strings

FRE (0)

FRE (for Free) forces a collection of all unused character strings and returns the
number of bytes available to the system for building further character strings.

The argument may be any legal mathematical expression, but a value of zero is used
by convention. The parameter has no effect on the result, but is required by the
Compiler, otherwise an error will occur.

If you assign FRE (0) to a real variable, the entire number of bytes remaining will be
returned. If you assign FRE (0) to an integer variable, the number of banks available to
the program will be stored in Direct Page location True_Value (202) and the rest of the
address will be returned in the assigned variable (in two’s complement notation). If you
are using the integer FRE (0), then retrieve the bank number immediately after
executing FRE (0) as location 202 is also used for other purposes.

If FRE (0) returns an unacceptably small number of bytes, use the BANK_NO
compiler option, described in Part Three, Chapter One, to allocate more memory for
string storage, if possible. By default, a program is allocated one bank (64K) for string
storage,

Example:

Free Bytes% = FRE (0)
Free_Banks% = PEEK (202) _
Total Bytes& = Free Bytes% + 65536 * Free Banks%

or
Total Bytes& = FRE (0) {Same result}

Micol Advanced BASIC uses an efficient, double-linked garbage collection algorithm
that seldom produces, if ever, any noticable delay.

Programmers
Toolbox Note: Do not confuse the results of FRE (0) with

the functions of the Tool Memory Manager which returns

the amou~t of free memory in the computer.

Part Three: The Advanced BASIC Language

Chapter Five: Making Decisions 84

Chapter Five

Making Decisions

Overview

We all have to make a large number of decisions in our daily lives. The vast majority
of programs also have to make decisions, and actions have to be taken based on these
decisions.

We have discussed relational operations earlier in this manual. In this chapter you
will learn to use these relational operations and have your programs take action based
on the results of these relational operations.

Decision making is probably the most important aspect of computer programming. It
18 important you have a complete understanding of this topic if your programs are to
function as intended.

Program Indentation

It is important that your program source code reflect the logic within your programs.
The logic within your programs can best be represented by line indentation. Once a
statement falls under a particular control structure, this statement should be indented
one Tab. Once this control structure is resolved, the Tab should be removed. There
should be one Tab for each active control structure.

If you are confused, simply look to the examples within this manual. Each example
reflects the standard indentation.

Single Choice Decisions

As we have stated earlier in this manual, a relational operation yields a result of
T..UE or FALSE. Based on this result, we may wish to have a certain set of actions
taken. In addition, we may also wish that an alternate set of actions will be taken in the
event the first set of actions is not taken. That is, we have a choice to make, one set of
actions or another. It is in thig circumstance that we will wish to make use of the most
important statement in computer programming, the IF statement.

The IF Statement
Simple IF

IF Relop THEN Statement [{: Statement }] \
[ELSE Statement [{: Statement }]]

Part Three: The Advanced BASIC Language

85 Chapter Five: Making Decisions

Relop is evaluated and produces a boolean result (TRUE or FALSE). If the result is
TRUE, the statement(s) following the keyword THEN until the end of the line or
optional ELSE keyword are executed. If the ELSE statement is present and Relop is
FALSE, the statements following the ELSE until the end of the line will be executed. In
both cases, when the instructions have been executed, the flow of execution continues on
the next line of instructions.

The IF. THEN.ELSE statement is designed to provide an ELSE option to the
Applesoft IF.. THEN structure. This statement works correctly when the statements to
be executed after the THEN or the ELSE are on a single line of code. More than one
statement may be written after the THEN or the ELSE by preceding the second and
following statements by a colon (:).

Example:

ops = W_r7
IF Op$ = “+” THEN Num = 2 ELSE Num = 3

Block IF.. THEN..ELSE

IF Relop THEN BEGIN
Statement
[{: Statement}]
[ELSE BEGIN
Statement
[{: Statement }]]
ENDIF
Relop is evaluated and produces a boolean result (TRUE or FALSE). If the result is
TRUE, the statements following the keywords THEN BEGIN until the ELSE (f
present) or ENDIF are executed. If an ELSE BEGIN block is present and Relop is
FALSE, the statements following the ELSE BEGIN until the ENDIF will be executed.

In either case, when the instructions have been executed, the flow of execution continues
after the ENDIF.

To allow more than one line of code for either the IF or ELSE statement, add the
BEGIN keyword. The BEGIN keyword encloses other Micol Advanced BASIC
statements within the IF.. THEN..ELSE..ENDIF block structure.

ENDIF is used to close an IF BEGIN or ELSE BEGIN (if present). ELSE or ELSE
BEGIN alszo close an IF BEGIN. If no BEGIN is present, the end of line will terminate
the conditional statement. If confused, just study the examples that follow.

Example:

IF 1 = 2 THEN BEGIN
PRINT “This line will never be executed”
PRINT “Neither will this line”

ELSE BEGIN
PRINT "“This line will be executed”

Chapter Five: Making Decisions 86

PRINT “And so will this one”
ENDIF
END

The IF. THEN also accepts a boolean variable as part of the expression.

Example:
Flag! = TRUE

IF Flag! THEN Num Of Truck% = 10
or
IF Flag! = TRUE THEN Num Of Truck% = 10

It is preferable, however, to use the first method because if the boolean has been set
to an uncertain value, the expression may never evaluate to TRUE.
An IF block may contain one or more IF blocks within it. There may be as many as-
20 IF blocks nested within another.
Example:
IF Outer_Flag! THEN BEGIN
IF Middle_Flag! THEN BEGIN
IF Inner_ Flag! THEN BEGIN
PRINT “All conditions met”
ELSE BEGIN
PRINT “Inner_Flag! not true”
ENDIF
ELSE BEGIN
PRINT “Middle Flag! not true”
ENDIF
ELSE BEGIN
PRINT “Outer_ Flag! not true”
ENDIF

Consider using the multi-choice construct CASE_OF if more than .wo
IF. . THEN..ELSE structures are nested.

Multi-Choice Decisions

Multi-choice decisions occur whenever there are several possible actions that may be
taken based on a particular situation. Suppose, for example, an office manager has to
base the bonus situation of the salespeople in his office on the number of products sold
by each salesperson in a month. If there are several categories of bonuses, determining
the correct bonus can get very difficult using IF statements. One solution is a
CASE_OF statement that functions in many ways as an IF statement, but allows for
many possible choices.

87 Chapter Five: Making Decisions

The CASE_OF Statement

CASE_OF Aexpr
DO Labell, Label2
Statement(s)
ENDDO
{{DO Label3, Label4
Statement(s)
ENDDO }]
[ELSE_DO
Statement(s)]
ENDCASE
CASE_OF allows the user to choose one option among many without having to make
use of multiple single conditional statements.

The CASE_OF statement evaluates Aexpr and selects one DO.. ENDDO block from
the other DO..ENDDO blocks using the result of the evaluation. If Aexpr yields a real
result, only the whole number portion is used.

A CASE_OF statement must have at least one DO.. ENDDO block of statements,
and may have as many DO.. ENDDO blocks of statements as is necessary.

The DO..ENDDO structure is made of a list of CASE labels followed with a block of
statements to be executed on the lines of code below. When a label within a
DO..ENDDO block matches the result of the arithmetic expression, the statement(s) in
the DO...ENDDO block of statements will be executed.

The DO list may have from one to twenty labels separated by commas. The label is
always an integer constant ranging from +32767. A label may be preceded by a lesser
than (<) or greater than (>) symbol to make a range of labels. No label should be
repeated as only the first match is used.

If a match is not made and an ELSE_DO appears after the last DO..ENDDO block,
the statement(s) following the ELSE_DO until the ENDCASE will be executed. T}:xe
ELSE_DO must be the only statement on the line of code. " Te control of flow will
continue at the line of code after the ENDCASE. It is always a good practice to have an
ELSE_DO block to handle the unexpected conditions.

Example:

Number% = -100
REPEAT
CASE OF Number%
po1, 2, 3, 4, 5, 6, 7, 8, 9, 10, > 80
PRINT Number%:" is positive™
ENDDO
DO -1' _2' -3, _4' -5' -6, -7' -8' -9, < = 79
PRINT Number%:" is negative “;

Chapter Five: Making Decisions 88

PRINT “isn’t it?2”
ENDDOQ
ELSE_DO
PRINT Number%:" is not in range"
ENDCASE
Number = Number + 1
UNTIL Number% > 100

If a match is not made and an ELSE_DO does not appear after the last
DO.ENDDO block, control of flow continues at the line of code after the ENDCASE

statement.
NOTE }
A static string may also be used as a label within a DO
line. Only the first character of the string will be used,
and is the same as if the label had been entered as the
ASCII value of the first character instead.
Example:

String$ = “Aardvark”
Ascii% = ASC {(String$)
CASE_QF Ascii%

DO “AI', Ila"
PRINT “Letter was upper or lower case A”
ENDDO
ENDCASE

CASE_OF statements may be nested within other CASE_OF statements. The
maximum level of nesting allowed is 8 levels deep. The nested CASE statement is
‘placed in a DO..ENDDO structure.

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 89

Chapter Six

Basic Input/OQutput of Information

Overview

Virtually all programs accept information from some source, process this
information, and send this processed information to a storage or display device.

Principal sources for input are through the computer keyboard and a storage device
such as a disk drive. Less often, the input of information is from the program itself. The
output from the program is usually sent to a display device such as a monitor or the
printer or to a long term storage device such as a disk drive.

Data Input

Input is anything that can be entered into the computer using an input device,
usually the keyboard, or read from a storage device such as a disk drive.

Internal Data Entry

DATA Var [{,Var]]

DATA statements are used to place specific values into memory that may later be
retrieved during execution of the program.

DATA statements are placed at the beginning of the program after the optional
compiler directives. The DATA statement must be placed in the correct position in the
program in order to be compiled. Please see the Program Order section in Chapter One
of Part Three.

Only int~ger, real and string literals are accepted as datum for a DATA statement.
Each datum: is separated from the next by a comma. The length of a DATA statement is
limited only by the length of the program line. The number of DATA statements is
limited only by the memory available.

Real literals must be distinguished from integer literals by having the terminating
fraction written in decimal form (i.e 13.0). Integer literals greater than 65535 will be
considered real. String literals must be enclosed between double quotes. Booleans may
not be used in a DATA statement.

Example:

PROGRAM Data Example
DATA 1, 1.0, 1.0E25, “One”

DATA statements may not be empty (have a non-definite value) as in an Applesoft
BASIC program or be followed by any other statements on the same line. A DATA line

Part Three: The Advanced BASIC Language

90 Chaper Six: Basic Input/Output of Information

must have a literal between each comma otherwise the Compiler will signal an error.

Example:
{Missing values are illegal and will
cause errors during compilation}
DATA “TEXT”,,"MORE TEXT",,0,0,.,0

READ Var [[,Var}]

The function of the DATA statement is to give a method to store constant
information that may be used each time the program is executed. These data are
accessed within a program by means of a READ statement. A DATA statement only has
meaning when used in conjunction with a READ statement.

To READ data, a loop of some kind is usually used. The DATA values are read one
by one, starting from the first line of DATA. The DATA pointer cannot turn back or skip
any values, but may be moved back to the beginning using the RESTORE command.

If the program tries to read more values than are available, an error will occur.
Leaving values unread does not produce an error.

If the data types in the DATA and READ statements do not match, an error will
occur when the program tries to read in the datum.
Example 1:
PROGRAM Read Data
DATA 1, 1.0, “One”
{Main Program}
READ Integer% {Read integer datum]
READ Real& {Read real datum}
READ String$ {Read string datum}
END

Example 2:

PROGRAM Read Numbers

DATA 1, 2, 3, 4

DATA 5.0, 6.0, 7.0, 8.0

DIM Number% (3), Number (3)

{Main Program}

FOR Counter% = 0 TO 3 {Read first DATA line}
READ Number% (Counterk)
PRINT Number% {(Counter%)

NEXT Counter%

FOR Counter = 0 TO 3 {Read second DATA line }
READ Number (Counter)

Chaper Six: Basic Input/Output of Information 91

PRINT Number (Counter)
NEXT Counter
END

RESTORE

RESTORE places the DATA pointer back to its starting position. This means the
values in the DATA statements may be reread.
Example:
PROGRAM Read Numbers
DATA 1, 2, 3, 4
DATA 5, 6, 7, 8
'DIM Number% (7)
{Main Program}
HOME
{Read values in DATA statements}
FOR Counter% = 0 TO 7
READ Number$% (Counter%)
PRINT Number% (Counter%)
NEXT Countexr$
RESTORE {Bring DATA pointer to position one}
{Reread values in DATA statements}
FOR Counter% = 0 TO 7
READ Number% (Counter%)
PRINT Number% (Counter%)
NEXT Counter%
END

Keyboard Entry

GET Svar

GET is used to read one character from the keyboard and place it into a string
variable. The character entered is not echoed on the screen.

The program continues execution with the next statement without waiting for a
press of the Return key. The cursor is displayed until a character is entered.

GET accepts only a string variable as its argument. The Compiler will issue an error
if a numeric variable is used. Use the VAL function to convert the digit if required.

Part Three: The Advanced BASIC Language

92 Chaper Six: Basic Input/Qutput of Information

NOTE

<Control>C will not interrupt the execution of GET. All

Control characters may be read from the keyboard with
GET.

See also the next chapter for another use of GET.
Example:
REPEAT
GET Vowel$
IF INDEX (Vowel$, "“AEIOUaeiou”) > 0 THEN PRINT Vowel$
UNTIL INDEX (Vowel$, “AEIOUaeiocu”) > 0

INKEY Svar

INKEY scans the keyboard to determine if a key has been pressed. INKEY is
similar to GET except INKEY does not wait for a key press and does not display a
cursor.

If no key has been pressed, an empty string is returned in Svar. If a key has been
pressed, a one byte string representing the key pressed is created in Svar.

NOTE
To be effective, INKEY must be used within a loop.

Example:
REPEAT
INKEY Character$
IF Character$ <> “” THEN PRINT Characters$
UNTIL Character$ <> “¢ '

INPUT [“Prompt string”;] Var [{, Var }]

INPUT accepts data from the current input device (usually the keyboard). An
optional message, enclosed in quotation marks, may be displayed prompting the user for
the necessary input.

The prompt must appear after the keyword INPUT, and be followed by a semi-colon
(;), and the list of variables. If no prompt is specified, INPUT automatically displays a
question mark (?) as the prompt.

Chaper Six: Basic Input/Output of Information 93

NOTE

No question mark is displayed when the prompt string is

present but empty; use this to hinder any prompt.

INPUT may have any number of variables, each separated by a comma.

INPUT accepts simple variables and arrays of type integer, real and string. Boolean
variables are not accepted.

The INPUT statement will ask for the second, and any subsequent input on a
separate line by displaying a question mark (?) for each missing input.

WARNING .
Pressing the Return key for each piece of information is

the only way to accept data from an INPUT with
multiple variables. The comma (,) and semi-colon (;) are
not accepted as delimiters as under Applesoft BASIC.

In order to make programs easier to understand, use one INPUT statement for each
piece of information.

INPUT accepts <Control>S to insert a space. An input may be terminated by
pressing <Control>C only if the NOT_C compiler option is not used. The Delete key
erases a character during response to an input (the delete mode may be altered during
execution, see Appendix A).

Memory locations 4 and 5 in the Library’s Direct Page
control the maximum number of characters that may be
entered using INPUT; 255 is the default. This value is
stored as a hexadecimal number in least significant byte,
most significant byte order. Do not POKE a value
greater than a 3 into 'ocation 5 or an error will occur
when the next INPUT 1s encountered.

The bell will ring if the maximum number of characters allowed in an INPUT line
has almost been reached.

String Input Rules

Characters with ASCII codes from 32 to 127 may be entered from the keyboard.
Control characters will be ignored.

Part Three: The Advanced BASIC Language

94 Chaper Six: Basic Input/Output of Information

Numeric Input Rules

If, during a numeric input, the user enters something other than a numeric value,
the message “?Reenter” will be displayed. A question mark prompt will appear on the
next line and the computer will wait for the appropriate input. For a real input, all
non-numeric characters except a capital “E”, a period (.), a comma (,), a plus sign (+), and
a minus sign (-) will be rejected. For integer input, only digits, a comma (,) and the plus
and minus signs are allowed input. The commas are for user convenience and are
ignored.

A numeric expression, such as “3 * 4/ 6", is not accepted as numeric input.
Examples:

INPUT “Enter name: ”; Name$

INPUT “Enter age: ”; Age%

INPUT “Enter any real value: ”; Numbers

See also the next chapter for other uses of INPUT.

Entry from Other Devices

INSLOT (Slot_Number)

INSLOT is used to get characters from the device connected to the slot or port
number specified. The argument may be any integer literal between 0 and 7; a 0 is used
to return input to the keyboard. Any negative value or a value greater than 7 will return
an error.

IMPORTANT
INSLOT is best used in conjunction with a GET.
INPUT may be used after an INSLOT, but because
INPUT expects a carriage return to terminate an entry,
INPUT is only suitable in limited situations.
. |
Example:

INSLOT (2) {Input from slot 2}
GET Char$ {Reads character from port 2}
INSLOT (0) {New input from keyboard}

Data Output

Output is information that can be sent from the computer, usually to a screen display
or printer, or to a disk device for long term storage.

Chaper Six: Basic Input/Output of Information 95

Screen Display Control

The following commands control the manner in which text is output to the screen.

DELAY = Aexpr

DELAY pauses the program the stipulated time. One increment equals about 0.01
seconds for a normal Apple IIGS. If you have an accelerator card installed, the delay will
be that much quicker.

Example:

DELAY = 100 {Pause about one second}

HOME

HOME erases the contents of the text window and places the cursor at the top left
corner of the acreen.
Example:
FOR Line% = 1 TO 23
PRINT “This fills part of the screen”
NEXT Line%
HOME
PRINT “Now the screen is almost clear”

NOTE
To move the cursor to the top left corner of the screen

without erasing the screen, use VTAB (1): HTAB (1).

INVERSE

INVERSE causes the subequent character(s) sent to the screen to be displayed in
inverse video (reversing the black and white of a character block).

INVERSE will stay in effect until a NORMAL command is encountered.
Example:

INVERSE

PRINT “This is an inverse display”

NORMAT,

PRINT “This is a normal display”

Part Three: The Advanced BASIC Language

96 Chaper Six: Basic Input/Qutput of Information

MS_TEXT

MS_TEXT (for MouseText) allows the ability to send MouseText characters to the
screen.,

MouseText characters are a set of graphical characters designed specifically for the
Apple II computer. This character set has the ASCII range 64 ($40) through 95 ($5F).
Example:
{Display keycap symbols}
MS_TEXT {Turn on MouseText}
PRINT “@ H U J K M”
MS_TEXT {Turn off MouseText}

IMPORTANT .
A second MS_TEXT turns off the effect of the previous
MS_TEXT.
NORMAL

NORMAL restores the display to the standard text characters. NORMAL turns off
the previous INVERSE. NORMAL character display is the default mode.

See the example for INVERSE.

SPEED = Aexpr

SPEED controls the rate at which the characters appear on the screen. Aexpr must
be between 1 and 255; the minimum speed being 1 and the maximum speefl being 255.
The default display rate is set to 255, the maximum speed. A speed of zero is equal to a
speed of 255.
Ezample:
SPEED = 100
PRINT “This line will print slowly”
SPEED = 255
PRINT “Now printing at normal speed”

Unformatted Text Output

PRINT [Expr] [;] [,] [Expr]
PRINT is used to display all data types including boolean.

Any legal math or string expression, literal or variable may appear inside a PRET
statement. Each expression will be evaluated when it is executed. If a logical expression

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Qutput of Information 97

is in a PRINT statement, the result of the comparison (TRUE or FALSE) is printed.

When a semi-colon (;) is placed at the end of a statement, the semi-colon prevents a
Carriage Return (ASCII #13), needed to move the cursor to the next line. Any
subsequent output following the semi-colon is printed on the same line. The cursor
remains to the right of the last character printed. The next item to be printed will
appear at the current cursor position.

A comma (,) at the end of a statement places the cursor at the next tab column (1, 16,
32, 40, 48, 56, 64, 72 or 80). The contents of the next PRINT is displayed starting at
that position.

Anything other than a semi-colon (;) and a comma (,) as the last character in a
PRINT statement will generate a carriage return (ASCII #13) as the last character
output and place the cursor at column 1 of the next line. If the cursor is already on a
new line, an empty blank line will be displayed or printed. The screen will scroll if
necessary.

TAB and SPC may also be used within a PRINT to format the display.

NOTE
A question mark (?) may not be used as a shorthand
notation for PRINT as under Applesoft BASIC.
Examples:

PRINT “Your name is ”; Name$:"™ your age is “; Age¥
PRINT {Only sends a <CR>}

PRINT “1 + 2 + 3 = *"; 1 + 2 + 3

PRINT 1, 2, 3, 4, S

PRINT 1.5 > 9.3 {Will print FALSE}

See also the next chapter for other uses of PRINT.
See also Part Six, Chapter One for debugging uses of PRINT.

Formatted Text Output |

PRINT USING Mask$; [Expr] [;] [,] [Expr]

PRINT USING is used to display real values to the current output device using a
particular format. Formatting is made to both sides of the period of the real value.

Except for the real value formatting ability, PRINT USING functions just like
PRINT. TAB or SPC statements may be used within PRINT USING if needed.

A magk is used to define the format of the output. The mask may be a string literal
or string variable. Rules for the mask are as follows:

1. Only dollar signs ($), number signs (#), commas (,) and a single period (.) are
allowed within a mask.

Part Three: The Advanced BASIC Language

NOTE

NOTE

98 Chaper Six: Basic Input/Output of Information

2. Commas may appear only to the left of the pertod. If digits are to be output,
commas will appear in the printed output in the same position they appear in
the mask.

3. Number signs may appear on either side of the period. Every occurrence of the
number sign will be replaced with digits or padded with spaces on the left of the
period and by digits or padded with zeros (0) on the right of the period.

4. Dollar signs are allowed only on the left side of the period. Each occurrence of a
dollar sign will be replaced with a space until just before a digit would appear,
then a single dollar sign will be printed. Additional dollar signs will be replaced
by the appropriate digits.

5. A fraction will be truncated, not rounded.

6. If the number should require more places on either side of the period than are
specified in the mask, the digits will not be displayed. Make sure to allow
enough room in the mask for all possible values.

The character value of the comma and period may be
changed to conform to the non-English speaking world.
The comma and period may be changed to other
characters by modifying the appropriate memory
locations listed in Appendix A.

To print monetary values, use a mask similar to this: Mask$ = “3,$$$,$$$.##”.
To print numeric values, use a mask similar to this: Mask$ = “#,### ## $4”
Example:

Number& = 1234,567

PRINT USING “$$$,$5%,5$5.##”; “The value is”: Numbers&

The line above will print: The valueis $1,234.56 (with five leading spaces).

Example:
Mask$S = “##4#, 444, 244 .47
Number& = 123456.78
PRINT USING Mask$;"The value is “; Numberé&

The line will indicate The valueis 123,456.7 (with four leading spaces).

To format the output of an integer value, then simply
assign this integer value to 2 dummy real variable, and

use the dummy real variable in the PRINT USING
statement.

Chaper Six: Basic Input/Output of Information 99

Cursor Positioning

The following commands affect the movement of the screen cursor, and sometimes
the printer head. Cursor positioning is affected by the borders of the screen which may
be altered during execution of the program making it possible to create text windows.
Please see Appendix B for specific information.

POS (Aexpr)

POS (for Position) returns the current horizontal position of the cursor at the
moment POS is executed. The value returned is from one to 80. One is the left-most
side and 80 is the right-most side of the screen.

The argument i3 ignored, and has no effect on the result of the evaluation of POS,
but must be present, otherwise an error will occur during compilation.
Example:
HOME
PRINT “Positicn: *;P0S (0)

This statement returns the number 11 for the position of the cursor.

SPC (Aexpr)

SPC (for space) prints the specified number of spaces to the current output device
and may only be used inside a PRINT statement.

Aexpr may be any valid arithmetic expression. SPC must be in the range one to 255
otherwise an error occurs at run time. If Aexpr is real, its value will be truncated.

SPC moves the cursor or print head the number of spaces specified starting from the
current cursor position. If the cursor is moved past the right margin, it continues
spacing on the line below.

IMPORTANT
Semi-¢: »ns must be used after each SPC, otherwise a
carriage return will be generated destroying the effect of
SPC.
Example 1:

PRINT SPC(15);™The total is:";Total$

TAB (Aexpr)

TAB (for Tabulation) is used to position the cursor to the specified position on either
the screen or printer and may only be used inside a PRINT statement. The position
values range from 1 to 80. The first horizontal position (1) being on the left margin and

Part Three: The Advanced BASIC Language

100 Chaper Six: Basic Input/Output of Information

the last one (80) on the right margin.

Aexpr may range from one to 255. Values from 81 to 255 will tab on lower lines of
the screen.

If Aexpr is real, only the whole number portion will be used.

If a PRTON statement is in effect, TAB will move the print head at the position
specified, in a forward direction only.

IMPORTANT
Semi-colons must be used after each TAB statement,
otherwise a carriage return will be generated, destroying
the effect of the TAB.
Example 1:

PRINT TAB (15);:;Total$

HTAB (Aexpr)

HTAB (for horizontal tab) moves the cursor to the horizontal position specified by
Aexpr. The cursor may be moved from left to right or right to left.

Aexpr may range from one to 80. Any values outside this range will result in a run
time error. If Aexpr is real, only the whole number portion will be used.

Example:

PROGRAM Demo_ HTAB

HOME

HTAB (36)

PRINT “is the”;

DELAY = 50

HTAB (31)

P INT “This”;

DELAY = 50

HTAB (43)

PRINT “proper order.”

END

VTAB (Aexpr)

VTARB (for Vertical tab) moves the cursor vertically to a specific line on the screen.

The argument may be any valid arithmetic expression with a result ranging from one
to 24. Any values outside this range will result in an error at run time. If Aexpr is real,
only the whole number portion will be used.

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information ' 101

The cursor may move in either vertical direction.

Example:
PROGRAM Demo_VTAB
HOME
VTAB (4)
PRINT “On line four"
END
Output to Other Devices

OUTSLOT (Slot_Number)
OUTSLOT is used to send subsequent output through a device connected to the

specified slot number. The argument must be a digit between 0 and 7; any negative
value or value greater than seven will cause an error.

IMPORTANT
A 3 is used to return output to the screen.

NOTE
None of the screen formation statements such as TAB

will work when used in conjunction with OUTSLOT.

Example:
OUTSLOT (2) {Qutput through slot 2}
PRINT String$ {Sends character(s) to port 2}
OQUTSLOT (3) {Sends output to the screen}

PRTON

PRTON (Printer On) turns on the communication link to the printer and redirects
all output to it. PRTON assumes the printer is connected to slot one (printer port) of
the computer. If this is not the case, use OUTSLOT.

PRTON does not interrupt the execution of the program if the computer is connected
to a serial printer even if the printer is turned off. However, the program may hang if a
parallel printer is turned off.
Example:
PRTON
PRINT "“This line is written on the printer”

Part Three: The Advanced BASIC Language

102 Chaper Six: Basic Input/Output of Information

TEXT
PRINT “This line is written on the screen”

TEXT

TEXT turns off the communication link to the printer and restores the screen as the
current output device.
Exzample:
PRTON
PRINT “This line is sent to the printer.”
TEXT
PRINT “This line is sent to the screen.”

NOTE
TEXT may only be used to turn the printer off and the

screen display back on if the printer was originally turned
on with 2a PRTON.

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 103

Chapter Seven
Disk Filing

Overview

It is often the case that data generated by a program must be stored in some long
term device for later usage. Also, data stored from some outside source often must be
read in from a long term storage device for immediate usage. Such data are usually
stored as disk files.

A typical example of such file usage is in a word processor. Once the text is
generated within the word processor, it must be saved, or all the work would be wasted
once the computer is turned off. Conversely, this text may have to be read back into the
word processor at a later time for further modifications.

Disk filing commands are necessary to maintain and access these files. Access and
maintenance of disk files is the topic of this chapter.

File Management

These commands allow you to manage the disk files on your system.

CATS$

CATS$ is designed to get file information from a directory. Each use of CATS$ returns
a string containing a file directory entry from the default directory, just as it is displayed
using the CATALOG command under the Shell (minus the heading).

The volume information is returned on the last line, concatenated with the last file
name and information, separated by a carriage return (ASCII 13).

CAT$ must be contained in a loop. If more directory i~formation can be read,
True_Value (memory location 202) will contain a zero. If the last line has been read,
True_Value will be non-zero. Remember that True_Value is used for other purposes
and should be tested immediately after each use of CATS.

Example:

PROGRAM Show Directory

{Display directory header}

HOME

PRINT “Filename”; TAB(21): “Type”; TAB(27); \
"Blocks™; TAB(36); “Created”:; TAB(43): \
"Time™: TAB(55); “Modified”; TAB(64);"Time"; \
TAB(74) ; "EOF"

Part Three: The Advanced BASIC Language

104 Chapter Seven: Disk Filing

PRINT
{Get directory listing}
REPEAT
String$ = CATS
IF PEEK(202) <> 0 THEN BEGIN
PRINT String$
ENDIF
UNTIL PEEK(202) <> 0
END

IMPORTANT [.
The entire directory file must be read at one time,

otherwise the directory file will remain open
unnecessarily, which will probably cause problems at a
later time. You may have to read the directory entries
into a string array.

NOTE
If you wish the contents of a directory other than the

default directory, you will have to change the default
prefix with the PREFIX command. You may first have to

save the current directory with use of the PREFIX$
command, then reinstate the original directory after the |
directory has been read.

COPY Svarl TO Svar2

COPY duplicates the file defined in Svarl into a file with name Svar2. Svar is the
Pathname of the files and may be either a s*ring variable or a string literal.

If Svar2 is assigned an empty string, the file specified in Svarl will only be read. If
an error occurs during the read, True_Value (location 202) will contain a non-zero
value. This allows you to verify a file without generating an error.

Example:

Filel$ = “/RAMS/File”

File2s = “/RAM6/New.File”

COPY Filel$, ™ (First Verify FilelS$}

IF PEEK (202) = 0 THEN COPY Filel$ TO File2$

Paxt Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 105

CREATE Svar

CREATE will generate a directory file (type DIR). Svar is the Pathname of the new
directory and may be either a string variable or a string literal. Svar must not already
exist or an error will be generated.

CREATE locks the newly created directory.

Example:
CREATE “/Micol.,Adv.BASIC/New.Dir"

DELETE Svar

DELETE will erase the file specified from the appropriate directory. Svar is the
Pathname of the file to be deleted and may be either a string variable or a string literal.

A file may not be deleted if it is open or locked. A directory file may only be deleted if
it is empty. Use this command when a specific file is no longer needed.
Example:
DELETE “/RAM6/FILE”

FLUSH

FLUSH will empty all open file buffers to their respective files.

The main function of FLUSH is in file security. If any program runs a signmificant
time with open files and the program malfunctions, without periodic use of FLUSH, the
information in the buffer(s) may be lost. This command ensures that all data inside the
file buffer(s) will be transferred to their respective disk files.

A program using the command FLUSH will be slightly slower because of the time
needed to copy the information to disk, but you will be certain to have all the
information saved should a power surge or interruption occur.

Example:
FLUSH

FORMAT Svar

FORMAT is designed to initialize a disk device such as a floppy or a RAM disk. Svar
is the volume name the disk will have once formatted and may be either a string
variable or a string literal.

The FORMAT command displays the location and the names of all devices connected
to the computer. The user will select the appropriate device with the Up and Down
Arrow keys and press Return to display the GS/OS Formatting Dialog Box.

The user should set the controls of the Dialog Box to ProDOS for the operating
system and 800K 2:1 for the interleave, if necessary then presses Return to start

Part Three: The Advanced BASIC Language

106 Chapter Seven: Disk Filing

formatting.

Example:
FORMAT “/Work.Disk” {The disk will be named Work.Disk}

WARNING

The user must be certain he/she wishes to format the
specified device as once the final Return is pressed, all
information on the device will be erased. It is
recommended a warning message be displayed, and

possible exit allowed, before FORMAT is executed.

LOCK Svar

LOCK is used to protect a file from being deleted or modified. Svar is the Pathname
of the file to be locked and may be either a string variable or a string literal.

When a file is locked, an asterisk (*) precedes the filename when a directory is
displayed to show that the file is protected.
Example:
LOCK “/RAM6/FILE”

ONLINES$

ONLINES$ returns a string which contains all the current online volume names.
Each volume name is separated by a Return character (ASCII 13). This Return
character may be used to isolate each online volume name within your program.
Example:
OnLine Name$ = ONLINES
PRINT OnLine Name$

PREFIX Svar

PREFIX uses Svar to set the default prefix. Svar is the Pathname to a directory and
may be either a string variable or a string literal.

If Svar contains an empty string ("), the system will only display the default prefix
to the screen. If Svar is not empty, the default prefix will be set to Svar. The volume
must be online when this command is executed; otherwise, an error will occur.

Example:

PREFIX “/RAM6/Directory”

Chapter Seven: Disk Filing 107

RENAME Svarl TO Svar2

RENAME will change the name of a file, directory or volume. Svarl and Svar2 may
be either string variables or string literals.

Svarl is the Pathname to the original file and Svar2 is the Pathname the file will
have. If Svarl and Svar2 are on the same volume, but in different directories, Svarl will
be moved to the directory stipulated in Svar?2.

Svarl must be unlocked, and Svar2 must not already exist.

Example:
RENAME “/RAM6/File” TO “/RAM6/Newfile”

UNLOCK Svar

UNLOCK removes the protection on a file so that it may be erased, modified or
renamed. Svar is the Pathname of the file and may be either a string variable or a
string literal.

A space rather than an asterisk indicating that the file is unprotected will precede
the filename when the appropriate directory is displayed.

Example:
UNLOCK /RAM6/FILE

Direct Access to the Operating System

GS_OS (Operation_Code, PathName$, Integer_Axray% ()

The GS_OS command makes it possible to communicate directly with the operating
system of the Apple IIGS, GS/0OS.

GS_OS is designed to call individual operations within the operating system. These
calls can perform a whole assortment of things such as getting volume information, or
erasing a volume directory, etc; whatever GS/OS is capable of. All of the disk access
commands executed by Micol Advanced BASIC are done by such calls to GS/OS.

To make use of this command, you will need a GS/OS reference manual. The one by
Gary Little mentioned in Suggested Manuals in Part One is quiet suitable.

GS_OS requires three parameters: a GS/OS call number, a string variable whose
contents may or may not be required, and an integer array which will contain the
parameter list required by the GS/OS call. The three parameters are:

1. The call number is the value required by GS/OS to determine which operating
system command is needed. This value is an integer literal (either decimal or
hexadecimal) and must be a value greater than $2000 hexadecimal as the
GS_0S command only supports GS/OS class one calls.

2. APathname is not required by all GS/OS calls, but PathName$ must appear in the
GS_OS command. If an Integer_Array% element contains a negative one (-1},

Part Three: The Advanced BASIC Language

108 Chapter Seven: Disk Filing

the string contained within PathName$ will be used for this call. PathName$
may be any legal Micol Advanced BASIC string which i3 also a legal GS/OS
Pathname, according to the call.

3. The list of parameters required by the call is provided to GS/OS using
Integer_Array% starting with element zero. One integer array element is equal
to one word. The size of the integer array must be at least as large as the
maximum number of words sent or returned by the call and must be so
dimensioned. The left parenthesis is required in the syntax of this command.

4. If an error occurs as a result of the call, the GS/OS error value will be returned in
location 202 (True _Value). A zero indicates that the call was made correctly.
Any other value signals that an error occurred (or that the call was made
improperly). Please see Appendixz D for GS/OS error codes.

When long integers are used, the most significant bytes of
each array element are ignored, and the array is
compressed into short integers before the contents of the
array are passed to GS/0S. The array is decompressed
after the results are returned.

Example:
PROGRAM O8_Example
@ LIST
INT (A - Z)
DIM Array (40) {Large enough for any purpose}
Array (0} = 12 {12 class one parameters}
Array (1) = -1 {Pathname in element 1}
PathName$ = “/RaM5/File”

{Make the call to GS$/0S}
{$2006 GetFilelInfo}
GS_OS (52006, PathName$, Array ()
IF PEEK (202} = 0 THEN BEGIN {No error}
FOR Ctr = 1 TO 20 {Display the result returned}
PRINT Array (Ctr)
NEXT Ctr
ELSE BEGIN
PRINT “GS/CS error” ;PEEK (202)
ENDIF
END

HE NN T T N B N O e U U O E O U O N O O BRSO T EEEm mm

Chapter Seven: Disk Filing 109

NOTE)
The GS_OS command can easily handle GS/OS calls with

one string. If the GS/OS call you wish to make requires
two or more strings, you will have to create the GS/OS
class one strings yourself in some buffer area, and pass
these addresses within the GS_OS call. But don’t worry,
very few calls require more than one string.

General File Access

File Access Number

The commands within this section require a File Access Number. This is simply a
digit (no variables allowed), from one to eight, that you give the file when it is opened.
This value, rather then the Pathname, is used to access the file for further operations.

APPEND (File Access Number)

APPEND moves the file pointer to the end of the open file. Any future reads or
writes to the file will be from this position. The File Access Number must be the same
one that was used under the OPEN, ROPEN or WOPEN command.

Example:

ROPEN (1) “File” {Open an existing file)
APPEND (1) {Write after end of file"™
PRINT (1) “After old end of file”

CLOSE (1)

CLOSE (File Access Number)

CLOSE will close the file specified by the File Access Number. The File Access
Number must be the same one that was used when the file was opened with an OPEN,
ROPEN or WOPEN command.

All files must be closed after having been used. The closure of the files ensures that
all data have been transferred from memory buffers to their disk files. An END or
STOP will also close all files currently opened.

Example:

WOPEN (1) “FILE”
CLOSE (1)

Part Three: The Advanced BASIC Language

110 Chapter Seven: Disk Filing

FILE (Svar)

FILE verifies that a file with the corresponding Pathname exists. Svar is the
Pathname of the file, and may be either a string variable or a string literal.

FILE is a boolean function which returns TRUE if the file exists or FALSE if there is
no such file. The FILE state may also be assigned to a boolean variable: Flag! = FILE
(File$).

Example:

IF FILE ("/RAM6/HELLO"™) THEN BEGIN
ROPEN (1) “/RaM6/HELLO”

ELSE BEGIN
WOPEN (1) “/RAM6/HELLO”

ENDIF

The type of file may be determined by PEEKing into memory location True_Value
(202) right after using the FILE command. This value is a number representing the file

type.

In addition, if FILE is TRUE, the file size, in blocks of 512 bytes, will be returned in
locations 204 and 205 in LSB, MSB order; in location 212 and location 213 is stored the
Auxiliary file type.

Example:

File Exists! = FILE (InputFile$)
IF File Exists! THEN BEGIN
FileType% = PEEK (202)
IF FileType% = 4 THEN BEGIN
PRINT “The file ”; InputFile$; ® is of type TXT”
ELSE BEGIN
IF FileType% = 176 THEN BEGIN
PRINT “The file ” ; InputFile$; “ is of type SRC”
ENDIF
ENDIF
ELSE BEGIN
PRINT InputFile$;"™ does not exist"
ENDIF

GET (File Access Number) Svar
GET will read characters, one at a time, from disk and place the character into Svar.

The File Access Number must be the same one that was used when the file was opened.
If the end-of-file marker is encountered during a GET, the variable waiting for a

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 111

value will be undetermined, whereas the end-of-file flag will be set to TRUE.

Example:
IF FILE ("File") THEN BEGIN
ROPEN (1) “File”
REPEAT
GET (1) Char$
IF NOT EQF (1) THEN PRINT Char$;
UNTIL EOF (1)
CLOSE (1)
ENDIF

INPUT (File Access Number) Var [{,Var}]

INPUT functions like the keyboard based INPUT statement except it accepts data
coming from a file instead of the keyboard.

The File Access Number must be the same number that was used when the file was
opened. Var may be any simple or array variable type except boolean.

As with the keyboard INPUT command, the data read from the device must
correspond to the type required by the variable in the variable list.

WARNING
INPUT is only suitable for reading text files. Note that

the only delimiter for a string input is the carriage return
(ASCII 13). Commas (,) and semicolons (;} are regarded

as data for this purpose. If more than 1023 characters
are read before a carriage return is encountered, an error
will be generated.

Example:
IF FILE ("/RAM6/File'") THEN BEGIN
ROPEN (1) “/RAM6/File”
REPEAT {Read from disk}
INPUT (1) String$
INPUT (1) Real
INPUT (1) Integer%
PRINT String$, Real, Integer$
UNTIL EOF (1)
CLOSE (1)
ENDIF

Part Three: The Advanced BASIC Language

112 Chapter Seven: Disk Filing

OPEN (Tile Access Number) Svar

OPEN establishes a link between the file specified in Svar and future commands
directed at the file. Svar may be either a string variable or a string literal.

OPEN will check for the existence of the file stipulated in Svar. If the file exists, it
will simply open the file (perform an ROPEN). If the file doesnt exist, OPEN will
create a new file with the stipulated name, then open it (perform a WOPEN). In both
cases, the file pointer will be pointing to the beginning of the file.

Example:

OPEN (1) “/RAMG/FILE”
PRINT (1) “String”
CLOSE (1)

PRINT (File Access Number) [USING Mask$;] Var[{,Var}]

PRINT and PRINT USING function exactly like their screen-based counterparts
except they send their data to the disk instead of the screen or printer.

The File Access Number must be the same number that was used when the file was
opened. Var may be an integer, real or string variable or array.

NOTE
TARs will not produce spaces in a text file.

WARNING

If the data created with a PRINT are to be read by an
INPUT statement, then be certain not to suppress the
carriage return by using a comma(,) or a semi-colon(;}
after each variable list. It is best to have one variable per
PRINT statement.

Example:
WOPEN (1) “FILE”
PRINT (1) ™“Output to file”
FOR Loop Ctr% = 1 TO 10
PRINT (1) Loop Ctr%
NEXT Loop_Ctr%
CLOSE (1)

The end-of-file marker is pushed forward as each variable’s contents are written to
disk.

Chapter Seven: Disk Filing 113

ROPEN (File Access Number) Svar

The ROPEN command will open an already existing file and will position the file
pointer to the beginning of the file. The File Access Number used with the ROPEN
command must be used with all the commands referencing the file being accessed later.

Svar is the Pathname of the file and may be either a string variable or a string
literal. The Pathname of the file being read must exist on the disk being accessed. Any
attempt to ROPEN a non-existent file will cause a run time error.

ROPEN establishes a relationship between the File Access Number and the
Pathname. Without this relationship established, the system cannot know which File
Access Number belongs to which file.

IMPORTANT

File Access Number 8 will provide much faster access to
sequential files than File Access Numbers 1 thorough 7.
However, because File Access Number 8 maximizes file
access by reading several file blocks into internal memory
from which the file information is then accessed, it is
unsuitable for random access files.

Example: (See GET)

WOPEN (File Access Number) Svar

WOPEN will erase any existing file with the same Pathname stipulated by Svar, and
create an empty file with the specified Pathname. If the file already exists, and that file
is locked, an error will be generated. Svar may be either a string variable or a string
literal.

The File Access Number used with the WOPEN command must be used with all the
commands referencing the file being accessed.

WOPEN establishes a relationship between the File Access Number and i.e
Pathname. Without this relationship established, the system cannot know which File
Access Number belongs to which file.

Example: (See PRINT)

Sequential File Access

EOF (File Access Number)

EOF is used to detect the end-of-file marker when a sequential file is being read.
The File Access Number must be a digit between 1 and 8 and must be the same value
used when the file was opened.

Part Three: The Advanced BASIC Language

114 Chapter Seven: Disk Filing

EOF is a boolean function and may be assigned to a boolean variable as: Flag! =
EOF (1). This boolean variable may then be tested like any boolean variable.

If the end-of-file is encountered while reading a variable’s value, the value of the
variable is undetermined, but the EOF flag will be set to TRUE.

If you try to test the end-of-file on a file which has not been opened, you will receive a
run time error.
Example:
ROPEN (8} “/RAM6/FILE” (Get fast access with 8}
REPEAT
INPUT (8) String$
IF NOT EQF (8) THEN PRINT String$
UNTIL EOF (8)
CLOSE (8)

Random Access Files

SEEK (File Access Number) Record Number, Record Size

SEEK is used to move the file pointer within a random access file. SEEK will move
the end-of-file marker if the position is past the current end-of-file. You may then read
or write to this file location as you require.

The SEEK command must be used before any read or write operation to a random
access file, otherwise the next read or write operation will be done right after the
previous read or write. Be certain not to leave out this command if a random access file
is used.

You must decide what record size you wish; the record may be any size. Once the
record size is specified, any record may be accessed within the file; even sub-records
within the file may be accessed by specifying the correct record size.

To access a specific field within a certain record, you may skip the previous fields
using dummy INPUTs. To do so, each field must end with a ¢ riage return. If the
Return characters at the end of each field have been suppressed, then the INPUT
statement(s)} will not be able to read the data since INPUT expects the Return character
as the end-of-field delimiter.

NOTE

The use of a File Access Number 8, reserved for use with

sequential file access, will result in an error during
compilation.

When calculating the record size, remember that the Return character also requires
one byte.

Chapter Seven: Disk Filing 116

NOTE
SEEK may function the same way as the POSITION

statement of the Applesoft BASIC interpreter by
specifying a record size of 1.

PROGRAM Random Access
BEOME
WOPEN (1) “/Volume2/File”
INPUT “Enter record size” :Size
REPEAT
INPUT “Enter record number” :»Record.
INPUT “Enter any number” ; Number
SEEK (1} Record, Size
PRINT (1) Number
UNTIL Number = 100
CLOSE (1)
HOME
ROPEN (1) “/Volume2/rile”
PRINT “The values entered were:”
REPEAT
INPUT “Enter record number ";Record
SEEK (1) Record, Size
INPUT (1} Number
PRINT Number
UNTIL Number = 100
CLOSE (1)
END

NOTE) A
From the programmer’s standpoint, the only difference

between a sequential file and a random-access file is the
use of the SEEK command.

Part Three: The Advanced BASIC Language

Chapter Eight: Control of Flow ' 116

Chapter Eight

Control of Flow

Overview

Unless special action is taken, each program statement will execute after the
preceding statement has finished execution. Very few programs would have any real
worth if this linear program flow could not be altered.

It is the purpose of this chapter to discuss the methods available under Micol
Advanced BASIC to direct program flow in an appropriate manner. In this regard, Micol
Advanced BASIC is one of the most powerful languages for any computer. Use these
commands wisely and your programs will be something to be proud of.

Program Termination

The termination statements are designed to end the execution of a program; control
passes out of the program.

External Flow

RUN Pathname

To execute another Micol Advanced BASIC program or a GS/OS application, use the
RUN command. Pathname must be the Pathname, including the “.LNK” extension, if
any, of the program. Pathname may be a string literal or string variable. The file must
be online at execution time or an error will be issued.

Examples:

RUN “MAB,LNK”
Path Name$ = “FINDER"”
RUN Path_Name$

Flow Interruption

END

END terminates the program’s execution, and returns control to the Command Shell
(if the program was entered from the programming environment).

END may be placed anywhere in a program. END closes all open files, frees all
memory, and sets the screen to text mode.

Part Three: The Advanced BASIC Language

117 ' Chapter Eight: Control of Flow

NOTE

Although the Compiler automatically generates an END
at the end of the program code, it is recommended to
conclude all programs with END for documentation

purposes.

IMPORTANT
In any program that was launched with the Finder, END
returns control to the Finder. If the program was started
as a TurnKey system, a System Death will be performed.
Exzampie:

PROGRAM EXAMPLE
PRINT “This is a sample program”
END

STOP

STOP is identical to END except it prints the line number where the program
halted. STOP’s primary function is in debugging.
Example:
PROGRAM Example
PRINT ™“This is a simple program”
STQP

BYE

BYE terminates the execution of the program and returns control to the program
launcher (even if the program was started from the Command Shell). BYE performs
what is called a ProDOS QUIT.

When a TurnKey system terminates, it is usually to a
System Death, and the computer will have to be rebooted
to continue running. If you are creating a TurnKey
system, and a BYE should execute, the booting program
will re-execute instead of a System Death.

L .|

Example:
PROGRAM Hello

Chapter Eight: Control of Flow 118

HOME
PRINT “Hello”
BYE {Returxrn to the Program Launcher}

Branching

Branching consists of unconditional and selective branching. With unconditional
branching, the flow will be altered exactly as specified by the control structure. With
selective branching, the branch will be based upon a condition previously determined.
With selective branching, if the conditions are not right, the flow will not be altered at
all.

With branching, control is directed to another area of the program. Careless use of
this construct may cause havoc in your programs. For this reason, it is recommended
you avoid branching as much as possible. Ideally, branching should only be done in error
handling.

The Routine Declaration

ROUTINE Id

Before we can discuss branching, it is necessary to discuss a little about Routine
declarations. This topic will be covered again in the next chapter in more detail.

Whenever you wish to branch to another line with the use of GOTOs, it is possible to
branch to a mnemonic name instead of a line number. In order to do this, you must first
declare the area of code you wish to branch to with a ROUTINE name. The syntax is
simply the keyword ROUTINE followed by a unique identifier. This identifier has the
exact same syntax as a simple variable and may be an existing variable name.

During compilation, the Compiler checks for the existance of duplicate ROUTINE
names. If a second ROUTINE name is detected, an error will be issued.

WARNING

If you are segmenting your program, then you may not
give any ROUTINE name that has already been declared
within a previous segment. The Compiler has no way to
distinguish between identical ROUTINE names in
different segments.

Unconditional Branching

Unconditional branching takes the program flow to the statement indicated. The
abusive use of unconditional branching may considerably reduce the legibility of a
program, 8o its use should be avoided whenever possible.

Part Three: The Advanced BASIC Language

119 Chapter Eight: Control of Flow

The Dreaded GOTOQO

GOTO Identifier
GOTO Line_Number

GOTO forces the program flow to the line indicated. If the reference line does not
exist, the linker displays the message “Undefined line or subroutine”. When a GOTO
makes a reference to a line number (not recommended), the line number is treated as a
ROUTINE identifier.

NOTE .
The use of GOTOs is recommended only in recovery from
an error. To disable GOTO, use the NOGOTO compiler
option.
Example:

IF Number = 5 THEN GOTO Routine Name

END

ROUTINE Routine Name

END

Selective Branching

Selective branching may be used when three or more selections are needed. The use
of this option is not recommended as it can lead to problems in determining the program
flow, if errors arise. The multi-decision CASE_OF is probably a more appropriate
structure, and its use is recommended.

The ON..GOTO Statement

ON Aexpr GOTO Identifier {{,Identifier}]
ON Aexpr GOTO Line_Number [{, Line_Number]}]

ON..GOTO branches to a specific statement or line depending on the value of Aexpr
between the words ON..GOTO. If Aexpr is real, the value is truncated before the branch
is taken.

Aexpr is evaluated. If the value is less than one or greater than the number of
identifiers or line numbers, the program flow will continue with the statement following
the ON..GOTO. Otherwise, the flow will be directed to the sequential label or line
determined by the result.

Chapter Eight: Control of Flow 120

Example:
PROGRAM Example
HOME
REPEAT
PRINT “Enter a number from 1 to 3 ”;
GET Digit$
PRINT Digit$
UNTIL INDEX (Digit$, “123") > 0
Digit% = VAL (Digit$)
ON Digit% GOTO One, Two, Three
{Exit point for program}
ROUTINE Finish
END {End of Program Execution}
{Selection is handled below}
ROUTINE One
PRINT “One chicken soup”
GOTO Finish
ROUTINE Two
PRINT ™“Iwo Fetucinni entrees”
GOTO Finish
ROUTINE Three
PRINT “Three turkey breasts”
GOTC Finish

Loops

Repetitive statements are used to repeat an action until a condition is met. Micol
Advanced BASIC has four repetitive contro’ statements: FOR. NEXT, FOR.UNTIL,
REPEAT..UNTIL, and WHILE..WEND.

Finite Loops

The statements in this section are useful for loops that have a predetermined
number of iterations or repeat execution until another condition arises.

FOR .. NEXT Loops

FOR Loop Counter = Initial TO Terminal [STEP Increment)

This statement begins with the keyword FOR followed by an integer or real variable

Part Three: The Advanced BASIC Language

121 Chapter Eight: Control of Flow

as the Loop Counter. The Loop Counter is assigned the value in Initial and then verified
to see if its value is greater than Terminal. If Loop Counter’s value is greater than
Terminal’s, the statements within the loop will not be executed and control will continue
to the statement after the following NEXT. If Loop Counter’s value is smaller than or
equal to Terminal’s value, the statements within the FOR loop will be executed.

When all the statements in the loop have been executed, Loop Counter will either be
incremented or decremented and the FOR statement will continue until Terminal’s
value 18 exceeded.

When there is a STEP Increment, if the result of Increment is positive, the value of
Increment is added to the Loop Counter. If the result of Increment is negative, the
positive value of Increment is subtracted from Loop Counter. If STEP is not specified,
the increment is always a positive 1.

NEXT Loop Counter

NEXT followed by a Loop Counter signals the end of 2 FOR loop. The Loop Counter
must match the one used in the previous FOR statement.

If, during compilation, a FOR statement is without its matching NEXT, the
Compiler will issue an appropriate error message at the end of compilation.
Example:
FOR Loop A% = 1 to 10
FOR Loop B% = 1 TO 10
PRINT “Loop B = ”; Loop_ B%
PRINT “Loop_A = 7; Loop A%
NEXT Loop_ B%
NEXT Loop_A%
Please note the following rules for FOR..NEXT loop construction:
1. The loop will not be entered if the loop counter’s value is already satisfied.

Example:
FOR Loop_Countr :% = 10 TO 9
PRINT Loop_ Counter%
NEXT Loop_Counter¥
2. The NEXT statement must contain the same variable used as the loop counter in
the previous FOR statement, otherwise an error will occur during compilation.

3. Aloop cannot be “exited” by changing the value of the loop counter. The value of
the loop counter cannot be changed since the actual loop counter’s value is
maintained elsewhere. If any attempt i3 made to reassign the loop counter
within the FOR..NEXT loop, the loop counter will be reassigned the value it
otherwise would have at the top of the next iteration of the loop.

4. There may be only one NEXT for each FOR. A line of code like IF Value = 10
THEN NEXT Ctr is not allowed in Micol Advanced BASIC.

5. The terminal expression is calculated each time at the top of tﬁe loop. The FOR

Chapter Eight: Control of Flow 122

loop may end prematurely if a variable is used for the Terminal value and this
variable is being reassigned inside the loop. Watch out for an unintentional
reassignment. Also, if the terminal expression is somewhat complicated, it may
eat up valuable execution time. It is preferable to assign that expression to a
dummy variable just outside the loop, and use this durnmy variable as the
terminal value within the FOR..NEXT loop.

Example:
FOR Ctrl% = 3 TO 32000 STEP 2
Dummy$ = SQR (Ctrl%)
FOR Ctr2% = Ctrl% TO Dummy% STEP 2
IF Ctr% MOD Ctr2% = (0 THEN BEGIN
Dummy% = 1 {Stop the inner loop!
ENDIF
NEXT Ctr2%
IF Dummy% > 1 THEN PRINT Ctr2%
NEXT Ctrl%
Be certain the variable (Dummy%) is not unintentionally changed within the active
FOR. NEXT loop as the loop may not act as desired.

6. Never use a GOTO to exit a FOR..NEXT loop, otherwise the pointers necessary for
the functioning of FOR..NEXT statements will not be reset correctly. The
program may malfunction if this loop is used again. If a FOR. NEXT loop must
be left prematurely, use the FOR..UNTIL loop structure instead.

7. The use of integer loop counters is recommended, where practical, as they execute
much faster than their real counterparts.

FOR .. UNTIL Loops

FOR Loop Counter = Initial TO Terminal UNTIL Relop

The FOR..UNTIL structure repeats one or more statements a precise number of
times or until the specific condition is TRUE.

This statement beging with the keyword FOR followed by a Loop Counter. The Loop
Counter is assigned the value in Initial. The Loop Counter is then verified to see if its
value is greater than the Terminal value.

If the Loop Counter’s value is greater than the terminal value, the statements in the
loop will not be executed and control will be directed to the statement following the next
NEXT. If the Loop Counter’s value is smaller than or equal to the Terminal value, a test
is made to see if the UNTIL condition is TRUE or FALSE. If the condition evaluates to
TRUE, control is passed to the statement after the NEXT statement. If the UNTIL
condition is FALSE, the loop is entered.

When all the statements in the loop have been executed, Loop Counter will have one
added to its current value and the FOR statement will continue until the value of Loop
Counter is greater than Terminal or until Relop become TRUE. Loop Counter is always

Part Three: The Advanced BASIC Language

123 Chapter Eight: Control of Flow

Incremented by one.

As with the FOR..NEXT loop construct, this statement must also be closed by a
NEXT statement with a matching Loop Counter. The pertinent rules described above
for FOR loops also apply here.

Example:

FOR Loop Ctr% = 1 TO 10 UNTIL Animal$ = “cat”

INPUT “Enter any animal’s name ”;Animal$

PRINT “The ";Animal$;" is a fine animal™

Animal$ = LOWERS (Animal$) {Need lowercase for test}
NEXT Loop_Ctr%

FOR..NEXT and FOR..UNTIL loops may be nested. The maximum nesting is 20
levels deep.

Examples: {Notice the nesting order}

FOR Out_loop_Ctr¥ = 1 TO 10
FOR In_loop Ctr% = 1 TO 10
PRINT “In_loop_ Ctr = ”;In_loop Ctr%
PRINT “Cut_loop Ctr = ”;0ut_loop Ctr¥%
NEXT In_loop_Ctr%
NEXT Out_loop Ctr%

This second example will show an alternate way of writing nested FOR.NEXT

loops, but the logic is also more difficult to follow.
FOR Out_loop% = 1 to 10: FOR Inloop% = 1 TO 10
PRINT “Inloop = ”;Inloop%:PRINT “Out_loop = ”;QOut_ loop%
NEXT Inloop%: NEXT Out_loop%

Examples of what NOT to do are:

FOR 1 = 1 TO 50 FOR j = 1 TQO 10
PRINT i,3 NEXT i
NEXT 3 {Misplaced loop variables}

Conditional Loops

Conditional loop structures will execute the statements inside the structure until a
particular condition does or does not arise.

Chapter Eight: Control of Flow 124

REPEAT Loops

REPEAT
Statement
[{: Statement }]
UNTIL: Relop
The REPEAT. . UNTIL structure executes the statement(s) enclosed between these
keywords until Relop is TRUE. The statement(s) in the loop will always be executed at
least once. The program flow continues after the UNTIL statement.
Example:
REPEAT
INPUT “Enter any animal’s name: “;Animal$
Animal$ = LOWERS (Animal$)
IF Animals$ <> “cat” THEN BEGIN
PRINT “The “;Animal$;"™ is a fine animal"
ENDIF
UONTIL Animals = “cat”

WHILE Loops

WHILE Relop
Statement
[{: Statement }]
WEND
The WHILE.WEND structure executes the statement(s) enclosed between these
keywords as long as Relop is TRUE. The statement(s) in this loop will not be executed if
the expression is not initially TRUE. The program flow continues after the keyword
WEND (for WhileEND).
Example:
Animal$ = “” {Make certain loop is entered}
WHILE Animal$ <> “cat”
INPUT “Type any animal’s name”;Animal$
Animal$ = LOWERS (Animal$)
IF Animal$ <> “cat” THEN BEGIN
PRINT “The ”;Animal$;" is a fine animal”™
ENDIF
WEND

The REPEAT.UNTIL and WHILE.WEND structures may be nested to a
maximum of 20 levels each.

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 125

Chapter Nine

Modularization

Overview

When a project becomes a large programming task, it becomes necessary to break
this task into smaller portions, making this project easier to conceive. This method
applies the old maxim: “Divide and Conquer.”

Alarge program may be divided into modules. A module is like a small program that
may be ezxecuted whenever needed. Each module performs a specific task. Breaking a
program into amall, easy-to-maintain portions is called modularization.

Not only does modularization simplify the programming task, it also has the
advantage of creating routines that may be re-used by other programs.

A module is a very important construct to the concept of structured programming.
Once control is passed to a module, unless an unforeseen circumstance occurs, control
will return to a known location.

Advantages of Modularity

1. Ease of conception. It is easier to create an ensemble of short and simple
modules than a long and linear program. Each module will perform a certain,
well-defined task.

2. Maintainance. Because each module performs a single well-defined task, it is
relatively easy to debug and modify this module as the need arises.

3. Portability. The modules written may be as independent as possible from other
modules. Thus a module may then be used in another program with no or very
few changes.

4. May be written by different programmers. Once the task to be done is well
defined, the modules may be written by more t' in one person. After the
modules are written, they also may be individually tested

Module Types

Micol Advanced BASIC has three different types of modules: the Routine, the
Function and the Procedure.

A Routine is probably what you are already familiar with. A Routine is the typical
BASIC “subroutine”. All variables are global (available to the entire program), and
parameters are not passed to it. Control is passed to the Routine with a GOSUB or
PERFORM statement and control is returned through a RETURN statement placed
ideally at the end of the Routine. Unlike most BASICs, a Routine in Micol Advanced
BASIC may be given a name with which the Routine may be later referenced.

Part Three: The Advanced BASIC Language

126 Chapter Nine: Modularization

A Function is a module which returns a numeric result. The Function may have both
local and global simple variables, accepts one or more parameters and always returns a
single numeric value. A Function ig given a name and is implicitly called within an FN
statement. Control is not returned until the end of the Function is encountered.

A Procedure, like a Function, has both local and global simple variables and accepts
parameters. Control is passed to a Procedure by means of a GOSURB, and control is
returned following the Procedure call. Values that need to be shared between a
Procedure and the main body of the program are shared by means of parameters passed
by address or by global variables declared earlier in the main program body.

Module Identification

As described under ROUTINE names in the previous chapter, all Routines,
Procedures and Functions may have distinct identifiers.

The Compiler saves the module names declared after a FUNC, PROC or ROUTINE
reserved word during compilation. If duplicate module identifiers are found, the
Compiler will report an error.

If you attempt to reference a Function, Procedure or Routine within your program
which you have not defined, during the linking phase, you will receive the message,
“Undefined Line or Subroutine” error. Since the Linker has no way of knowing at which
line this error occurred, you will need to use the Source Code Editor to locate the
undefined Routine.

Program Order with Modules

PROGR2EM Identification

ALIAS “UNTIL 1 = 2" = “FOREVER"
INT (I-N): STR (S-Z)

DATA statements

DIM statements

DECLARE Boolean!, Iniu:ger%, Reals&, String$
Function Declarations

Procedure Declarations

Main Program Body

Routine Declarations

END

The above list of declaration statements should be followed to ensure a structured
program.

Chapter Nine: Modularization 127

Routines

ROUTINE Identifier
[{ Statement(s)}]
RETURN

A Routine is declared by using the reserved word ROUTINE followed by an
identifier.

The body of the Routine may contain any legal executable statements: DIM, DATA
and compiler directives are not executable statements.

RETURN marks the end of the Routine, and tells the program to return to the
statement following the GOSUB which caused the branch to this Routine. Only one
RETURN should appear in a Routine.

RETURN must never be used to end a Procedure or Function as the Compiler will
return an error if so attempted.

A Routine module is called by means of a GOSUB statement followed by the
identifier of the Routine.

If the return stack is empty when the RETURN is executed, the message “RETURN
without GOSUB error” is displayed when the error occurs at run time.

All variables included in a Routine are global and may be used by other Routines.

WARNING _
If the normal program flow reaches a Routine, the
Routine will execute. This must be avoided. For this
reason, Routines should be placed after the main program
body, so they will not be executed without being explicitly
called. There should be an END statement at the end of
the main program body to stop the program flow. :
Example:
GOSUB Box
END

ROUTINE Box
PRINT “In subroutine”
RETURN

Funetions and Procedures

As in the Pascal and C languages, Micol Advanced BASIC has the concept of
Procedures and Functions that are separate from the main body of the program and that
may receive values as parameters.

128 Chapter Nine: Modularization

(General Rules

A program may have a maximum of 127 Functions or Procedures. The Functions
and Procedures may reside anywhere in the program, but it is best to declare them all at
the top of the program.

Unlike a Routine, a Procedure or Function will not execute by simply letting the
normal program flow reach the Procedure or Function: it must be called. Also, unlike a
Routine, a Function or Procedure may have both local and global variables and accept
values as parameters.

Nesting of Procedures and Functions is not allowed.

Global and Local Variables

Global Variables

A global variable is a variable that may be used and modified by any part of the
program. Any variable declared at the top of the program outside a Procedure or
Function is always global. Arrays are always global. This means the entire program is
able to access any array element.

It is sometimes necessary for the entire program, i.nclud@ng Procedures apd
Functions, to be able to “see” certain variables. Whenever a variable is declared outside
of a Procedure or Function, but before this Function or Procedure, any subsequex}t codfa,
including Functions and Procedures, will have access to this variable. The variable is
declared simply by being used; initializing the variable(s), or placiag it in a DECLARE
statement is all that’s necessary.

Example:

PROGRAM Global_ Test
{Variable Global& may be used by the Procedure}
Global&s = 567,89
PROC Example [Real&, Integer%)
PRINT Reals&
PRINT Integer$
PRINT Globals&
ENDPROC
GOSUB Example [100.1, 123]
END

Local Variables

Any variable declared within a Procedure or Function is local to that Procedure or
Function only if that variable has not been declared globally before this Procedure or
Function.

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 129

By local, we mean that only the Function or Procedure in which the variable is used
will have access to it. Neither the main body of the program, nor another Function or
Procedure can see the variable. Two variables within two Functions or Procedures may
look the same, but in reality these variables are different.

Using local variables has the great advantage that the value of a variable with the
same name outside the Function or Procedure is not accidentally changed by the
program. _

Values may be shared outside the Function or Procedure only if a parameter is
passed by address or a variable has been declared earlier as global.

If the LIST or PRINTER compiler option is in effect, a number sign (#) will precede
the names of local variables in the Symbol Table listing (displayed after the compilation).

Example:
PROGRAM Global Test
PROC Example [Number%]

PRINT Number$%

ENDPROC
Number% = 567
GOSUB Example [123]
PRINT Number$%

In this example, the local variable Number% within the Procedure will have a value
of 123, and the global variable Number% outside the Procedure will have a value of 567.

The Optional Parameter List

Values may be passed to a Function or Procedure by means of parameters.
Parameters are variables within a Function or Procedure that will contain a value
passed to it after it has been called. A parameter list is the series of values sent to the
Function or Procedure when the Function or Procedure is being called. Both parameters
and parameter lists are enclosed in brackets.

The rules for the declaration of the parameters are the same as those for any other
variable. For all practical purposes, the number of parameters that may be passed is
unlimited.

Each parameter will have a corresponding value passed to it when the Function or
Procedure is being called. A strict one to one correspondence exists between the type of
value passed and the receiving parameter; they must be of the same data type.

Parameters may be simple variables of boolean, integer, real, or string. Parameter
lists may be arithmetic expressions or variables, string variables and literals or booleans
which may also be the reserved words TRUE and FALSE.

A real literal, if passed in the parameter list, must have its fractional part explicitly
written, so that the Compiler knows whether a real or an integer literal is intended. If
the real value has no fractional portion, you must specify a .0 as in 123.0.

If a mismatch occurs between the parameter type and the passed value type, an error

Part Three: The Advanced BASIC Language

130 Chapter Nine: Modularization

will occur during execution. For example, if a real expression is passed as the first value
to a Function, the first corresponding parameter must be a real variable; the same
applies to integer, string or boolean parameters.

Ways of Passing Parameters

Each parameter that is passed to either a Procedure or Function may be passed in
one of two ways: pass by address or pass by value.

It is important to understand the difference, as this can affect the program’s logic.
People familiar with either the Pascal or C languages should already have a good
understanding of these concepts.

Passing by Value

To declare explicitly that a parameter is passed by value, use the reserved word
VALUE before the parameter declarations. Passing a parameter by value is the default.
Every parameter encountered up to an ADDRESS reserved word or the end of the
parameter declarations will be passed by value.

If a parameter is passed by value, only the value in the passing variable is g:iven‘ to
the Procedure or Function. This means, that under no circumstance will the passing
variable have its value changed within the receiving subroutine.

Example:

PROGRAM Example
{Passing by Value is default}
PROC Add [VALUE Gamma]
Gamma = Gamma + 1
ENDPROC
Upsilon = 10
Gamma = 25
GOSUB Add [Upsilon)
PRINT Upsilon, Gamma

The values printed are 10 and 25. Thus, the value of the parameter passed was not
modified by the Procedure. When the Procedure Add was called, the variable Gma
was created and the value of the parameter (25) was assigned to it. The inc:rementaifaon
Gamma = Gamma + 1 was done with this new variable and not to the variable Upsilon
where the value was unchanged. The value of Gamma is 25 outside the Procedure

because the one is added to the local variable Gamma, not the global (but declared after
the Procedure) variable Gamma.

Passing by Address
When a parameter is passed by address, the address of the passing variable is also

passed to the Procedure or Function so that the passing variable will be modified if the
parameter is altered within the called Procedure or Function.

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 131

When an integer or real literal is passed by address, that
value is made vulnerable to change within the program.
For this reason, never pass a literal as a parameter when
it is passed by address as the literal’s value in memory
may also change,

WARNING

To pass a parameter by address, use the reserved word ADDRESS followed by the
parameters to be passed by address. All parameters up to the end of the parameter
declaration or the reserved word VALUE will be passed by address.

Example 1:

PROGRAM Example

PROC Add [ADDRESS Gammal
Gamma = Gamma + 1

ENDPROC

Upsilon = 10

Gamma = 25

GOSUB Add [Upsilon]

PRINT Upsilon, Gamma

END

The values printed are 11 and 25 respectively. The value of the passed parameter
Upsilon was modified by the Procedure.

Note that the local Gamma and the global Gamma still have different values.

Function Definition

FUNC Identifier [Parameter list]
Statement(s)
ENDFUNC [Variable]

To define a Function, use the reserved word FUNC followed by any unique, legal
identifier. The Function identifier may be followed by an optional list of parameters
encased in brackets ([]).

The body of the Function may contain any legal executable statements, the same as a
Routine.

A Function is terminated with an ENDFUNC. Following the reserved word
ENDFUNC must appear brackets enclosing a simple variable which contains the value
which needs to be returned by the Function. The variable must be of the same type,
either integer or real, as the calling formula with the FN statement; otherwise, an error
will occur at run time.

A Function is implicitly called within a formula by preceding the Function identifier

Part Three: The Advanced BASIC Language

132 Chapter Nine: Modularization

and an optional parameter list by the reserved word FN,

WARNING

Do not attempt to access a Funection with a GOSUB. If
you do, you cannot access the value returned by the
Function. Also, do not use a parameter variable as the
variable used to return the Function value as the result
may become corrupted.

If the Function which you try to access does not exist, you will be informed during
the linking phase.
Example:
FUNC Sguare [Param]
Variable = Param * Param
ENDFUNC [Variable] {Sgquare}
INPUT “Calculate the square ¢of what number?”; Digits
{Function call follows}
Number = 2 * FN Square [Digits] + 1

If you enter 5, for example, the Function Square will return 25.

Procedure Definition

PROC 1dentifier [Parameter list]
Statement(s)
ENDPROC
To declare a Procedure, use the reserved word PROC followed by a Procedure

identifier. The Procedure identifier may be followed by an optional parameter list
encased 1n square rackets ([]).

The body of the Procedure may contain any legal executable statements: DIM, DATA
statements and compiler directives are not executable statements.

The Procedure must be terminated by an ENDPROC, which ends the Procedure and
generates an automatic return to the statement following the Procedure call. The
Compiler will inform you if an ENDPROC has been omitted at the end of compilation.

If you attempt to use a RETURN in a Procedure, the
Compiler will issue an error.

A Procedure may be called only with a GOSUB followed by the Procedure identifier

NOTE

Chapter Nine: Modularization 133

and the optional parameter list. The GOSUB must not branch to a line within the
Procedure as unexpected results will occur. If the Procedure does not exist, a message
will be displayed during the linking phase.

Explicit Variable Declarations

If a DECLARE is used in a program containing Functions and Procedures, every
subsequent Procedure and Function which contain local variables will need a
DECLARE. Include the DECLARE following the Procedure or Function definition.
There is an implicit DECLARE within the parameter declarations, so no DECLARE is
required there.

Example:

PROGRAM Declare Test

PROC Example [Parml, Parm2%)
DECLARE Real&, Integer$
Real& = Parml
Integer% = Parm2%

ENDPROC

GOSUB Example ({100.1, 123]

Passing Control to a Subroutine

FN Identifier [Parm-1, Parm-n]

A Function cannot be called explicitly as a Routine is called, but must be called
implicitly within a mathematical formula.

In order to call a Function and have it return a value, within the formula where the
value is required, insert the keyword FN followed by the Function name followed by the
optional parameter list. In effect, the Function is treated as a sort of variable.

Example:
Number = 100 + 32 * FN Square [Parm] / 22

GOSUB Identifier [Parm-1, Parm-n]
GOSUB Line_Number [{, Line_Number}]

GOSUB is used to pass control to either a Routine or Procedure. If control is given
to a Routine, control is returned with 2 RETURN statement. If control is given to a
Procedure, control is only returned at the end of the Procedure by an ENDPROC. In
both cases, the execution will continue after the statement following the calling GOSUB.

Part Three: The Advanced BASIC Language

134 Chapter Nine: Modularization

Example:
GOSUB Label
PRINT *“Program will resume here”
END
ROUTINE Label
PRINT “Now in subroutine?”
RETURN

POP

POP is the enemy of structured programming. POP removes the latest GOSUB

address from the stack. This can be very dangerous making it difficult to determine
where an error occcurred.

Although some use for POP can be found, the use of POP is not encouraged as it
may lead to chaos in your programs. POP was retained solely for compatibility with
Applesoft BASIC.

The NOGOTO compiler option may be used to disallow the use of POP.

PERFORM Routine_Id UNTIL Relop

A PERFORM executes a Routine continuously until the Routine sets the Relop
following the UNTIL to TRUE.

As with a GOSUB, a RETURN is expected at the end of the called Routine to cause
a return to the PERFORM statement.
Example:
PERFORM Animals UNTIL Animals$ = “cat”
END {frhis statement is necessary}
ROUTINE Animals
HOME {No offense to cat lovers}
INPUT “Type in any animal’s name ”;Animal$
Animal$ = LOWERS {(Animal$)
IF Animal$ <> “cat” THEN BEGIN
PRINT “The ”;Animal$;"” is a fine animal™
ENDIF
RETURN

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 135

Computed Routine Selection

ON Aexpr GOSUB Routine_Id1 [{,Routine_Id(n)}]

The ON..GOSUB structure works in a similar manner to the ON..GOTO structure.
ON..GOSUB also allows you to use named Routines. Based upon the result of Aexpr,
the proper module identifier will be used.

If the result of the expression is one, the first label in the list will be used. If
expression i8 two, the second label in the list will be used, etc.

If the value is none of the above possibilities, the first sequential statement following
ON..GOSUB will be taken. As with any GOSUB to a Routine, when the system
encounters a RETURN, the next statement following the computed GOSUB will be
executed.

Example:

INPUT “Enter a value between 1 and 3 ”;Integer%
ON Integer% GOSUB One, Two, Three
END
ROUTINE One
PRINT “One”
RETURN
ROUTINE Two
PRINT “Two”
RETURN
ROUTINE Three
PRINT “Three”
RETURN

Module Library Usage

A library of modules is a collection of often used Functions and Procedures that may
be used in several programs.

Why create a library of modules? Because you don’t want to keep reinventing the
wheel. Using a library of modules in your programs give them consistency and makes
your programs easier to develop and maintain because the modules are already written
and debugged.

Creation of a Library of Modules

First, you must decide what Procedures or Functions you require for future use. Be
certain each subroutine is completely reliable and thoroughly commented.

Create a subdirectory on a suitable volume and save the source code of the

Part Three: The Advanced BASIC Language

136 Chapter Nine: Modularization

subroutines to a suitable filename under this directory.

When you wish to use a Function or Procedure from this library, make use of the
INCLUDE statement described below.

INCLUDE Pathname

To include a module in a program, add the line INCLUDE Pathname in the source
code file. Pathname indicates the path to a source code file (of type TXT or SRC).
Pathname may only be a string literal.

The INCLUDE statement may appear anywhere in a program after the compiler
directives. An INCLUDE file may have DATA and array declaration statements but the
DATA and DIM statements must still appear in their established order.

The file being read in must be available (online) at compilation time. When the
Compiler detects an INCLUDE statement, it looks for a file with the specified
Pathname and starts reading it as though it were included inside the program itself.
The Compiler displays the message “INCLUDING pathname” each time it detects an
INCLUDE statement.

Using the INCLUDE statement also has the advantage of having only the necessary
program code in the Editor, saving the Editor’s work space for the code specific to your
application.

Make sure your module has been thoroughly debugged
before you include it in your program as the sequential
line number information is frozen at the line of the
INCLUDE statement and resumes only after the module

has been read. Run time errors may be difficult to detect.

Example:
INCLUDE “/Micol.Adv.BASIC/Library/Math.Routines”

Recursion

Recursion is an important topic in computer science. Those of you who have studied
computer science at the college or university level are already well aware of this fact.
Those of you who are planning to study computer science will soon be finding this out for
yourselves. What is recursion, and why is it so important?

Recursion is the act of stipulating something in terms of itself. We have all heard it

said, “a rose is a rose is a rose”. This, in a way, is a recursive definition of a rose. The
rose is defined in terms of itself.

The concept of recursion is not something we deal very often with in our daily lives as
the previous definition of a rose proves. Not many things around us can be defined in
terms of themselves. ~

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 137

Mathematics has some use for recursion though. The most common example of a use
for recursion in mathematics is the definition for the factorial of a number: N! =N * (N -
1)

This formula translated is: the factorial of a number N is equal to the number N
times the factorial of the number N minus one. As you can see, the factorial of a number
is defined in terms of lower orders of itself. If we add to this the definition that when N
reaches its lowest allowed value of one, that N! is equal to 1, we have a complete
recursive definition for factorial.

There is much in computer science that can be defined in terms of itself. This
programming language, Micol Advanced BASIC, was designed with a parse table that
has many features defined in terms of themselves.

As with the definition of factorial above, the definition must be complete, or our
recursive definition is worthless. If factorial had been left undefined for its smallest
value of one, we could not have made use of it. One minus one is zero, and anything
multiplied by zero is zero.

Because much of what is defined in computer science is defined recursively, it is only
natural that computer scientists would like programming languages that allow them to
express the solution in the manner in which they have laid out the problem in question.
This is the principal reason recursion in programming languages is so stressed in
computer science.

But, recursion in programming languages suffers some severe problems which we
will now demonstrate. Let us take the definition for factorial just given and program it
i Micol Advanced BASIC making use of recursion. You will soon see why recursion
might be desirable, and also why it is often not the best way to solve a problem.

Example:

PROGRAM Recursion
FUNC Factorial [N]
IF N <= 1 THEN BEGIN,
Factorial =1
ELSE BEGIN
Factorial = N * FN Factorial [N -~ 1]
ENDIF
ENDFUNC [Factorial]
{Start of Program}
HOME INPUT “Take the factorial of what number ? “;Number
Factor = FN Factorial (Number]
PRINT “The factorial of #;Number; “ is ”;Factor
END

As you can see, the function Factorial looks very much like the mathematical

definition for factorial. This function will continue to call itself until N is less than or

equal to one, at which time it will simply unwind the stack, successively returning
another value for Factorial [N - 1].

Part Three: The Advanced BASIC Language

138 Chapter Nine: Modularization

One problem has to do with implementation of recursion under the programming
language being used. How is the parameter N treated by the language? If the
programming language does not reinstate the previous value of N as the return stack
unwinds, as Micol Advanced BASIC does, the recursive function will not act as desired.

Another problem is that we are only looking at the theory and not at the real world of
programming. In the real world, there is much that goes on behind the scenes in the
execution of the programming language to maintain these calls. For example, each time
the FN statement is executed, a run time stack must be saved and then reinstalled after
the return from the call. There is also a certain overhead with the passing of each
parameter, ete. Factorial could be programmed more effectively using a simple loop
instead of recursion.

A question once asked on a final exam in a computer science class was: “True or false,
anything that can be programmed in a loop can be programmed using recursion?”.

The author of this question was looking tco much at the theory of recursion, and not
enough at the reality. Recursion is, itself, simply a type of controlled looping, so that the
question had little real meaning. Use recursion when it is practical, but do not lose sight
of reality.

Chapter Ten: Graphics 139

Chapter Ten

Graphics

Overview

Micol Advanced BASIC has commands for making great graphics using the 32K
Super High Resolution graphics screen built into your Apple IIGS.

Micol Advanced BASIC supports Low Resolution graphics with four lines of text (40
x 40 blocks) similar to Applesoft BASICs. Micol Advanced BASIC's Super High
Resolution commands control both of the Apple IIGS’s Super High Resolution graphics
modes: 320 X 200, and 640 X 200.

Low Resolution Graphics

The Low Resolution graphics mode with text (40 x 40 blocks in 16 colors) is supported
in Micol Advanced BASIC.

GR

GR sets a Low Resolution screen of 40 blocks x 40 blocks. GR must be executed
before any other Low Resolution commands are executed; otherwise further Low
Resolution graphics commands will have no effect.

When GR executes, the Low Resolution screen is established and cleared to black.
The text cursor is moved to the twenty-fourth text line.

The point of origin of the coordinate system starts at the upper left corner of the
screen: 0,0 is the upper left corner 39, 39 is the lower right corner

Four lines of text at the bottom of the screen may be displayed.
Example: see under HLIN.

COLOR = Color_Number

Sixteen colors may be displayed in Low Resolution graphics. Color_Number ranges
from black (0) to white (15). If no color is specified, color 0, black, is used by default.
This means that if the Low Resclution color is not set, your graphics will be invisible.

140 Chapter Ten: Graphics
Table 3.10.1 - Low Resolution Colors

Value Color Value Color
0 black 8 brown
1 magenta 9 orange
2 dark blue 10 gray2
3 violet 11 pink
4 dark green 12 green
5 grayl 13 vellow
6 medium blue 14 aqua
7 light blue 15 white

Example: see under HLIN.

HLIN X-Coordl, X-Coord2 AT Y-Coord

HLIN stands for Horizontal LINe. HLIN draws a Low Resolution horizontal line
using the most recently defined color from point X-Coordl, Y-Coord to X-Coord2,
Y-Coord. The X co-ordinates may not be negative or greater than 39. The Y co-ordinate
may not be negative or greater than 47. If these coordinate values are exceeded, an
error will occur during execution. Any of the values above may be either integer or real

expressions.
Example:
PROGRAM Show_HLIN
INT (A-2Z)
GR
FOR Loopl = 0 TO 39
FCR Loop2 = 0 TO 39
Y Coord = RND (47)
X_Coordl = RND (39)
X CoordZ = RND (39)
COLOR = RND (14) + 1
HLIN X Coordl, X Coord2 AT Y Coord
NEXT Loop2
NEXT Loopl
END

Chapter Ten: Graphics 141

PLOT X-Coord, Y-Coord

PLOT places a Low Resolution block at the location specified. The X coordinate may
not be negative or greater than 39 under Low Resolution. The ¥ coordinate may not be
negative or greater than 47; if they are, an error will occur during execution.

Example:

PROGRAM Show_Blocks
INT (A-2Z)
GR
FOR Down = Q0 TO 47
FOR Across = 0 TO 39
COLOR = RND (19%)
PLOT Across, Down
NEXT Across
NEXT Down
END

SCRN (X-Coord, Y-Coord)

SCRN stands for screen. It returns the color number of the block specified at the
location X-Coord, Y-Coord. X-Coord and Y-Coord must be within the limits specified
under PLOT.

Example:

PROGRAM Show_Pos

GR

COLOR = 13

PLOT 10, 20

Color_Num% = SCRN (10, 20)

VTAB(24)

PRINT "“Colour Number = ”;Color Num}
GET Wait$

END

TEXT

TEXT turns off the Low Resolution graphics mode and turns on the 80 column text
screen. Follow TEXT with a HOME to remove any garbage text characters left over
from the Low Resolution screen.

Part Three: The Advanced BASIC Language

142 Chapter Ten: Graphics

VLIN Y-Coord1, Y-Coord2 AT X-Coord

VLIN stands for Vertical LINe. VLIN draws a vertical line using the most recently
defined color from point Y-Coordl, X-coord to Y-coord2, X-coord. The X coordinate may
not be negative or greater than 39 in Low Resolution mode. The Y coordinates may not
be negative or greater than 47 otherwise an error will occur during execution. Any of the
values above may be either integer or real expressions.

Example:

PROGRAM Show VLIN
INT (A-2)
GR
FOR Loopl = 0 TO 39
FCR Loop2 = 0 TO 39
X Coord = RND (39)
Y Coordl = RND (47)
Y Coord2 = RND (47)
COLOR = RND (14) {Don’'t want black} + 1
VLIN Y Cooxdl, Y_Coord2 AT X Cocord
NEXT LoopZ2
NEXT Loopl
DELAY = 1000
TEXT : HOME
END

Super High Resolution Graphics

The usual Applesoft BASIC High Resolution graphics commands have been
implemented in Micol Advanced BASIC using the much improved Super High
Resolution (SHR) graphics modes of .he Apple IIGS. While Applesoft’s High Resolution
graphics had a maximum High Resolution of 260 X 192, Micol Advanced BASIC has a
maximum Super High Resolution of 640 X 200. In addition, the colors under Micol
Advanced BASIC are vastly improved over their Applesoft counterparts.

Please note these important differences between Super High Resolution graphics
under Micol Advanced BASIC GS and High Resolution graphics under Applesoft BASIC:
* SHR has:
— only one display area
— amuch greater resolution display
— a greater number of colors
— a greatly improved color quality
— achoice of background colors

Chapter Ten: Graphics 143

— an easy mix of text and graphics
— the ability to use the Apple IIGS ToolBox for drawing
— no bit-mapped shape tables

HGR and HGR2

HGR must be used to set the 320 X 200 Super High Resolution graphic mode. The
pixels (picture elements) are numbered from 0 to 319 horizontally, and from 0 to 199
vertically. A maximum of 16 different colors may be displayed at one time. HGR must
appear in the program for the 320 X 200 graphic mode to be turned on.

HGR2 must be used to set the 640 X 200 Super High Resolution graphic mode. The
pixels (picture elements) are numbered from 0 to 639 horizontally, and from 0 to 199
vertically. A maximum of 16 different colors may also be displayed at one time. HGR2
must appear in the program for the 640 X 200 graphic mode to be turned on.

With both graphic modes, the graphics color as well as the background color is set to
black. Use BRCOLOR and HCOLOR to change the shade of the background and
graphics colors respectively.

The point of origin of the co-ordinate system starts at the upper left corner of the
screen: 0,0 is the upper left corner for both graphics modes. 319, 199 is the lower right
corner for 320 (HGR) mode and 639, 199 is the lower right corner for 640 (HGR2) mode.
Initially, the position is set to 0,0 in both modes.

Images appearing in 320 mode are twice as large as the 640 mode, but with half the
resolution. For example, a box that appears square in 320 mode will appear as a vertical
rectangle in 640 mode.

Example: (See example under HPLOT TO.)

BKCOLOR = Color_Number

This command allows you to change the background color to any color currently
available (please see table 3.10.2). The commands (HGR or HGR2) that start up the
Super B" h Resolution graphic modes also set the background color to 0 (black).

NOTE
The effect of BKCOLOR is not immediate.

BKCOLOR also changes the background color of the characters displayed using
DRAWSTR.

Example: (See example under HPLOT TO.)

Part Three: The Advanced BASIC Language

144 Chapter Ten: Graphics

HCOLOR = Color_Number

HCOLOR sets the current Super High Resolution color according to Table 3.10.2.
The default color when an HGR or HGR2 is issued is black, which under most
circumstances means invisible. You will probably wish to set another color using
HCOLOR before you actually begin to draw.

In both graphics modes, you have a maximum of 16 colors. We have tried to keep the
colors in both modes as close to each other as possible.

Pro ers By a skillful use of the Apple IIGS ToolBox, using Tool
number 4 (QuickDraw), it is possible to have as many as
4096 colors in 320 mode (16 with each pixel). This is not
possible in 640 mode as special action had to be taken to
give you 16 colors (4 is the usual number of colors in 640
mode). Please see Part Five on ToolBox usage for further
information.
. |
Table 3.10.2 SHR Colors
Number HGR HGR2
0 Black Black
1 Dark Gray Dark Gray
2 Brown Light Yellow
3 Purple Purple
4 Blue Blue
5 Dark Green Dark Green
6 Orange Orange
7 Red Red
8 Beige . Pink
9 Yellow Yellow
10 Green Green
11 Light Blue Light Blue
12 Lilac . Lilac
13 Periwinkle Light Purple
14 Light Gray Light Gray
15 White : White

Chapter Ten: Graphics 145

DRAWSTR (Svar)

To add text to the SHR graphics, use DRAWSTR. Svar may be a string literal or a
string variable. The string stipulated in Svar will be displayed starting at thg current
graphics position. You may wish to use HPLOT to move to the position you desire.

The text will be colored using the latest HCOLOR set. BKCOLOR may be used to
set the background color of the text.

If SHR is active, LEN may be used to find the graphics length of the str'u.zg. PEEK
True_Value (locations 202 and 203) after taking the LEN to find the size in pixels.

Example: (See example under HPLOT TO.)

HPLOT X-Coord, Y-Coord

HPLOT moves the high resolution pointer to the X coordinate and Y coordinate
stipulated and plots a single point in the latest HCOLOR. The maximum X-Coord and
Y_Coord values are those discussed under the HGR and HGR2 commands. Values too
large will plot off the screen and no error will be generated.

Example: (See example under HPLOT TO.)

HPLOT TO X-coord, Y-coord

HPLOT TO will draw a straight line from the last graphics position to the position
stipulated using the latest HCOLOR. No errors are generated by this command; values
greater than the screen will display to the limits of the screen. You may wish to use
HPLOT to change the graphics position.

Example:

PROGRAM Draw_Box

HGR2 {set 640 mode}

HCOLCR = 4 {Blue}

BKCOLOR = 15 {White}

HPLOT 10, 10 {Draw box starting here}
HPLOT TO 600, 10

HPLOT TO 600, 194

HPLOT TOC 10, 190

HPLOT TO 10, 10

HPLOT TO 600, 190

HPLOT 600, 10

HPLOT TO 10, 190

{Write message on box}

HPLOT 190, 50 {Start the message here}

Part Three: The Advanced BASIC Language

146 Chapter Ten: Graphics

DRAWSTR ("This is a big box")
DELAY = 1000Q

TEXT

END

This will plot a blue box crossed with an X for about 10 seconds.

Super High Resolution Shapes

Once the Super High Resolution mode is set with either the HGR or HGR2
command and the colors set using the HCOLOR and BKCOLOR commands, it is then
very easy to draw most figures using the TOOLBOX command.

The four types of shapes you can create are: rectangle, oval, arc, and rounded
rectangle.

The three different modes of drawing are: paint (draws solid figure), frame (draws
the outline of the figure only), and erase (draws a figure using the current background
color).

For example, to draw a circle, first select the proper graphic mode using HGR or
HGR2, set the desired color(s), then use the TOOLBOX command to draw the circle.

When using four basic shapes (Rectangle, Oval, RRect and Arc), the shapes are
drawn by Tool number 4, QuickDraw II, in an invisible rectangle to determine their size
and shape. QuickDraw II gets the dimensions of the rectangle through the following
parameters:

» Min_X((the X value of the left side)

» Min_Y (the Y value of the top)

+ Max X (the X value of the right side)
+ Max_Y (the Y value of the bottom).

The Procedures Draw_Rect and Draw_Arc below may be used to draw four
different types of shapes in three different modes in any size. Draw_Rect is used to
draw the rectangle and the oval while Draw_Arc draws the arr and the rounded
rectangle.

When using the Procedure Draw_Arc to do arcs, Start_Angle is the angle in
degrees which the arc starts, with 0 degree being a vertical line , and Angle_Length is
the length of the arc in degrees.

To create all this variety with the code presented below, select the correct Procedure

and change the first parameter passed to the desired value based upon the table on the
next page.

Many, many more figures are possible using very similar techniques detailed in the
manual Programming the Apple IIGS Toolbox listed in Part One,

Part Three: The Advanced BASIC Language

Chapter Ten: Graphics 147

Table 3.10.3 Pre-Defined Shape Drawing Functions

Rectangle Oval RRect Arc
Frame 83 88 93 98
Paint 84 89 94 99
Erase 85 90 95 100
Example:

PROGRAM Shape Examples

INT (A ~ 2Z)

DIM Buffer (10)

PROC Draw_Rect [Func_Num, Min X, Min_Y, Max_X, Max_Y]
LSB = ADDR (Buffer () {Address of buffer]
MSB = PEEK (202) {Bank of Buffer}
TOOLBOX (4, 74: MSB, LSB, Min_X, Min Y, Max_X, Max_Y)
TOOLBOX (4, Func_Num: MSB, LSB)

ENDPROC

PROC Draw_Arc [Func_Num, Min X, Min_ Y, Max X,\
Max_ Y, Start_Angle, Angle_Length]
LSB = ADDR (Buffer () {Address of buffer}
MSB = PEEK (202) {Bank of buffer}
TOOLBOX (4, 74: MSB, LSB, Min X, Min_Y, Max_X, Max_Y)
TOOLBOX (4, Func_Num: MSB, LSB, Start_Angle, Angle_Length)
ENDPROC

{Example program begins here}

HGR {Start 320 Graphics Moce}

HCOLOR = 15 {White}

GOSUB Draw_Rect [88, 5, 5, 250, 190]

DELAY = 1000

TOOLBOX ($04, $15: $0) {Clear SHR screen for 2nd drawing}
HCOLOR = 2 {Brown}

GOSUB Draw_Arc (98, 5, 5, 250, 190, 50, 180])

DELAY = 1000 '

END

Part Three: The Advanced BASIC Language

148 Chapter Ten: Graphics

Joystick and Paddle Controls

Since joystick or paddle controls are very often used with graphics, this topic is best
covered in this section.

PDL (Paddle_Number)

A paddle is a game controller having only one axis, either X or Y. Ajoystick combines
two paddles to control both axis simultaneously.

PDL returns a value (either integer or real) which is generated by the pqddle
number specified. Paddle_Number must be a value from 0 to 3 inclusive, otherwise a
run time error will occur.

A paddle uses a paddle number from 0 to 3. A joystick uses paddle numbers 0 and 1
or 2 and 3. The value returned varies from 0 to 255.

To do consecutive readings on the hand control(s), use real variables with PDL to
ensure accurate readings. This delay can insure a more accurate reading.

Paddle and Joystick Buttons

The button(s) on a game controller may be read by PEEKing the appropriate
locations. Buttons on game controllers return a value > 127 if the button is pushed, and
< 127 if the button is not pushed.

PEEK (49249) for game controller 0 (this is also the Open Apple key). PEEK
(49250) for game controller 1 (also the Closed Apple key). PEEK (49251) for game
controller 2.

Example:

PROGRAM Joystick Check
HOME
REPEAT
VTAB (1, : HTAB (1)
PRINT "X = #; PDL (0.0},
PRINT “Y = ”; PDL (1),
UNTIL PEERK (49249) > 127 OR PEEK (49250) > 127
IF PEEK(49249) > 127 THEN BEGIN
PRINT “Button 1 was pressed”
ELSE BEGIN
PRINT “Button 2 was pressed”
ENDIF

This program will execute until one of the buttons is pushed.

Part Three: The Advanced BASIC Language

Chapter Eleven: The Sound of Music 149

Chapter Eleven

The Sound of Music

Overview

The Apple IIGS has perhaps the best sound capabilities of any microcomputer on the
market today and Micol Advanced BASIC allows you to create some very delightful
sounds. Music may also be created quite easily by using just a few simple commands.
This is the topic of this chapter.

Audio Output

BELL

Use BELL to provide an aural feedback to the user when the program is being used
improperly or as a warning to a possibly dangerous situation.

BELL will produce a beep sound through the speaker of your Apple. You may control
the volume of the beep through the Control Panel of your computer.

Example:
BELL: BELL {Ring bell twice}

Sound

Each sound comes from a specific sound wave. For example, the sound wave of a
saxophone is different from the sound wave of a piano.

A sound is made by the compression and expansion of the air around us. This
invisible movement is the vibration of the air. When the vibrations reach our eardrums,
our eardrums vibrate which become impulses our brain interprets as sound.

The number of times a vibration occurs per unit time is called a frequency. The note
Middle C played on a piano, for example, generates a sound with a frequency of 246 Hz.

A sound is represented graphically by a waveform. A wave starts with increasing
positive values up to a limit specified and then decreases to negative values with the
same limit, increases again up to positive values and so on.

The vertical axis represents the amplitude or the loudness of the sound. The
horizontal axis represents the time. A waveform has a minimum and maximum
frequency and amplitude. Omne up and down wave motion is called a cycle. A note is
measured by the number of cycles per second.

The sound produced with Micol Advanced BASIC is digitized; that is, numbers are
fed to the computer and the computer then uses those numbers to make sounds.

Part Three: The Advanced BASIC Language

150 Chapter Eleven: The Sound of Music

Waveforms

The Apple IIGS generates sounds using three kinds of waves: square waves, triangle
waves, and sine waves. Square waves create buzzing sounds, triangle waves produce
another type of buzzing effect. A sine wave makes a pure, clear sound. Micol Advanced
BASIC uses a sine wave as the default waveform.

The Default Waveform

The default waveform is established when Micol Advanced BASIC is booted. Thls
waveform is used by the sound making commands of Micol Advanced BASIC and is a
full wave made of 255 parts numbered from 1 to 255.

The default waveform is based on a sine function times 255 from zero to 360 degrees.
This default waveform produces a pleasant sound and will be suitable for most purposes.

Creating your own Waveform

If you decide that the default waveform is not suitable for your purposes, then it may
be replaced with another waveform using the WAVE command.

WAVE = Wave_Numbers

WAVE places a new waveform into the waveform buffer. This buffer is used by. the
system to store the waveform needed for the NOISE and MUSIC commands described
later.

The Waveform buffer is 256 bytes long and each value in the waveform may range
from 1 to 255. A value of zero will be changed to one because a value of zero turns off the
mternal sound generators.

WAVE must be placed within a loop in order to set the entire Wave buffer. Initialize
the Waveform Counter by assigning location 42 to zero, then keep assigning values to
WAVE until location 42 is zero again; i.e. the Wave buffer is full.

WAVE may be used at any time within the program, but the new waveform will not
be used until the next NOISE or MUSIC command is executed.

Example:
PROGRAM Make Waveform
INT (A - 2)
Number = 0

Flag! = TRUE
POKE 42,0 {Init buffer counter}
REPEAT {Make the wave form table}
IF Flag! THEN BEGIN
Number = Number + 4
IF Number > 250 THEN Flag! = FALSE

Chapter Eleven: The Sound of Music _ 161

ELSE BEGIN
Number = Number - 4
IF Numpber < 5 THEN Flag! = TRUE

ENDIF
WAVE = Number
UNTIL PEEK (42) = 0 {Until buffer is full}

Be careful when using WAVE, as in the following example:
WAVE = SIN (Radians%) * 100

will almost always place a zero into the waveform buffer as the integer sine is almost
always zero. Here is an example on how to work around this:

WAVE = 100.0 * SIN (Radians$%)
The first thing seen by the Compiler after the equal sign is a real number, hence real
arithmetic will be performed.

Experiment with different values to find the sound you are looking for.
Unfortunately, some values are unsuitable for the system causing it to crash, so do not
be surprised if the system should happen to do just that. Try different functions such as
cosine multiplied by a factor to get an integer value between 0 and 255.

Making the Sound

NOISE (Generator, Pitch, Volume)

NOISE is used to generate a simple sound. It should be suitable for most sound
effects.

Generator is an integer value from 1 to 15 and is the actual generator number used
internally by the computer.

Pitch and Volume are integer values that may vary from 1 to 255. Each parameter
may be either an integer literal or an integer variable. A real parameter will be rejected
by the Compiler.

The pitch is the starting frequency used. The volume is the loudness of that sound.

If a NOISE statement with an active generator is given new pitch and volume
values, that generator will be turned off and restarted using the new pitch and volume.

NOISE may be stopped with the QUIET or SILENCE command described later.
Example:

Generatorg = 1

Pitchg = 80

Volume% = 100

NOILSE (Generator%, Pitch%, Volume%)

Part Three: The Advanced BASIC Language

152 | Chapter Eleven: The Sound of Music

Music

Micol Advanced BASIC not only allows you to make simple sounds, as just described,
you can also create rather delightful music.

As you might guess, music requires more knowledge and preparation than just
making simple sounds.

Instruments

All music is performed by musical instruments. These musical instruments may‘be
violins, flutes, or even human voices. Each instrument has its own unique sound quality.

In order to make music under Micol Advanced BASIC, a musical instrument must be
defined. This instrument may be almost anything you would see in a band or orchestra.

Default Instrument

A default instrument has already been defined into Micol Advanced BASIC and
should be adequate for most purposes. You will have to experiment to determine if this
instrument is suitable for you.

Creating Other Instruments

If the default instrument isn’t suitable for your purposes, you may create an
instrument of your own. Micol Advanced BASIC is capable of storing the envelope
definition of any instrument using the INSTRUM command.

The instrument buffer is 44 bytes long. This means that 44 values must be read
before the new instrument may be used. The proper values for an instrument range
from 0 to 127.

Unfortunately, it is not a simple task to understand the data that needs to go into the
Instrument Buffer. Study Table 3.11.1 to understand the values that are needed.

INSTRUM = Aexpr

The INSTRUM command is used to place a new instrument into the Instrument
Buffer with the different values needed to duplicate the sound produced by any musical
instrument. This Instrument Buffer is used by the system whenever you execute the
MUSIC command

WARNING

Be certain of the values you are assigning INSTRUM.
INSTRUM does no error checking, and if any value is
inappropriate, the system may crash when the next
MUSIC command is executed.

Chapter Eleven: The Sound of Music 1563

To fill the Instrument Buffer, set memory location 42 to zero. Then, within a loop,
keep assigning INSTRUM a value until location 42 is zero again.

(See the example after Table 3.11.1)

Table 8.11.1. Instrument Data Structure

Envelope

An envelope represents what the sound would look like if it were drawn on paper. It
may have up to eight segments numbered 0 to 7, each having a breakpoint and an
increment value pair.

The breakpoint value is a byte with a value from 0 to 127. It specifies the volume
level. The volume should not be set to zero before the end of the segment or the sound is
considered done. The last breakpoint is always zero. A difference of 16 in the breakpoint
value represents a change of 6 decibels (db) in amplitude.

The increment value is a measure of time indicating the time needed to get to the
breakpoint volume that uses two bytes. Both bytes range from 0 to 127. The value of 1
in the low-byte represents a 1/256th in value. An increment value of 0 is equivalent to a
sustained note. The note will play until no generator can play it and the original
generator producing the note is allocated another note.

Release Segment

This integer number from 0 to 7 indicates at which breakpoint the note will start to
fade away. The release may occupy several segments, but the last breakpoint is always
zero.

Priority Increment

This value from 0 to 127 indicates at which moment a generator will drop the oldest
note it is currently playing before playing the new one.

Pitchbend Range

This number indicates the number of semitones a note may be raised. The accepted
values are 1, 2 and 4 semitones.

Vibrato Depth

This number from 0 to 127 indicates the vibrato effect for a note. No vibrato effect
occurs with a value of zero. The vibrato should always be set to zero.

Vibrato Speed

Part Three: The Advanced BASIC Language

154 Chapter Eleven: The Sound of Music

This number from O to 127 controls the rate of vibrato. Higher values produce faster
vibrato. Set it to zero when vibrato Depth is zero.

Spare
This byte is not documented and it may be reserved for future use. Set it to zero.
aWaveCount and bWaveCount

A Micol Advanced BASIC instrument has only one wave list per oscillator. Wave A
and Wave B should always be set. to one.

The default wave count could change in a future version of the language.
aWaveList and bWavelList

A wavelist is an array structure of 6 bytes. Since a Micol Advanced BASIC waveform
has only one wave in each list, set the topKey value to 127.

WavelList Array Structure

+ topkey ‘
The Note Synthesizer always plays the note with a topKey value equal or higher
than the preceding one. The waveform should be stored in increasing topKey
value. The value ranges from 0 to 127. The last waveform should have a
topKey value of 127.

« Wave Address
This is the high byte of the waves address in the Digital Qscillator Chip (DOC)
RAM.

< Wave Size
Wave Size is set to 256 bytes. Set the number to zero.

+ DOC Mode g
This number represents the size of the sound wave measured in bytes. One wave
is used per instruments defined with Micol Advanced BASIC. The mode of
the DOC chip should always be set to 0. Do not modify.

+ relPitch
This value is used to tune the waveform. The high byte value represents whole
semitones, the low byte represents fractions of semitones. A value of 1in the
low byte equals 1/256th of a semitone.

Chapter Eleven: The Sound of Music 155
Example
PROGRAM New_Instrum
INT (A-Z)
{Instrument Definition}
{Envelope}
{Noise}
DATA 127 {Breakpoint 0}
DATA 0,127 {Increment value 0}
DATA 120 {Breakpoint 1}
DATA 20,1 {Increment value 1}
DATA 120 {Sustain at 120}
DATA 0,0 {Zero increment is sustain}
{Segment }
DATA 0 {Release to 0 volume}
DATA 60,120 {Slowly}
DATA 0,0,0 {Pad with extra breakpoint}
DATA 0,0,0 {Increment pairs until the}
DATA 0,0,0 {total is eight}
DATA 0,0,0 {ﬁnd of envelope definition)
DATA 3 {Release starts at 3rd segment}
DATA 32 {Priority increment}

{Pbrange, vibdep, vibf, spare, A, B}

DATA 2,80,90, 0,1,1

{topkey, addr, size, ctrl, pitch}

DATA 127,7,2,6,0,12 {Halt b, to be swapped in by a}
DATA 127,7,2,1,0,12

{End of instrument definition}

PORE 42,0 {Init Instrument Buffer}
{Initialize the loop}
REPEAT

READ Number

INSTRUM = Number {Fill one buffer entry}
UNTIL PEEK (42) = 0 {zero when done}
{Program continues}

Part Three: The Advanced BASIC Language

156 Chapter Eleven: The Sound of Music
NOTE : ;
The INSTRUM commangd is an integer command. This
means, that unless the value directly after the equal sign
is explicitly a real variable or a real number, integer math
will be used.
Making the Music

Now we come to the section where you actually generate the music. Once suitable
waveforras and instruments have been defined by you, the actual music is generated by
the MUSIC command.

MUSIC (Generator, Pitch, Volume)

MUSIC is used to generate musical sounds. By a proper use of the WAVE and
INSTRUM commands, virtually any instrument may be simulated. In addition, because
there are 15 generators available, you may have several instruments going at once.

Generator is a number from 1 to 14. This number is a relative generator number
established by the system, and not the actual generator as in the NOISE command.

Pitch and Volume may vary from 1 to 127. Each parameter may be either an integer
literal or an integer variable. "

The pitch is the starting frequency based upon the values you placed into the wave
table. The volume is, of course, how loud the music will be made.

If you do not wish the default waveform with the MUSIC command, then be certain
to set the new waveform buffer using the WAVE command.

If another MUSIC command is issued using the same generator, the new sound will
replace the old one.

NOTE)
The NOISE command cannot be used simultaneously
with MUSIC. If MUSIC is active, NOISE will be ignored, |
and if NOISE is active, MUSIC will be ignored.
Example:

MUSIC (1, 40, 80)
This example uses logical generator 1 with a pitch of 40 and a volume of 80.

Part Three: The Advanced BASIC Language

Chapter Eleven: The Sound of Music 157

IMPORTANT

The MUSIC command requires the use of an Apple IIGS
Tool located on the system disk. Be aware that when the
MUSIC command is first executed, the booting disk must
be online so that the approriate Tool may be loaded. If
this disk is not online, you will receive a request to ingert
it. The Micol Advanced BASIC system disk marked
Master Disk comes with this Tool installed.

Stopping Sounds

It is not enough to simply create sound or musie, you must also be able to turn these
sounds off. Very few programs would be suitable with sound running all the time.

QUIET (Generator)

QUIET is used to turn off the specified generator and may be used to create pauses
in noise or musical sequences. Generator is the generator that was used when the
NOISE or MUSIC command was executed.

Example:

MUSIC (1, 40, 80) {Start generator one}
DELAY = 1000
QUIET (1) {Silence generator one}

Turn Them All Off

SILENCE

The SILENCE command turns off all sound generators currently playing. This
command has no parameters.

The END and STOP commands also produce the same effect as SILENCE.
Example:

MUSIC (1, 40, 80) {Start generator one}

DELAY = 1000

SILENCE {Shutdown generators and tools}

Part Three: The Advanced BASIC Language

Chapter Twelve: Creating the Human Element 158

Chapter Twelve

Creating The Human Element

Overview

Unlike computers, human beings are not regulated by On and Off. What makes
humans special is the ability to see the different shades of gray, to make a decision based
on related information or on a hunch. Programming languages try to imitate this
randomness using pseudo-random numbers. Micol Advanced BASIC takes this one step
further by introducing Controlled Uncertainty™.

Pseudo Random Numbers

Pseudo random numbers are not really random, but only appear to be. The only
random number in the sequence is the first, or the seed as it is called. After that, the
generator goes through a complex set of calculations to get what appears to be a random
result.

Micol Advanced BASIC has two pseudo random number generators: one for integers,
one for reals, both activated by the RND function.

Be cautious with the use of RND. It is easy to call the real pseudo random number
generator by mistake when you want to use the integer generator or vice versa. Be
careful not to call the wrong one since they behave differently.

Integer Pseudo Random Numbers

Integer% = RND (Aexpr)

" The integer pseudo random number generator is invoked when the assignment is
made to an integer variable. The i..eger RND function yields a pseudo random number
between 0 and Aexpr inclusive. Thirty-two thousand (32,000) is the largest argument
that may be passed to RND.

If an INKEYS, INPUT or GET is executed within a program, the integer random
number generator will be reseeded. This reseeded value is an actual random number.

To use the integer random generator, do something like this:

FOR Ctr% = 1 TO 6
Dice% = RND (5) + 1 {Random values between 1 and 6}
PRINT “Throw # ”; Ctr%; ™ of the dice is a “; Dice%
NEXT Ctr$%

Part Three: The Advanced BASIC Language

159 Chapter Twelve: Creating the Human Element

Real Pseudo Random Numbers

Real& = RND (Aexpr)

The real RND function yields a floating point pseudo random number between zero
and one inclusive. The argument is ignored but must be included, otherwise an errcr
will occur during compilation.

To use the real random generator, do something like this:

FOR Ctr% = 1 TO 100

Real Random& = INT (RND (1) * 100)

PRINT “Pass # ”; Ctr%;" is “; Real Random&
NEXT Ctr¥%

Controlled Uncertainty™

Programming languages usually deal in absolutes of logic. Something is either true
or false, and actions are always taken depending on this condition.

Micol Advanced BASIC goes one step further and gives the programmer the
possibility to set conditions that may or may not take a certain action based on this
condition. We feel this is a feature that has many possibilities if intelligently used.

We call this feature Controlled Uncertainty. It is uncertain because there is the
possibility an alternate decision will be made. It is controlled because the decision is
being made within one of the structured constructs of Micol Advanced BASIC.

When could Controlled Uncertainty be useful? Anytime you wish to program human
uncertainty within a program. Many things in life are based on assumptions, not facts.
Any condition that is not absolutely true or false may use this feature.

Setting the Uncertain Condition

Controlled Uncertainty may be set using certain settings of boolean variables:
Usually a boolean variable is set to TRUE or FALSE. Under Micol Advanced BASIC, a
boolean variable may also be set to DUNNO, DOUBT or BELIEVE. BELIEVE is used
if the condition is probably true, but there is a chance it is false. DOUBT is used if the
condition is probably untrue, but there is a possibility it is true. There also exists
DUNNO. DUNNO is the logical equivalent to a random number generator and will
randomly select one of the gther four possibilities.

If a boolean variable is set to BELIEVE and then tested, there is about an eighty
percent chance the condition will be TRUE, about twenty percent chance the condition
will be FALSE. If a boclean variable is set to DOUBT and then tested, there is about a
twenty percent chance the condition will be TRUE, and about eighty percent chance the
condition will be FALSE.

In addition, booleans set to an uncertain condition may be ANDed or ORed with
other booleans which will often make one of the other alternatives. We have collected all

Chapter Twelve: Creating the Human Element 160

the possibilities into an uncertainty table which we display here.

Table 3.12.1. Uncertainty Table

AND

False Doubt Believe True
False False False False False
Doubt False Doubt Doubt Doubt
Believe False Doubt Believe Believe
True False Doubt Believe True
OR

False Doubt Believe True
False False Doubt Believe True
Doubt Doubt Doubt Believe True
Believe Believe Believe Believe True
True True True True True

Example:
PROGRAM Human Computer

HOME
PRINT “Hello, I'm your Apple computer, ”;
PRINT “I've been turned off for a while.”
PRINT “I do remember the time and the date, ”;
PRINT “but not your name.”
INPUT “What is it again? ”: Name$§
Mood! = BELIEVE
IF Mood! THEN BEGIN
PRINT “Im feeling well today, and ”;
Hezlth! = DOUBT
IF Health! THEN BEGIN
PRINT “hope you’re feeling fine too.”
ELSE BEGIN
PRINT “certainly hope you’re not feeling poorly.”
ENDIF
ELSE BEGIN
PRINT “I'm sorry, I'm not well today, can’t talk anymore.”
Polite! = DUNNO

Part Three: The Advanced BASIC Language

161 Chapter Twelve: Creating the Human Element

IF Polite! THEN BEGIN
PRINT “Have a nice day ”; Name$s
ELSE BEGIN
PRINT “Get lost “; Name$; ” and don't call again!!”
ENDIF
ENDIF
END

WARNING

The statements IF Flag! THEN and IF Flag! = TRUE
THEN do not have the same effect when Controlled
Uncertainty values such as DOUBT or BELIEVE are
used. If the variable Flag! is assigned to DOUBT and
Flag! is tested as IF Flag! = TRUE THEN, the variable
Flag! will never be true, while if the variable Flag! is
tested as IF Flag! THEN, the variable Flag! will be true
about 20 percent of the time.

NOTE
The condition at which a boolean variable is currently set

may be determined by using the PRINT <Boolean!>

statement to print the boolean value of FALSE, DOUBT,
BELIEVE or TRUE.

Chapter Thirteen: Direct Memory Access 162

Chapter Thirteen

Direct Memory Access

Overview

This chapter discusses how to look at a:nd change the contents of specific memory
locations, and manage blocks of memory within a Micol Advanced BASIC program.

Examining and Changing Memory
PEEK (Aexpr)

To see the value of a particular memory location, use the PEEK command where
Aexpr is the address to be referenced.

Your computer has memory addresses at least in the hundreds of thousands,
probably over a million. Unfortunately, if you are using (default) sbort integers, the
maximum value an integer can have is 65535. This means that integer PEEKs may
only be used within bank zero, which usually is to locations in direct page. If you wish to
access memory locations in higher memory locations, be certain to assign PEEK to a real
variable.

NOTE
The Direct Page area used by the run time Library (not
by the computer firmware) will be accessed if the value
passed to PEEK is less than 256. Zero page used by |
Applesoft BASIC and Direct Page are not the same.
Example:

Integer% = PEEK (Location%) {Can only access bank zero}
Realé = PEEK (Location&) {Can access any memory}
PRINT PEEK (Locationg&) {Can access any memory}

POKE Aexprl, Aexpr2

POKE may be used to change the contents of the memory location specified. Aexprl
is the address in memory. Aexpr2 is the value to be stored in the memory location and
cannot be greater than 255, otherwise, an error will occur at run time.

If a negative integer address is used, POKE will convert the address into a two’s
complement address. '

Part Three: The Advanced BASIC Language

163 Chapter Thirteen: Direct Memory Access

If the address passed to POKE is less than 256, the direct page area used by the
run time Library (not the zero page area used by the computer) will be accessed.

IMPORTANT
POKE cannot change memory locations 224 to 255 that
are reserved in the Direct Page for system usage. If a
POKE is made to any of these addresses, an error will
occur during program execution.
Example:

POKE Location%, Number$% {Addresses in baﬁk zero only}
POKE Location&, Number {(Can access almost the entire memory}

Finding the Address of a Variable or Array

ADDR (Variable [(])

The ADDR (Variable) command returns the address of any variable. If the variable
is an array, the left parenthesis must be included to inform the Compiler that an array is
being referenced.

The address returned is the actual address obtained during execution of the
program, NOT the relative address displayed by the Symbol Table Dump at the end of
compilation (if the LIST or PRINTER option is used).

NOTE
ADDR, when assigned to an integer variable, will only

return addresses between +32767 ($0000-$FFFF) unless
tbe LONGINT compiler option is used. If you are
assigning the result of ADDR to a short integer variable,
you may fetch the bank number of the address of the

variable by PEEKing True_Value (location 202) of the
direct page immediately after executing ADDR. The
actual address in the bank, if greater than +32767, will be
represented as a negative number. Add 65535 to a real
variable get the positive value.

If you are using real values with ADDR, you will get the full address of the specified
variable.

ADDR is often used to find the address of a buffer used by a particular Tool. (See
Allocating Toolbox buffers in Part Five.)

Part Three: The Advanced BASIC Language

Chapter Thirteen: Direct Memory Access 164

Example
This_Address& = ADDR (Variable)
This_Address% = ADDR (Variable)
Bank Number = PEEK (202)
Array Address& = ADDR (Array ()

Memory Images and Files

Sometimes it is necessary, within a program, to be able to bring information from a
disk file directly into memory. Also, the opposite may be true, memory locations must be
saved to disk to be used sometime later, perhaps even by another program.

Micol Advanced BASIC has two commands to accomplish these tasks. You must
however be very careful, as there is no protection, any part of memory may be accessed.

BLOAD Svar, Start_Address, Bytes_to_Load

BLOAD stands for Binary LOAD. Use BLOAD to bring binary data (a
non-compressed picture or sound information file) into memory. Because there is no
checking on the file type, any uncompressed file may be loaded with BLOAD.

Svar is the Pathname of the file. Svar may be either a string variable or a string
literal. Start_Address is the address of the first memory location to which the file will be
loaded. Bytes_to_Load represents the size of the file in bytes. Start_Address and
Bytes_To_Load may be either a variable or literal of type integer or real.

All parameters must be present to be accepted by the Compiler. The disk which
contains the file must be online upon execution of the statement, otherwise a run time
error will be generated.

BLOAD will load the file in the specified memory area. If Start_Address is zero, the
file will be loaded to the address specified by the file information on disk, otherwise the
file will be loaded to the address specified. If Bytes_to_load is zero, the entire file will
be loaded, otherwise only the specified number of bytes will be loaded.

Example: (using an uncompressed picture file):
BSAVE “PICTURE”, 14753792, 32768
BLOAD “PICTURE”, $E12000, $8000

32,768 bytes of memory holding a Super High Resolution picture will be saved and
then loaded with these commands. Note that the addresses in both lines are identical
This example saves then loads the entire Super High Resolution screen
(14753792-14786560 \ $E12000-$E19FFF) without any decompression.

If your paint program can save the picture in binary format, you will be able to load
this picture into memory with Micol Advanced BASIC using the following code:

{Change to HGR2 for pictures drawn in 640 x 200 mode}

Part Three: The Advanced BASIC Language

165 Chapter Thirteen: Direct Memory Access

PROGRAM Load Picture_ 320

HOME

INPUT “Enter full pathname of picture ”; Picture$
HGR

BLOAD Picture$, $SE12000, $8000

GET AS

Picture files will not load correctly if they were saved in a compressed format.

BSAVE Svar, Start_Address, Bytes_to_Save

BSAVE stands for Binary SAVE. Use BSAVE to save any information from memory
into a binary file on disk. The file will be saved as type BIN ($06).

Svar is the Pathname of the file, Svar may be either a string variable or a strix}g
literal. Start Address is the address of the memory location whose memory image will
be saved. Bytes_to_Save represents the size of the file in bytes. Start_Address and
Bytes_To_Save may be either of type integer or real in a variable or literal.

All parameters must be present to be accepted by the Compiler. BSAVE will save
the Bytes_to_Save number of bytes from Start_Address.

Example: (See BLOAD)

Memory Management

Micol Advanced BASIC has commands that allow you to allocate and deallocate
memory as your program requires. The memory may contain anything. Some memory
may contain a graphics picture, data for the program, etc.

The User ID Number

All memory within your Apple IIGS is managed by a Tool called the Memory
Manager. When Micol Advanced BASIC is started up, the Memory Manager assigns an
identification number to be used for all calls to it. This application ID number is active
until you quit Micol Advanced BASIC.

This ID number is stored in memory locations 232 and 233 in the direct page and
may be retrieved at any time using PEEK.

GET_MEM (Handle&, Location&)

This statement is used to request a block of memory from the Memory Manager. ’.I‘he
memory may be used to allocate a Direct Page area or to allocate other memory for just
about any purpose. Once allocated, you have exclusive use of this memory.

Part Three: The Advanced BASIC Language

Chapter Thirteen: Direct Memory Access 166

Handle& is a 4-byte memory location which will contain information necessary to
free the memory when you are finished with it. Location& is the actual address of the
allocated memory block. Both parameters must be real variables.

GET_MEM allocates a block of memory that is in a fixed memory bank with a fixed,
page-aligned address that does not use Special memory (graphics memory, ete). The
block is fixed, and locked.

Before you can call GET_MEM, there are certain values you must establish:

1. Memory location 202 (True_Value) indicates to GET_MEM where the memory

will be allocated. A value of zero tells GET_MEM to get the block from
anywhere in memory. A non-zero value indicate that the block will be allocated

from a specific bank.

2. The variable Location& must indicate from which bank number the memory should
be allocated.

3. The value assigned to variable Handle& must indicate the amount of memory
needed in bytes.

After the call to GET_MEM is finished, the variable Handle& will contain the
handle of the memory block allocated by the Memory Manager. The actual address of
the block will be in Locationé&.

If the memory is allocated successfully, True_Value (location 202) will contain a
zero, otherwise True_Value will contain the error number returned by the Memory
Manager.

Handle& is required by FREEMEM to deallocate the memory block.

Example:
POKE 202,1 {Get memory from a specific bank)
Location& = 0 {Get memory from bank zero}
Handle& = 256 {Get 256 bytes (one page)}
GET_MEM (Handle&, Location&})
IF PEEK (202) <> 0 THEN BEGIN
PRINT “Error in memory allocation”
ELSE BEGIN
PRINT “The address of the block is: “”;Location&
ENDIF

If a memory block is allocated directly by using the
TOOLBOX command instead of GET_MEM, the block of
memory must be deallocated using the proper Memory

Manager call.

WARNING

Part Three: The Advanced BASIC Language

167 Chapter Thirteen: Direct Memory Access

FREEMEM (Handle&)

To deallocate a block of memory, use the FREEMEM command. The argument is the
handle of the block obtained with GET_MEM. Handle& must be a real variable.

The memory may also be deallocated by letting the program finish. All memory will
be released automatically.
. Example:
FREEMEM (Handle&)

MOV_MEM Start_Addr, Num_of_Bytes AT Dest

To move memory from one location to another, use the MOV_MEM command. The
arguments may be either of type real or integer.

Start_Addr is the address of the first byte that needs to be moved. Num_of Bytes is
the total number of bytes to be moved, and Dest. is the address to where these bytes need
to be moved. The maximum number of bytes that may be moved at one time is 65535
bytes (one bank). The locations may not overlap, or the memory may copy over itself.

One practical use of MOV_MEM is to save a part of the current text screen display,
for example. MOV_MEM may be used to move 1024 bytes starting at 1024 to a safe
location, and 1024 bytes starting at 66560 to another safe location. When returning the
screen to its original display, move the memory back to the screen.

Example: '

DIM Array% (1026) {Allocate a buffer}

Array Addr = ADDR (Array%() + 3
5400
$10400
MOV_MEM Screen_ Bank0, 1024 AT Array_Addr
MOV_MEM Screen_Bankl, 1024 AT Array_Addr + 1025
HOME
{To restore screen just saved}
MOV_MEM Array Addr, 1024 AT Screen_Bank0
MOV_MEM Array_Addr + 1025, 1024 AT Screen_Bankl

Screen_Bank0

Screen_Bankl

Part Three: The Advanced BASIC Language

Chapter Fourteen: Run Time Error Handling 168

Chapter Fourteen

Run Time Error Handling

Overview

Error handling, or error trapping as it is also called, is the art of dealing with
unexpected situations. These situations may be, for example, bad user input, an empty
digk drive, improper data, or even an intentional user response which causes an error
condition, such as pressing <Control>C.

When an error occurs, control is usually passed to an error handling routine. An
error handling routine, for example, may allow the user to recover from the error by
giving precise instructions on how to correct the situation. After the error has been
corrected, the program usually resumes execution at a suitable point.

IMPORTANT
Do not confuse error trapping with debugging. Error

handling is a normal operation of almost every properly
functioning program and is simply dealing with
unexpected situations. Never use any of the commands
described in this chapter until your program is properly
debugged (unless, of course, you are debugging the error
trap itself).

Handling the Error

During the program development phase, whenever an error condition arose, a
message was displayed on the screen describing the error and the line where the error
occurred. You more than likely went to the Text Editor to fix the problem. This situation
was carefully devised to help you debug your prograr:

Now, you have gone beyond this phase so that your program operates as it should, or
at least as close as possible. Unfortunately, unforseen conditions may arise during the
execution of the program and the system sending a message to the screen isn’t adequate
anymore.

Now, the program error must be dealt with internally, and usually the program must
continue on with its work. That is, the error must be handled.

The Micol Advanced BASIC commands described in this section are all you should
need to take care of these umexpected situations. However, this is a topic where
creativity is required, so actually designing what happens in your error handling routine
i8 largely up to you.

Part Three: The Advanced BASIC Language

169 Chapter Fourteen: Run Time Error Handling

ONERR GOTO Module_Id

If an error occurs during program execution, ONERR GOTO deactivates the normal
debugging capability of Micol Advanced BASIC and transfers control to an error
handling routine. ONERR GOTOQO also passes information to the program to help
determine what the problem is and where it happened.

When an error occurs during the execution of a program, the error number is placed
into one of two memory locations (location 154 or 155).

Location 154 holds the error number returned by the run time routine. Location 155
holds the error number returned by the operating system. Under no circumstance can
both error conditions arise at the same time. The list of the error codes from the run
time routines is in Appendix C. The list of the error codes from the operating system is
in Appendix D. _

Place the ONERR GOTO at a location prior to where you believe the error is likely
to happen; in practice, this is often at the beginning of the program.

To deactivate an ONERR GOTO, place zeroes into the direct page locations 192 and
192 using a POKE. This will enable the normal debugging capability of Micol Advanced
BASIC.

It is often very useful to know on which sequential line number the error happened.
The sequential line number where the error occurred is stored as a binary value in
locations 204 and 205 in LSB, MSB order. The following program line will determine at
which sequential line the error occurred:

Line_Error& = PEEK (204) + 256 * PEEK (205)

It may be desirable to place the error handling routine as the last portion of code
before the final END statement. This will help avoid confusion with the normal
program code.

To avoid an infinite error loop, you may want to deactivate the ONERR GOTO if
execution errors should occur within the error handling routine. Don’t forget to
reactivate the ONERR GOTO by placing another ONERR GOTOQ as the last line of the
error handling routine, if necessary.

Example:

PROGRAM Error_Example
ONERR GOTO Error_Trap

{<Program code>}

END
ROUTINE Error_Trap
POKE 191,0

POKE 192,0 {Turn off future ONERR GOTOs}
IF PEEK (154} > 0 THEN BEGIN

PRINT “Language error # " ;PEEK (154);
ELSE BEGIN

PRINT “GS/0S error # “;PEEK (155):

Part Three: The Advanced BASIC Language

Chapter Fourteen: Run Time Error Handling 170

ENDIF
PRINT “ in line ”; PEEK (204) + 256 * PEEK (205)
END

RESUME

RESUME instructs the program to continue execution at the same line or structured
statement in which the error was encountered.

RESUME restores the previous FOR loop stack pointer as well as the stack pointer
used for Procedures, Functions and Routines. If you intend to use a RESUME, then the
error handling routine should contain neither FOR loops nor calls to subroutines
(GOSUBs) as the values on the stack(s) may become corrupted.

If RESUME is used in a program, the ERROR compiler option must be specified in
the program. If ERROR is not specified, an error will occur at run time when
RESUME is encountered.

Example:

PROGRAM Example

@ ERROR {Required for RESUME}

CNERR GOTO Error_Trap

HOME

Divigsor = 0

Dividend = 100

Quotient = Dividend / Divisor

PRINT “Quotient is: ”;Quotient

END {END needed to terminate program before erroxr trap}
ROUTINE Error_ Trap

HOME

PRINT “In Error Trap”)

Divisor = 10 {Stop another division by zero error}
PRINT “Press Return to resume program”

GET Wait$

RESUME (Will execute the error line again}

Part Three: The Advanced BASIC Language

Chapter One: Desktop Programming 171

Part Four: Creating the Apple IIGS Desktop

Chapter One

Desktop Programming

Overview

This chapter explains the Desktop metaphor created by Apple and shows what is
needed in a Desktop program written under Micol Advanced BASIC.

The Desktop Environment

What is the Apple IIGS Desktop? The Desktop is a metaphor used by Apple to help
individuals use computers without having to learn hard-to-remember and often
difficult-to-use commands. This metaphor uses objects used in everyday life to
conceptualize computer operations.

It is not necessary to remember commands when a Desktop program is used; the
operations appear on the screen in a manner the user is already familiar with. The user
only has to make a selection to perform the action. If you wish to learn more about the
Desktop metaphor, get a copy of the Human Interface Guidelines from Apple Computer,
Inc..

Desktop programming is somewhat difficult. It requires a lot of planning and
attention to details. A Desktop application does a lot of little things in the background
that take little time to write into code.

The Desktop commands used in Micol Advanced BASIC will control the vast majority
of the functions needed by a Desktop program written by the average Micol Advanced
BASIC programmer.

Essentially, there are three types of displays on the Apple IIGS Desktop: Menus,
Windows and Dialog Bozes. We will explain what each of these is in detail in its
respective chapter. For now, it is sufficient to know that they exist.

In general, information is passed to the appropriate Desktop command using two
arrays: an integer array and a string array. The arrays must be large enough to hold the
elements of the largest Dialog Box, Menu, or Window. The arrays are used to define the
Dialog Boxes, Menus, and Windows but may be used for other purposes if memory is
short. In addition, it is not necessary to have a different set of integer and string arrays
for each Menu, Dialog Box or Window; they may be reused from call to call.

The Desktop uses the Super High Resolution graphics screen, either in 320 mode or
640 mode. Before any of the Desktop commands may be used, an HGR or HGR2
command must have been previously given to start the proper graphics mode. A TEXT
command is used if you wish to erase the Desktop and return to normal text input.

Define the Menus, Dialog Boxes and Windows by filling in the appropriate arrays

Part Four: Creating the Apple IIGS Desktop

172 Chapter One: Desktop Programming

and use the appropriate Desktop command to display (and activate) the Menus, Dialog
Boxes and Windows.

The values returned by the movements of the Mouse and clicking in the Menu bar,
Dialog Boxes, and Windows are caught in a loop, called the Event loop, that handles all
the commands and the choices the program’s user makes while using the program. The
actions performed by the user are often handled outside the loop in a sub-section of the
program. A CASE_OF statement does this job nicely.

Desktop Commands

Micol Advanced BASIC understands four commands to let you write applications
that use the desktop. The MENU command controls the Menu bar. The WINDOW
command directs how Windows open and close. The DIALOG command manages all
aspects of Dialog Boxes. The MOUSE command controls the actions performed by the
program’s user (the Event).

A Desktop program must have the MOUSE command and at least one of the other
three Desktop commands (DIALOG, MENU or WINDOW) to function properly;
otherwise the program will not be able to respond to the user.

Desktop capability under Micol Advanced BASIC is adequate for most of the
applications written with Micol Advanced BASIC. The Toolbox may also be called
directly using the TOOLBOX command if you require a more advanced Desktop.

Monitoring the Desktop

MOUSE (Integer_Array ()

The three types of Desktop displays: Menus, Windows, and Dialog Boxes, are all
monitored by the MOUSE command.

First, you have to create one of the Desktop displays using the MENU, WINDOW or
DIALOG command. Once the display is as you wish, you must use MOUSE to allow the
user to respond to the display.

The only parameter required by MOUSE is an integer array dimensioned to at least
20 elements. This array may have any value before MOUSE is executed, but will
contain the value(s) needed to respond when control is returned to your program.

You may have to place MOUSE in a looping situation, and access the values
described in subsequent chapters. If you are accessing a Dialog Box, MOUSE need not
be in any looping structure, as no response is returned until the user has responded to
the Dialog Box. However, both MENU and WINDOW require MOUSE to be contained
within a loop with repeated checks for the necessary values returned by the particular
command.

The individual aspects of the MOUSE command will be explained in more detail in
the three chapters that follow.

Part Four: Creating the Apple IIGS Desktop

Chapter One: Desktop Programming 173

Example:
PROGRAM Desktop_Demo
DIM EventRecord% (59)
DIM DeskTopArray$ (42)
{Dialog Boxes, Menus, and Windows are defined here}
{Program Start}
HGR {Set 320 x 200 mode for Desktop, required}
GOSUB MenuBar {Define Menu Structure}
GOSUB Eventloop {Handle the Users Actions}
END {Desktop_ Demo}
{eof}

The example programs on the disk /MAB.SUPPORT, in the subdirectory
Demo Files/Desktop.Samples/ demonstrate the use of these commands.

Programmers.
A Desktop application written in Micol Advanced BASIC

uses the following tool sets: QuickDraw II, Event
Manager, Window Manager, Control Manager, Menu
Manager, LineEdit, Dialog Manager and Scrap Manager.
These tools will be loaded and started automatically when
one of the Desktop commands is executed by the program.
They will be shut down when the Desktop is erased from
the screen or the program finighes execution.

Part Four: Creating the Apple IIGS Desktop

Chapter Two: Menus 174

Chapter Two

Menus

Overview

This chapter describes the commands needed to create and monitor Menus.

Menu Specifics

Pull-down Menus allow a user to make a single selection from a list of selections (a
Menu List), among a set of lists (the Menu Bar), and perform a task based on this
selection.

Menu Lists may be easily created, enabled (made selectable), disabled (made
non-selectable), and removed. Each selection within a Menu List is called an Item.
Items within a Menu List may be enabled, disabled, and removed just as easily.

A distinction must be made between the Menu Bar, Menu List, and Menu Item. A
Menu Bar, the white rectangle that appears on the top of the Menu display, contains the
Menu Lists. When a List in the Menu Bar is selected, a pull-down List of Items is
displayed. The pull-down List is the entire collection of Menu Items for this Menu List.
A Menu Item is a command.

Defining a Menu

The Menu Lists are defined in the reverse order in which they are displayed: the
Menu List appearing on the right must be created first; the Menu appearing on the left
must be defined last. This means, that the first defined Menu List (with the smallest
element number) will be the right most Menu List displayed, and the last defined Menu
List (with the highest element number) will be the left most appearing Menu List.

The Items in a pull-down List sk.ald be listed with the most often used Item at the
top and the least often used one at the bottom.

Do not forget to define the Super High Resolution graphics screen with either an
HGR (320 mode) or HGR2 (640 mode) before creating your Menus.

Menu Definition Syntax

{{ MenuArray$ (Subscript) =">> Menu List \ [Attr_Char] N Menu_ID"]}"
{ [MenuArray$ (Subscript) = “:Menu Item\ [Attr_Char] N Menu_ID"]}
{[MenuArray$ (Subseript) = “.” 1}

{ MenuArray$ (Subscript) = “”]}

The definition of a Menu Bar is assigned to a string array which will be passed to the

Part Four: Creating the Apple IIGS Desktop

175 Chapter Two: Menus

command which actually makes the Menu. The Menu Lists and Items are assigned to
the individual elements of the string array. One string array element holds one Menu
List or Item definition. The string array must be dimensioned to a little more than the
total number of Items in the Menu definition.

Be sure to number the string array elements exactly. If the subscript number of the
Menu array is repeated, the contents (Menu Item) of these elements will not be
displayed. '

A Menu List definition begins with any two title characters, which indicate the start
of a Menu List, followed by the actual Menu List title between spaces. These List
characters may be any visible characters, but the greater than symbol (>) is suitable, so
we will use it exclusively in our examples. The Menu List Title is simply a text string
which describes the list of Items to follow. Two spaces should appear before and after the
Menu titles in 320 mode (HGR), and one space in 640 mode (HGR2); otherwise, the
Menu List Titles will appear stuck one against the other when they are displayed.

A Menu Item definition begins with any two item characters (different from those
used in the List, we will use a colon (:) in our examples) which indicates a Menu Item.
Spaces before and after the Menu Items are not necessary: they will be done
automatically. Following these two characters must appear the Menu Item Name, which
is the text which will appear on the screen informing the user what the selection is.

Following the Menu List Title or Menu Item Name is a backslash character (\) which
indicates that the Menu List ID or Menu Item ID follows, followed, perhaps, by special
attribute definitions.

Menu Title and Item Identification Numbers

A unique number must be assigned to each Menu List and Menu [tem; otherwise, the
program will not be able to determine which List or Item was chosen by the user. Menu
List and Item ID numbers should be listed in ascending order. The identification
numbers must be allocated as shown in Table 4.2.1.

Table 4.2.1 ID Number Allocation Table

Menu List ID # Description
0 Internal use to indicate first Menu List
1-255 Preferred ID numbers for Menu Lists
256-65534 May be used by user’s application
65535 Internal use to indicate last Menu

If the Apple Menu is included, it must have an ID number of one (1).

Part Four: Creating the Apple IIGS Desktop

Chapter Two: Menus 176
Menu Item ID # Description

0 Internal use to indicate first Menu Item

1-249 Used by Desk Accessories

250-254 Reserved for the Edit Menu Items

250 Undo

251 Cut

252 Copy

253 Paste

254 Clear

255 Reserved for Close command (in File Menu)

256-65534 Used by program’s Menu Items

65535 Internal use to indicate last Menu Item.

The Menu List ID or Menu Item ID is defined by using one of the unique numbers
above preceded by one of the following letters:

N - Number
The letter N is followed by a unsigned decimal (ASCII) number. This number defines

the unique Menu List ID or Menu Item ID in decimal. This characteristic will probably
appear in every Menu List or Menu Item definition.

H - Hexadecimal

This letter is used to specify the Menu List ID or Menu Item ID as a hexadecimal
value. You will probably wish to use N instead of H.

Example:
Menu$ (1) = “>> Title \N3" {Menu title defined}
Menu$ (2) = “::Item I1\N301" {Menu item defined}
Menu$ (3) = “::Item 2\N302"
Menu$ (4) = “::Item 3\N303"
Menu$ (5) = ".” {End of Menu list definition)
{Other Menus would be defined here}
Menu$ (99) = “” {End of Menu bar definition}

Menu Attribute Characters

These characters (-, *, B, C, D, I, O, 8, U, V, X) may be included with the Menu List
ID or Menu Item ID and are used to give one or more specific features to a Menu List or
Item such as:

Part Four: Creating the Apple IIGS Desktop

177 Chapter Two: Menus

+ Give a keyboard equivalent to a Menu Item

» Indicate a default setting to a Menu List or Item
« Separate Menu [tems

« Give a specific style to a text [tem

« Restore the colors of a Menu List or [tem

The attribute characters may be entered in upper or lowercase, by convention,
uppercase characters are used.

* - Keyboard Equivalent

The asterisk tells MENU to display an Apple logo and a character to the right of the
Menu Item to indicate that a keyboard equivalent is available. Menu Lists may not have
a keyboard equivalent.

Some keyboard equivalents should be used for specific Menu Items (see Table 4.2.2).

When using a letter as a key equivalent, be certain to define both an uppercase and
lowercase character. When a special character (?, #, etc.) is used (especially where the
Shift key must be pressed) as key equivalent, be sure to enter both characters in the
definition; otherwise, the user may think that the key equivalent does not function
properly.

The key equivalent is automatically trapped by the MOUSE command.

Example 1:
Menu$ (11) = ®::New*NnN259"

This definition allows you to use Apple-N (Apple-Shift-n) or Apple-n as key
equivalents.

Example 2:
Menu$ (32) = “::Help...\V*2/N257"

This definition allows you to use Apple-? (Apple-Shift-/) or Apple-/ (Apple-/) as key
equivalents.

Table 4.2.2 Reserved Keyboard Equivalents

Apple Menu File Edit

Help ? New N Undo Z
Open 0 Cut X
Close w Copy C
Save S Paste \%
Quit Q

We strongly recommend you program some keyboard equivalents to offer an
alternative to using the Mouse. Not everyone loves the Mouse.

Part Four: Creating the Apple IIGS Desktop

Chapter Two: Menus 178

Specifying Defaults

Attribute characters C and D are used to show a specific setting at the creation of the
Menu. Attribute C is used with Menu Items only. Attribute D may be used on Menu
Lists and Items.

D - Disable and Dim a Menu Title/Item

The letter D prevents the user from employing a Menu List or Item until a specific
event occurs; the name of the Menu Title or Item appears in grey. In the case of a Menu
Last, the entire Menu List is deactivated.

Use this attribute to disable a Menu List or Item in a Menu definition bef‘ore
displaying the Menu bar. To activate a disabled Menu List or Item, use the appropriate
Menu Control Number and MENU command described later in this chapter.

NOTE

Never disable the Apple Menu; otherwise, New Desk

Accessories will not be available to the user.

Example 1:
{Water Menu is disabled}
Menu$ (30) = “>> Water \DN3"
Menu$ (31) = “::Salt\N3Q1"™
Menu$ (32) = “::Fresh\VN302"
Menu$ (33) = “::Poisonous\N303"
Menu$ (34 = “~.”
Menu$ (35) = “”

Example 2:
{Items 301 and 303 are disabled}
Menu$ (30} = “>> Water \N3"
Menu$ (31) = “::Salt\DN301"
Menu$ (32) = "::Fresh\VN302"
Menu$ (33) = “::Poisonous\DN303"
Menu$ (34} = ™ ”
Menu$ (35) = *#

C - Item Selection Indicator

This attribute places the character following the C before the Menu Item Name. Use
this character to indicate that a Menu Item has a default or current setting.

The Check mark (character code 18) or the Diamond (character code 19) are the

Part Four: Creating the Apple IIGS Desktop

179 Chapter Two: Menus

usual characters indicating a default or current setting.

Example 1:
Menu$ (22) = “::Hot Pepper\C” +CHRS (18) + “N451"

A check mark will appear in front of the word Hot Pepper.

Separating Groups of Menu Items

The attribute characters V and - (Dash) draw a line in a Menu List to separate
groups of Items. Use these characters to group Items that are independent of other sets,
but related to the Menu under which they appear. They may not be used for Menu Lists.

V - Underline

This letter is used to place an underline between two Menu Items.

Example:
Menu$ (21) = ™>> File \N2"
Menu$ (22) = “::New*NnN2001"
Menu$ (23) = “::0pen...*O0oN2002"
Menu$ (24) = “::Close\V*WwN255"
Menu$ (25) = “::Save*S$sN2003"
Menu$ (26) = “::Save BAs,..\N2004"
Menu$ (27) = “::Revert to Saved\VN2005"
Menu$ (28) = “::Print Setup...\N2006"
Menus$ (29) = “::Print...\V*PpN2007"
Menu$ (30) = “::Quit*QgN2008"
Menu$ (31} = »,”

- (Dash) - Dividing Line

This character provides a dividing line that makes more space between Items. The
dash character must have its own Item Definition and Number. The dividing line should
always be displayed in grey (dimmed). This attribute separates Item Names with
descenders to have a better looking Menu List.

Example:

Menu$ (06) = “>> Edit \DN2"
Menu$ (07) = “::Undo*ZzN250"
Menu$ (08) = “::-\DN99Q99"
Menu$ (09) = ™::Cut*XxN251"
Menu$ (10) = “::Copy*CcN252"
Menu$ (11) = ™::Paste*VvN253"

Part Four: Creating the Apple IIGS Desktop

Chapter Two: Menus 180

Menu$ (12) = “::-\DN9999"

Menu$ (13) = “::Clear\N254"

Menu$ (14) = “::-\DN9999"

Menu$ (15) = “::Show Clipboard\N260"
Menu$ (16) = “.” {End of Menu List}

Font Style Menu Item Characters
The following attribute characters usually appear in the Font Style or Size Menu

List. As with the INVERSE command, use these characters only to attract the attention
of the user.

The font used must be capable of representing the desired character style; otherwise,
the text will appear in normal text.

B - Boldface

This letter makes the Menu Item appear in boldface characters. This attribute is
often used in the Size Menu List to indicate that a true font size is available by
displaying the point size in bold face.

I- Italics

This letter makes the Menu Item appear in italic characters. This style is available
only when the QuickDraw IT Auxiliary Tool set is active.

O - Outline

This letter draws an outline of the Menu Item string. This style is available only
when the QuickDraw II Auxiliary tool set is active.

S - Shadow

This letter adds a shadow to the name of the Menu Item. This étyle is available only
when the QuickDraw II Auxiliary Tool set is active.

U - Underline

This letter underlines the name of the Menu Item.

The Shaston font, 8 points, (the current system font at the time of publication), does
not support Underline.

X - Restore Menu or Item Color(s)

This attribute restores the color of a Menu Title or Item Name if it is displayed in a
color other then black or white. The character X is used especially to restore the color of

Part Four: Creating the Apple IIGS Desktop

181 Chapter Two: Menus

the Apple logo; otherwise, the logo will turn green when the Apple Menu is selected.

Exzample:
Menu$ (40} = “>>@Q\XN1n"

The color table for menus is set to the default colors {black and white). To alter the
default colors, use the TOOLBOX command.

Apple Menu Items

The About Program_Name Item

This Menu Item must be the first item in the Apple Menu List. It is used to display a
Dialog Box containing the name of the program, version number, copyright information
as well as any information the application programmer wants to display. The name of
the program follows the word “About”.

Example: (see below)

The Help... Item

This optional Menu Item, if present, must be one of the top Items in the Apple Menu
List. It is used to display a Dialog Box containing helpful information (hints,
suggestions, ete) about the program being used.

Example:
Menu$ (40) = “>>@Q\XN1"
Menu$ (41) = “::About Examplel\N257"
Menu$ (42) = “::Help...*?/N258"
Menu$ (43) = “::-"
Menu$ (44) = “.”

Example of a typical Menu definition:

ROUTINE DefineMenuBar

Array (0) = 1 {1 = Create Menus}
Menu$ (01) = “>> Water \N3"
Menu$ (02) = “::Salt\N301"

Menu$ (03) = “::Fresh\VN302" (A dividing line will appear
between Fresh and Poisonous}

Menu$ (04) = “::Poisonous\N303"
Menu$ (05) = ™ #

Menu$ (06) = “>> Edit \DN2"
Menu$ (07) = “::Undo*ZzN250"

Part Four: Creating the Apple IIGS Desktop

Chapter Two: Menus 182
Menu$ (08) “::-\DN93Q99"
Menus (09) ToiCut*XxN251"
Menu$ (10) “::Copy*CcN252"
Menu$ (11) “::Paste*VvN253"
Menu$ (12) ®::-\DN999O9"
Menu$ (13) “::Clear\N254"
Menu$ (14) “::-\DN99Go"
Menu$ (15) “::S5how Clipboard\N260"
Menu$ (16) w,r
Menu$ (17) “>> File \DN2"
Menu$ (18) “::0pen...*OoNxxx"
Menu$ (19) “::Close\V*WwNxxx”
Menu$ (20) N rQuit*QgNxxx”
Menu$ (21) wo”
Menu$ (22) ">>ER\XN1"
Menu$ (23) “::About Examplel\N257"
Menu$ (24) “::Help...\V*?/N258"
Menu$ (25) “.”
Menu$ (26) e

{End of Menu

Bar definition}

Defining the Menu

MENU (EventRecord% (,DesktopArray$ ()

The MENU command handles the Menu definition. Its required parameters are an
integer array and a string array. The left parentheses of the array designators may not
be left off the MENU definition, otherwise the Compiler will issue an error. The string

array was described above and must be set before this command is executed.

Element zero of the integer array must contain the Menu Control Number which
instructs MENU the command usage. Other integer array element uses will be defined

below.

Be certain the arrays are large enough to hold the entire Menu Definition; otherwise,

an error will occur during execution.

Example:

{Define Menu Bar and its Menu Items}

EventRecord% (0) = 1 {Menu Control Number, Create}
{Menu defined in array DesktopArray$}

MENU (EventRecord% (, DesktopArray$()

Part Four: Creating the Apple IIGS Desktop

183 Chapter Two: Menus

How to Use the Menu Control Numbers

The Menu Control Numbers determine which actions will be performed by the
MENU command. A Menu Control Number of one is used to create the Menu. The
appearance of this Menu may be changed using other Menu Control Numbers. Menu
Lists and Items may be deactivated and reactivated or completely removed from the
Menu Bar.

The actions are performed according to the following values passed to element O of
the integer array passed to MENU:

Table 4.2.3 Menu Control Numbers
Code Action

Remove a Menu List from the Menu bar
Create the Menu

Reserved for Future Expansion
Reserved for Future Expansion

Enable a disabled Menu Item or List
Disable a Menu Item

Remove a Menu Item from g Menu List
Add New Desk Accessories

1 W= O

Remove a Menu List (0)

Menu Control Number of zero closes the specified Menu List. The Menu List will
disappear from the screen, and be removed from memory.

The entire Menu Bar must be recreated to display the
removed Menu List again.

To remove a Menu List, assign a zero to element zero of the integer array passed to
MENU and pass the Menu Identification Number (assigned by you) of the Menu List to
be removed to element one of the integer array.

NOTE

Exzample: <Program fragment>
EventRecord% (0) = 0
EventRecord% (1) = Menu List ID
MENU (EventRecord% (, DesktopArray$ ()

Create the Menu (1)

This Menu Control Number sets up and displays the Menu as it was defined in the

Part Four: Creating the Apple IIGS Desktop

Chapter Two: Menus 184

string array passed to MENU.

To create the Menu Bar and its Menu Lists, assign a one to element zero of the
integer array. The string array defining the entire Menu must be assigned as described
in the previous section.

Ezample:

{DeskTopArray$ previously defined}
EventRecord% (0) = 1 {Create Menus}
MENU (EventRecord% (, DesktopArray$ ()

Reserved for Future Expansion (2)
Reserved for Future Expansion (3)
Enable a Disabled Menu List or Item (4)

A Menu Control Number of four reactivates a disabled Menu List or Item that was
disabled by Menu Control Number five. ’

To reactivate a Menu List/Item, assign a four to element zero of the integer array,
and assign the number of the List/Item to be reactivated to element one of the integer
array.

Example: <Program fragment>

EventRecord% (0} = 4
EventRecoxd% (1) = ItemNumber
MENU (EventRecord% (, DesktopArray$ ()

Disable a Menu Title or Item (5)

A Menu List or Item is disabled by using a Menu Control Number of five. The
attribute character D is used only to disable a Menu Item when it is first displayed.

To deactivate a Menu List or Item, assign a five to element zero of the integer array
passed to MENU, and pass the List or Item ID to be disabled to element one of this
integer array.

Example: <Program fragment>

EventRecord% (0) = 5
EventRecord% (1) = Menultem
MENU (EventRecord% (, DesktopArray$ ()

Remove a Menu Item from a Menu List (6)

Menu Control Number of six removes a Menu Item from the specified Menu List.
The Menu Bar must be recreated to display that Menu Item again.

To remove a Menu Item, assign a six to element zero of the integer array passed fo
MENU, and assign the Item ID to be removed to element one of this integer array.

Part Four: Creating the Apple IIGS Desktop

185 Chapter Two: Menus

Example: <Program fragment>
EventRecord% (0) = 6
EventRecord$ (1) = Menultem
MENU (EventRecord$% (, DesktopArray$ (}

Add New Desk Accessories (7)

If you have any New Desk Accessories within the DESK.ACCS folder on the boot
volume, the operating system will load these NDAs into memory at boot time. By using
a Menu Control Number of seven, you may cause all NDAs to be contained within the
Menu List.

The restrictions are that you must havé an Apple Menu (the Menu defined by @) and
this Menu List must have a Menu ID of one.

To have these NDAs appear in your Menu List, assign a seven to element zero of the
integer array passed to MENU and invoke the MENU command. That’s all there is to
it.

Example: <Program fragment>

EventRecord% (0) = 7
{Add Desk Accessories)
MENU (EventRecord% (, DesktopArray$ ()

Unhighlight a Menu Title

Each time a Menu Item has finished its task, the Menu List under which it appears
may be returned to its original state to indicate that the operation is now finished.

To unhighlight the Menu List of the selected Item, use Toolbox call 44 to the Menu
Manager. Place this line at the end of the Event Loop.

Example: <Program fragment
TOOLBOX -(15,44: 0, MenuNumber) {Unhighlight it}

Monitoring the Menu

MOUSE (IntegerArray ()

It 13 not enough just to define a Menu; you must also monitor the user’s response and
take actions based upon this response.

To monitor a Menu, you must make use of the MOUSE command. The only
parameter to MOUSE is an integer array dimensioned to at least 20 elements. This
integer array may contain any values when MOUSE is executed, but MOUSE will
return the values with which you may analyze the user’s response when control is
returned to youw.

You must monitor the user’s response to the MENU command from within a loop

Chapter Two: Menus _ 186

called the Event Loop. This Event Loop is best defined within a subroutine to facilitate -
changes and maintenance.

When monitoring the Menu bar for a selection using the MOUSE command, look for
a seventeen (17) returned in element zero of the integer array passed to MOUSE.
Element zero of the passed integer array contains the Event code, and 17 is the Menu
code. Once a 17 is received, immediately access elements 9 and 10 of the integer array.

Elements 9 and 10 of the passed integer array will contain the Menu Item ID
number, and the Menu List ID number respectively. These values are needed to
determine which Menu Item has been chosen. Elements 1 through 10 of this integer
array will contain the Task Record which contains additional information about the
user’s response (see table 4.2.4).

Once a response is received, the program must direct the execution to a module that
will handle the action indicated by the Menu Item. For example, if Quit is selected, the
program should exit the Event Loop and invoke the ShutDown routine.

Example: |

{Menus previously defined)
Quit! = FALSE
WHILE NOT Quit! (Top of Event Loop}

MenulID = 0

MOUSE (Array$% ()

TaskValue = Array% (0)

IF TaskValue = 17 THEN BEGIN (a Menu was chosen}
MenuID = Arravy% (9) {Menu Item}
MenuTitle = Array% (10) {Menu Number}
{Direct execution to proper module}
CASE_OF MenulID

DO 261 {New}
GOSUB NewGame {Open a Window}

ENDDO
DO 262 {Quit)
Quit! = TRUE {Quit program}
ENDDO
ELSE DO
BELL {Error condition}
BELL

ENDCASE (MenulID}
TOOLBOX (15,44: 0 {False}, MenuList) {Unhighlight it}
ENDIF
WEND {Event Loop}
{...ShutDown Code...}

Part Four: Creating the Apple IIGS Desktop

187 ‘ Chapter Two: Menus

<Program continues>

Table 4.2.4. Menu Codes Returned by MOUSE

Event Code Element Number Description
0 Task value
. 17 = Mouse on Menu Item
1 What field of Task Record
1 = Mouse Down Event
2&3 Message field of Task Record
4&5 When field of Task Record
6&7 Where field of Task Record
(Mouse location)
8 Meodifiers field of Task record
9& 10 Task Data

For more information on defining standard Menu applications, refer to Apple's
Human Interface Guidelines: The Apple Desktop Interface.

The MENU program in the Desktop.Samples/ folder on the MAB.SUPPORT disk
demonstrates how to use the Menu Control Numbers.

Part Four: Creating the Apple IIGS Desktop

Chapter Three: Windows 188

Chapter Three

Windows

Overview

This chapter shows how to do Windows and provides guidelines on bhow to create,
manage and draw in Windows. To use special Windows, consult the Apple IIGS Toolbox
Reference Manuals or some other comprehensive documentation of the Apple IIGS
Toolbox.

Examples of the techniques described in this chapter are included in the program
WINDOW in the Desktop.Samples folder of the MAB.SUPPORT Disk. Please refer to
the WINDOW program as you study this chapter.

What are Windows

A Window is a structure in which information, such as a document or a picture, is
presented to the user by the application program. Any text or graphics image that may
be drawn with the Super High Resolution commands may be presented in a Window.

A Window consists of a frame that surrounds the image and a content area inside the
frame in which the image is presented. Although a Window frame may be any size or
shape, two standard styles of Window frames are supported: the document Window
frame and the alert Window frame.

The document-style frame supports optional controls that may be used to change the
size of the Window and the position of the document within the Window. The alert frame
18 mainly used to create alert dialogs. This style of frame, however, may also be used for
a Window.

The controls in a document frame are optional, and may be used in any combination.
They include the title bar, close box, zoom box, vertical scroll bar, horizontal scroll bar,
size box and information bar.

Managing Windows
WINDOW (Integer_Array (, String_Array$ ()

The WINDOW command supports the creation and closure of Windows, and provides
a method to convert Window pointers to Window numbers and vice versa.

WINDOW requires two parameters: an integer array and a string array. These
arrays will contain the information required to create and/or modify the Window. Be
certain these arrays are dimensioned large enough to contain all the information
required by this command.

Element 0 of the integer array holds the Window Control Number that specifies

Part Four: Creating the Apple IIGS Desktop

189 Chapter Three: Windows

which function is to be performed by the WINDOW command in accordance with the

following table:
Table 4.3.1 Window Control Numbers
Code Action
0 Close an application Window
1-10 Create the specified Window
11 Find the pointer of a specific Window
12 Find the Window number of a specific pointer.
Creating the Window

To create a Window, assign the values from the table below to the integer array

passed to the WINDOW command.

Programmers

The variable names from the Toolbox manual are
included in the table below to aid in identifying the
associated NewWindow parameters in the Toolbox
manual.

Table 4.3.2 Create Window Parameters

Element Variable Value

0 Window Number to Create (1 - 10)
1 wFrameBits

Framebits. See Table 4.3.3.
2 wTitle

String array element of Window title.
3 wDataH

Height of Window data area. Used to compute the right scroll bar.
Set to 0 if the Window has no right scroll bar.

4 wDataW '
Width of Window data area. Used to compute the bottom scroll bar.
Set to 0 if the Window has no bottom scroll bar.

5 wMaxH
Max content height allowed when using the size box. If set to 0, will

Chapter Three: Windows 190

Element

10

11-14

11

12

13

14

Variable Value

default to take up the height of the desktop. Set to 0 if the Window has
no size box.

wMaxW

Max content width allowed when using the size box. If set to 0, will
default to take up the width of the Desktop. Set to zero if the Window
has no size box.

wScrollVer

Number of pixels to scroll the content region when the up or down
arrows are selected in the right scroll bar. Set to 0 if the Window

has no right scroll bar.

wScrollHor

Number of pixels to scroll the content region when the right or left
arrows are selected in the bottom scroll bar. Set to 0 if the Window
has no bottom scroll bar.

wPageVer

Number of pixels to scroll the content region when the up or down
page regions are selected in the right scroll bar. Set to 0 if the Window
has no right scroll bar.

wPageHor

Number of pixels to scroll the content region when the right or left
page regions are selected in the bottom secroll bar. Set to 0 if the Window
has no bottom scroll bar.

wPosition

Rectangle data structure that uses elements 11 through 14 of the array
to define the initial position of the Window on the screen.

Y minimum value '

Top edge of Window.

Y maximum value

Bottom edge of Window.

X minimum value

Left edge of Window.

X maximum value

Right edge of Window.

Part Four: Creating the Apple IIGS Desktop

191 Chapter Three: Windows

Programmers
All other NewWindow parameters are set to default

values when WINDOW makes the NewWindow call to
create the Window. This should be satisfactory for most
Windows. If other values are needed, then you must
either use Tool calls to change the desired values after the
Window has been created, or you must call NewWindow
directly. The latter requires much more manipulation of
data structures and precludes using the Micol Advanced
BASIC WINDOW command.

If the Window has a title bar, pass the Window title string in the appropriate element
of the string array, as specified in element 2 of the integer array.

Creating The Window

Assign a Window number into element 1 of the integer array. The Window number is
an arbitrary identifier for the window in the application program. Valid Window
numbers are in the range 1 - 10. This means that a Micol Advanced BASIC Desktop
program may have a maximum of 10 Windows open at one time. The Window number is
used by the Close function of the WINDOW command to determine which Window to
close.

Programmers
When creating a Window, the WINDOW command will

return a pointer (address) to the Window’s Grafport. This
pointer is a four-byte long integer. The low word of the
pointer will be returned in element 0, and the high word
in element 1 of the integer array. This pointer may be
needed to make calls to the Window Manager. The
pointers may either be saved in temporary variables as
each Window is created, or a Window Control Number
may be used to look up the pointers whenever they are
needed. The use of the WINDOW command to look up
poinfers to open Windows is discussed later in this
chapter.

Setting Wframebits

This section i3 a description of wFrameBits (described in Table 4.3.2); the value
assigned to element one of the integer array passed to the WINDOW command.

WFrameBits is a bitflag (a binary number that is treated by Micol Advanced BASIC
as an integer value) that determines the type of Window frame and which optional
controls will be available to the application Window. It also specifies other optional
behaviors of the Window frame.

Chapter Three: Windows 192

To calculate the integer value of wFrameBits, start with zero, then add the values
from the table below to select the features that you want. If you specify a value of 0 for
wFrameBits, the 0 will be replaced with a default value that will create a Window with
all of the standard Window features.

Table 4.3.3 Window FrameBits

Bit Label Value Feature On (1) / Off (0)
0 fHilited DS Highlighted / Not Highlited
1 fZoomed 2 Display Size:
Zoomed / Not zoomed
2 fAllocated DS Window Record:
Allocated / Not Allocated
3 fCtlTie DS Window Controls:
_ Inactive / Active
4 fIinfo 16 Info bar / No Info bar
5 fVis 32 Visible / Invisible
6 fQContent DS Mouse Activates Window
7 fMove 128 Movable / Non-movable
8 fZoom 256 Zoom Box / No Zoom box
9 fFlex 512 Maintain origin / Change origin
10 fGrow 1024 Grow Box / No Grow box
11 fBScroll 2048 Horizontal Scroll Bar / No bar
12 fRScroll 4096 Vertical Scroll Bar / No bar
13 fAlert 8192 Window Frame:
Document / Alert
14 fClose 16384 Close box / No Close box
15 fTitle - 32768 Title bar / No Title bar

DS = Default Setting. The values you set are ignored.
Bit 0 fHilited
Used internally, The value you set does not matter.

Bit 1 fZoomed (value = 2)

Zooms the Window to the size of the entire Desktop when this bit is set to 1.

Part Four: Creating the Apple IIGS Desktop

193 Chapter Three: Windows

Bit 2 fAllocated

Used internally to free the memory area used by a Window. The value you set does
not matter.

Bit 3 fCtrlTie

Used internally. The value you set does not matter.

Bit 4 finfo (WARNING: Set to zero)
This bit is used to add an information bar to the Window. Info bars may be

supported only by an assembly language routine linked in. If this bit is set to 1, the
program will crash.

Bit § fVis (value =32)

This bit determines if the Window is visible when it is created. If this bit is cleared,
the Window will be invisible when created. If this bit is set, the Window will be visible.

Programmers . oL
After creation, Windows may be made visible or invisible

using the ShowWindow and HideWindow Tool calls.
According to the Toolbox documentation, this bit is used
internally by the Window Manager and the value you set
does not matter. However, contrary to Apple’s Toolbox
documentation, for System v5.04 (GS/OS v3.3) and
earlier, we have found this information to be incorrect.

Bit 6 fQContent (value = 64)

Used internally. The value you set does not matter.

Bit 7 fMove (value = 128)

Permits the Window to be dragged by the title bar when this bit is set to 1.

Bit 8 fZoom (value = 256)

The title bar will have a zoom box when this bit is set to 1.

Bit 9 fFlex (value = 512)

If this bit is set to 1, the data height and width are flexible.

Chapter Three: Windows 194

Bit 10 fGrow (value = 1024)

The Window will have a grow box (size box) if this bit is set to 1.

Bit 11 fBScroll (value = 2048)

The Window will have a horizontal scroll bar if this bit is set to 1.

Bit 12 fRScroll (value = 4096)

The Window will have a vertical scroll bar if this bit is set to 1.

Bit 13 fAlert (value = 8192)

The Window will have an alert frame if this bit is set to 1. In this case, set the
following bits to 0: 8, 9, 10, 11, 12, 14 and 15.

Bit 14 fClose (value = 16384)

The Window will have a close box if this bit is set to 1.

Bit 15 fTitle (value = 32768)

The Window will have a title bar if this bit is set to 1.

If the Window has either scroll bars, it should alsoc have a grow box and a zoom box
{bits 8, 10 with either 11 or 12).

Closing a Window

Call the WINDOW command with the following values in the integer array to close a
Window: :

Element Value

0 0
1 Window Number 1 - 10
This command will remove the appropriate Window from the Desktop and will free
all memory used for the Window’s data structures. To reopen the Window, your
application must again execute the code to create the Window.
Example: <Program fragments>
{Close a Window}
EventRecord% (0) = 0
EventRecord% (1) = WindowNumber$%
WINDOW (EventRecord%(, DeskTopArray$()

Part Four: Creating the Apple IIGS Desktop

195 Chapter Three: Windows

Using A Specific Window

Before anything may be done in a Window, either draw in 2 Window or call an update
routine, one of two methods may be used to have access to a Window:

1. Use the Window Control Number (1-10) assigned by you to the Window during this
creation

2. Use the pointer of the Window assigned by Micol Advanced BASIC to the Window
during its creation. Most Window Manager Tool functions need the Window’s
pointer to do its task.

Obtaining the Pointer of a Window

The pointer is returned in elements 0 and 1 of the integer array when the Window is
created by the WINDOW command. The pointer may be saved in variables as the
Windows are created or the WINDOW command may be used to look them up whenever
they are needed.

The WINDOW command will return the pointer to any of the ten Windows that may
be created using the WINDOW command. If the pointer to a Window number that is not
currently open is requested, zeros will be returned.

Element Value

0 11

1 Window number (1 - 10)

2 pointer returned (low word)
3 pointer returned (high word)

Example: <Program fragment
{Get the Window’s pointer)

EventRecord% (0) = 11
EventRecord% (1) = WindowNumber%
WINDOW (EventRecord$% (, DeskTopArrz $()

{Low part of the pointer}

WinPtrL% = EventRecord% (2)
{High part of the pointer}
WinPtrH% = EventRecord% (3)

Obtaining the Number of a Window

The WINDOW command may also be used to determine which Window number a
pointer belongs to. For example, if it is detected that the user clicked in a Window’s close
box, a pointer to the Window to be closed will be returned in the integer array used by
the MOUSE command. The application may then use the WINDOW command to
determine which Window number the pointer belongs to, then use the WINDOW

Part Four: Creating the Apple IIGS Desktop

Chapter Three: Windows 196

command again to close the Window with that Window number.
Element Value

0 12

1 Window number (1 - 10 returned)
2 Pointer (low word)

3 Pointer (high word)

Example: <Program fragment>
{Get the Windows pointer}
EventRecord% (0) = 12
EventRecord% (2) = WinPtrl% {Low part of the pointer}
EventRecord% (3) = WinPtrHd% {High part of the pointer}
WINDOW (EventRecord% {, DeskTopArray5() '
WindowNumber% = EventRecord% (1)

Programmers
The WINDOW command is designed to be a general use

command in creating the Apple IIGS Desktop. It is
suitable for the vast majority of uses. However, Advanced
programmers should know that internally, WINDOW
uges the Window Manager Tool to create and manage r
Windows. If you wish to create more elaborate Windows,
you may use the TOOLBOX command to the Window
Manager to do this.

Monitoring Windows

MOUSE (Integer_Array ()

After a Window has been created, it is necessary for the application program to
monitor and respond to certain events that affect the Window, and to maintain the image
in the Window’s content area.

Monitoring events in Windows is handled by the MOUSE command.

The following actions are done automatically by the MOUSE command when a
Window is being monitored:

« Activating an inactive Window to bring it to the top (assuming more that one
Window is open) and making it active. A click of the Mouse on any region of a
Window activates it.

« Dragging the active Window by holding the Mouse button down while the cursor
is on the Title Bar.

+ Changing the size of the active Window when the user clicks in the Zoom Box.

Part Four: Creating the Apple IIGS Desktop

197 Chapter Three: Windows

» Changing the size of the active Window to resize it by holding and dragging the
Size Box.

The following actions are partially automated by the MOUSE command:

» Closing the active Window when the user clicks in its Close Box. The application
program will be notified when a close box has been clicked, and will return a
pointer to identify which Window’s close box was clicked. The application
program must actually close the Window.

» Redrawing the Window’s contents when a hidden portion of the content region is
exposed. Hidden portions are exposed when Windows are first opened, when the
size or zoom boxes are used, or when Windows are dragged around the desktop
exposing previously covered or off-screen areas of Windows.

Window Watching Information

Only one event at a time may be reported. As events occur, they are stored in
chronological order in an Event Queue, and are reported and cleared from the queue, one
at a time, each time MOUSE is called. The application program uses the MOUSE
command inside a loop called an Event Loop. This loop removes events from the event
queue one at a time, and calls the Micol Advanced BASIC routines to respond to each
event. This is the heart of Desktop programming on the IIGS.

When an event is detected in a Window, element zero of the integer array referenced
in the MOUSE command will return the Event number, which will tell you what action
was taken by the user. Elements 1 through 10 will contain the Task Record which will
provide additional information about the event.

The following values returned in element 0 indicate events that affect a Window, and
its pointer. The values affecting the Window appear in elements 9 and 10 of the integer
array passed to MOUSE:

Value Description
0 No event to report
6 Update event. One of the Windows needs its contents redrawn.
1 Mouse down in Content Region.
22 Mouse down in GoAway box (close box).
24 Mouse down in Info Bar. (not used by Micol Advanced BASIC).
27 Mouse down in Window frame (but not in scroll bar)

The following events are handled internally by the system. The application program
need take no action in response to these events:

Value Description
0 No event
8 Activate/Deactivate Window
19 Mouse down in Content Region. MOUSE will select (highlight)
the Window,

Part Four: Creating the Apple IIGS Desktop

Chapter Three: Windows 198
20 Mouse down in Title Bar. MOUSE will select the Window and
handle dragging.
21 Mouse down in Size Box. MOUSE will select the Window and track
the grow Window control if used.
23 Mouse down in Zoom Box. MOUSE will select the Window and track

the zoom control.

Handling Window Updates

NOTE

This section is intended mainly for advanced
programmers; ignore the areas you cannot understand.
Please note that Task Master is an internal routine
within the Toolbox that automatically performs updates
upon a Window whenever the user references this
Window. Few of you will need to worry about this aspect
of doing Windows.

Whenever a previously hidden portion of a Window’s content area becomes exposed,
the Window needs to be updated (needs to have its image redrawn). This occurs when a
Window is first opened, when a Window is zoomed, when a Window’s size box is used,
when a portion of 2 Window is dragged from an off-secreen to on-screen position, or when
one Window is moved, exposing a portion of another Window that was underneath.
Whenever a Window needs to be updated, an Update Event (6) is generated.

Two methods are provided for handling update events. If the application program
has an assembly language routine that draws the Window’s contents, the address of this
routine may be passed in the field wContDefProc in the NewWindow tool call. In this
case, TaskMaster will call the application’s assembly language routine whenever it needs
to update the Window. This method completely automates Window updates.

NOTE
Micol Advanced BASIC’s run time routines cannot be

called from inside a program, so this method is not

possible without a linked-in assembly language routine.
Such a routine is available commercially through the
MaBug Users Group.

As an alternative method for handling updates, an update event is reported
whenever a Window needs to be redrawn. This method is used whenever the application
has not passed the address of a machine language update handler. Most Micol Advanced
BASIC programs will use this method.

An update event is reported by returning a six (6) in element 0 of the integer array
used by the MOUSE command. The pointer to the Window needing updating is

Part Four: Creating the Apple IIGS Desktop

199 Chapter Three: Windows

returned in Elements 9 and 10 of the integer array. Element 9 contains the low value of
the pointer and element 10 contains the high value.

The application program must determine which Window needs to be updated, then
call the appropriate DrawContent routine that is specific for that Window. (A
DrawContent routine draws the contents of a specific Window.) The number of the
Window that needs to be updated (with a 12 in element 0) to convert the Window pointer
returned by the MOUSE command to the corresponding Window number.

The application should include a DrawContent Procedure for each Window. A
DrawContent Procedure draws the entire current image of the Window’s contents using
Super High Resolution commands. The applications event loop should call the
appropriate DrawContent Procedure in response to an update event for an application
Window.

The DrawContent routine has a different structure for Windows with and without
scroll bars. Both forms are illustrated in the WINDOW program on the MAB.SUPPORT
disk.

For Windows without scroll bars, the DrawContent procedure should perform the
following actions:

» Call GetPort (tool call $1C04) to save the current GrafPort into temporary

variables.

» Call SetPort ($1B04) to make the Window’s GrafPort the current GrafPort.

« Call BeginUpdate ($1EOE). This informs TaskMaster that you are handling the
update event. TaskMaster will continue to report an update event until you
inform it, through calls to BeginUpdate and EndUpdate, that the update event is
being handled. Only then will TaskMaster report the next event in the Event
Queue.

+ Draw the image using Super High Resolution commands.

« Call EndUpdate ($1FOE) to inform TaskMaster that the update has been
completed.

+ Call SetPort ($1B04), passing the GrafPort pointer saved from the GetPort call
above, to restore the current GrafPort.

For Windows with scroll bars, the procedure is slightly more complex. It should
perform the following actions:

» Call GetPort ($1C04) to save the current GrafPort.

» Call StartDrawing ($4DOE). This makes the Window’s GrafPort the current
GrafPort and adjusts the Window’s origin, and therefore the position in which
the image will be drawn in the Window, to correspond to the current setting of
the scroll bars.

« Call BeginUpdate ($31EOE).

« Draw the image using Super High Resolution commands.
» Call EndUpdate ($1F0E)

+ Call SetOrigin ($2304) to restore the Window’s origin.

» Call SetPort ($1B04) to restore the current GrafPort.

When a Window is created, an update event is generated imrﬁediately after the

Chapter Three: Windows 200

Window frame is displayed. For this reason, an application does not need to provide
code specifically to draw the initial image in the Window. An update event will occur
when the Window is created. The applications event loop will then call the appropriate
DrawContent routine to update the Window thus creating the initial image.

If you ever wish to change the image in a Window, the application may simply
redraw the image. The application should call GetPort to save the current GrafPort, call
SetPort to make the window’s GrafPort the current GrafPort, draw in the Window, then
call SetPort to restore the old GrafPort.

If a Window’s image changes during the course of the program, that Window’s
DrawContent Routine must contain conditional logic to insure that the current image
will always be drawn in response to update events. If a DrawContent Routine is not
coded properly, the Window could be refreshed with an out-of-date image in response to
an update event.

The sample program WINDOW includes a simple example of a Window whose image
can change. Window number 3 contains either a happy face or a sad face depending
upon which Menu Item has been selected by the user. The Menu handler sets the global
boolean variable gHappy! to TRUE if the current image is the happy face or FALSE if
the current image is the sad face. The DrawContent Routine checks this variable to
determine which face to draw, happy or sad, in response to update events. In this way,
the application always responds to update events in this Window by drawing the correct
(current) image. Your applications must also guarantee that all DrawContent Routines
always draw current images.

Drawing in a Window

Any valid Super High Resolution command may be used to draw inside a Window;
this includes the DRAWSTR, HPLOT, and HPLOT TO commands, and Toolbox calls.

1t is often necessary to know the exact size of a string, in pixels. Use the LEN (string
length) function. LEN will store the size, in pixels, in True_Value (locations 202 and
203) when the Super High Resolution screen is active (HGR or HGR2).

To draw in a Window, the current GrafPort must be changd to the Window’s GrafPort
you want to draw into. A GrafPort is a data structure that, completely describes a Super
High Resolution drawing environment. Each time a ./indow is created using the
WINDOW command, a GrafPort also is. The pointer returned by the WINDOW
command is the pointer to the Window’s GrafPort.

The correct procedure for changing GrafPorts is as follows:
« Call GetPort (§1C04) to get a pointer to the current GrafPort. The current

GrafPort is the GrafPort that is currently open — the one in which the Super
High Resolution is currently active.

» Save the pointer to the current GrafPort in temporary variables.

- Call SetPort ($1B04) to make the Window’s GrafPort the current GrafPort.
+ Execute the Super High Resolution commands to draw in the Window.

» Call SetPort to restore the previous GrafPort.

Part Four: Creating the Apple IIGS Desktop

201 _ Chapter Three: Windows

The reason the current GrafPort must be saved and restored is to assure that things
are left as they were. If you fail to follow this practice, problems such as having Desk
Accessories draw in your Windows because the Desk Accessories become confused about
what is the current GrafPort will arise. Remember, leave things as you find them and
you will have no problems.

Note to Advanced Programmers

The rectangle in elements 11 - 14 of the integer array referenced in the WINDOW
command, when the Window is created, is passed to both wPosition and wZoom for the
library’s call to NewWindow. This design simplifies Windows for beginners, since these
parameters need not be different for most Windows. Several other fields in the Window
parameter list are also set to default values, for example, wRefCon and wContDefProc
are set to zero. The default values may of course be changed using Window Manager
Tool calls.

Advanced programmers may wish to call NewWindow directly. In this case, all of the
parameters in the NewWindow parameter list may conveniently be passed in an integer
array. When calling NewWindow directly, you may not use the WINDOW command to
close the Window or to convert between pointers and Window numbers.

winfoDefProc is alzo set to the default value zero by the WINDOW command when
creating a Window. This is necessary because Micol Advanced BASIC cannot provide a
machine language information bar drawing routine for TaskMaster to call. Accordingly,
Micol Advanced BASIC does not support Window info bars unless the application
provides a linked-in assembly language routine to draw the info bar.

Part Four: Creating the Apple IIGS Desktop

Chapter Four: Dialog Boxes 202

Chapter Four

Dialog Boxes

Overview

This chapter shows how to create and monitor Dialog Boxes within your Micol
Advanced BASIC programs.

Dialog Box Definition

A Dialog Box is like the front of a television or stereo set: it is a panel with control
dials and buttons, etc. Just like a television, these dials and buttons are used for control.

A modeless Dialog Box is a panel that allows the user to do other things while the
Dialog Box is still on the screen; for example, the tool of a paint/draw program or the
Find/Replace box of a word processor or a data base program.

A modal Dialog Box is a rectangle that forces the user to act on it before doing
anything else like an “About...” box. Micol Advanced BASIC may be used to create
modal Dialog Boxes. If you wish to create modeless Dialog Boxes, you will have to make
use of the TOOLBOX cornmand.

Dialog Boxes, by convention, are centered on the display and do not cover the entire
screen. They may contain graphics, descriptive or informative text, fill-in areas, and
control-like buttons.

The point of origin for the Dialog Box is the upper left corner of the Desktop, position
0,0. Make sure not to exceed the maximum X coordinate on the horizontal axis
depending on the graphics mode (320 or 640), otherwise the right part of the Dialog Box
will be hidden from view.

~ To be meaningful, a Dialog Box must contain Parts to which the user may respond.
Parts may be added, disabled, enabled, etc. as the need arises.

Do 1 .t forget to define the Super High Resolution graphics screen with either an
HGR (320 mode) or HGR2 (640 mode) before creating your Dialog Boxes.

Controls and Labels

The purpose of a Dialog Box is to give the user an easy, and straightforward way to
communicate with the program. This is usually done with a symbol used in everyday
life, such as a radio button, with a simple descriptor, that the user can easily relate to.
This symbol, together with its descriptor, is what we will call a Dialog Box Part.

Each Part in a Dialog Box has 6 components:

1. The Part ID Number. Each Part must have a distinet ID number. The ID
number may range from 1 to 255. An ID number of 0 is invalid and will cause a

Part Four: Creating the Apple IIGS Desktop

208 | Chapter Four: Dialog Boxes

run time error.

2. The Part Location. All Parts use coordinates relative to the upper left corner of
the Dialog Box. These coordinates, expressed in pixels, are called local
coordinates. The upper left corner of the Dialog Box is local co-ordinate 0,0. If
the coordinates specified for the Part are greater than the maximum boundaries
of the Dialog Box, the Part will be invisible. No error is generated.

3. The Part Type. Five different types of controls and one type of label may be
displayed using Micol Advanced BASIC.

4. The Characteristics of the Part. The characteristic value (also called PartFlag)
of a Part depends on the type of the Part used. Not all Part types use this
component: see the specific Part for details.

5. ‘The Value of the Part. This variable holds the value the Part has when it is first
displayed. The Part Value depends on the type of the Part used. Not all Part
types use this component: see the specific Part for details.

6. The Part Descriptor. Most Parts must be labeled with words describing, as
closely as possible, the action to be performed. Not all Part types use this
component. See the specific Part for details.

Table 4.4.1 Standard Dialog Part Types

Type Value Part Type

10 Push Button
11 Check Box
12 Radio Button
13 Scroll Bar

15 Static Line
17 Edit Line

The Push Button

The push button produces an immediate or continuous action when it is pressed. It
has round or square corners with a single or a bold outline. Its Part type is ten.

A push button with an ID of one will have a bold outline. All other push buttons with
ID numbers from two to 255 will have a simple outline.

The button item with an ID of one is the default button. A default button should not
be used to control a destructive command. If a default button is not needed on a Dialog
Box, do not use ID number one for a push button.

The Return key is the keyboard equivalent of a button with ID one (usually “OK”)
and the Esc key is the keyboard equivalent of a button with ID two (usually “Cancel”). If
a button does not have an ID of one or two, the keyboard equivalents will be
non-functional.

The display rectangle of the button will be calculated automatically by supplying the
upper-left coordinates (Min Y, Min X, relative to the Dialog Box) of the Part, and setting

Part Four: Creating the Apple IIGS Desktop

Chapter Four: Dialog Boxes 204

the lower-right coordinates to 0,0.
The PartValue is unused (set to zero) with push buttons.
The itemFlag defines the shape of the button:

0 Round corners, single outline

256 Round corners, bold outline

512 Square corners, single outline

768 Square corners, single outline with shadow
The Check Box

A check box is a box that may be filled with an X (ON) or be left empty (OFF). It :13
often used to select options that will cause changes later on. The action of a check box is
independent of other check boxes on the same Dialog Box. Its Part Type is 11.

The display rectangle of the check box will be calculated automatically by supplying
the upper-left coordinates (Min Y, Min X, relative to the Dialog Box) of the Part, and
setting the lower-right coordinates to 0,0.

The label is placed on the right side of the check box. Its description should be as
long as necessary, but it may not exceed one line.

The PartValue has the initial setting of the button (0 = OFF, 1 = ON).
The PartFlag is not used (set to 0) with check boxes.

The Radio Button

A radio button simulates a button like the one in a car radio. The button is filled
with a circle to indicate the ON setting or empty to indicate it is OFF.

A Radio Button is used to select only one option that will cause a change later on.
The selected button will turn off the button previously selected on the Dialog Box. A
Dialog Box should have at least two radio buttons, if they are used at all. The Part Type
number is 12. .

The display rectangle of the radio button will be calculated automatically by
supplying the upper-left coordinates (Min Y, Min X, relative to the Dialog Box) of the
Part, and setting the lower-right coordinates to 0,0.

The label is placed on the right side of the radio button. Its descriptor may be as long
as necessary but may not exceed one line.

The PartValue has the initial setting of the button (0 = OFF, 1 = ON).

The PartFlag has a value from 0 to 32512. This value links the radio buttons
together. Use a different value (in increments of 256) for each series of radio buttons.

The Scroll Bar

A scroll bar is a rectangle with an arrow at both ends. It causes an immediate result
on the object it is controlling. The arrows are used to move the lever one notch at a time.
A click of the Mouse on the grey area, above or below the thumb, will move the display

Part Four: Creating the Apple IIGS Desktop

2056 Chapter Four: Dialog Boxes

by the number of pixels represented by the thumb. The lever, also called a thumb, may
be dragged with the Mouse to a precise position. Its Part type number is 13.

The display rectangle of the scroll bar sets its thickness, height or length depending
on its orientation.

The scroll bar is not labeled.
The PartValue indicates the actual position of the thumb and ranges from 0 to 290.

The PartFlag indicates whether a horizontal or vertical scroll bar or indicator will be
displayed. The proper values are:

0 Vertical indicator

3 Vertical bar]
4096 Horizontal indicator
7168 Horizontal bar

The Static Line

A Dialog Box may be labeled using a static line of text. This static line of text may
not be modified at a later time. The Dialog Box label uses the current font for .t.he
characters. The maximum length of a static line is set to 64 characters by Micol
Advanced BASIC. Its Part type number is 15.

All static lines should be disabled by adding 32768 ($8000) to its ID number so they
will not return Part numbers to the Event Loop.

The display rectangle of a Static Line must be large enough to show the entire text
without overlapping other Dialog Box Parts.

To display a static text on one line, a rule of thumb is to allow at least 20 pixels wide
by 10 pixels in height for a character. For example, a line of text with 8 characters will
need at least 160 pixels in length.

To display a line of static text on multiple lines, concatenate a carriage return (ASCII
13) between each line. The next line of text will be placed 10 pixels below the preceding
one. :

The PartValue and the PartFlag are unused (set to zero) with a Static Line.

A Static Line should be the first Part displayed when a Dialog Box appears on the
screen. To do this, assign the highest Part ID number to the static line. This line of text
will help the user immediately understand the purpose of the Dialog Box.

The Edit Line

An Edit Line is a rectangular box containing information. It is often used to give a
Pathname for operating system operations or to provide information in response to a
query by the program. Its Part number is 17.

The display rectangle of an Edit Line must be at least 20 pixels wide by 12 pixels in
height for each character. For example, a line of text with 8 characters will need at least
160 pixels in length. The next line of text will be placed 12 pixels below the preceding
one.

Part Four: Creating the Apple IIGS Desktop

Chapter Four: Dialog Boxes 206

The PartValue contains the maximum number of characters that may be entered.
The PartFlag is unused (set to 0).

A line of static text should appear above an Edit Line to indicate what is expected as
input.

Defining the Dialog Box
DIALOG (IntegerArray (, StringArray ()

A Dialog Box is defined by the DIALOG command. DIALOG requires two arrays:

" an integer array and a string array to hold the necessary values. The integer array

holds the coordinates of the Dialog Box and those of the Parts within it. The string
array holds the labels of the Dialog Box Parts.

Element zero of the passed integer array contains the Dialog Control Number. This

- Dialog Control Number instructs DIALOG as to what action to take, and controls which

values are required in the passed arrays (see table 4.4.2).

Dialog Control Numbers
Element zero of the integer array passed to DIALOG must contain the Dialog

Control Number. This Dialog Control Number determines the function of DIALOG and
performs the following tasks:

Table 4.4.2 Dialog Control Numbers

Value Task

0 Close the Dialog Box

1 Create the Dialog Box

2 Add a Part to the Dialog Box

3 Romove a Part from the Dialog Box
4 Enable a Part in the Dialog Box

5 Disable a Part in the Dialog Box

The Dialog Control Number assigned to element zero of the integer array passed to
DIALOG will determine which further values are required in the integer array:

Close the Dialog Box (0)

If the Dialog Control Number specified is zero, the current Dialog Box will be closed
and disappear from the screen. The memory used by the Dialog Box will be released.

Ezample:
Array%¥ (0) = 0 {Close Dialog Box}
DIALOG (Array% (, Array$()

Part Four: Creating the Apple IIGS Desktop

207 Chapter Four: Dialog Boxes

Create the Dialog Box (1)

This is the most important Dialog Control Number. If the Dialog Control Number
specified is one, the system will create (but not yet display) a Dialog Box with the
controls and labels defined in the parameter arrays passed to DIALOG. Once the
MOUSE command is executed subsequent to the Dialog Box creation, the Dialog Box
will be displayed.

In order to create the Dialog Box, additional information is required and is stored in
the parameter arrays. The integer array must contain the following information:

» Element one contains the minimum Y coordinate of the Dialog Box

« Element two contains the minimum X coordinate of the Dialog Box

« Element three contains the maximum Y coordinate of the Dialog Box

« Element four contains the maximum X coordinate of the Dialog Box

+ Element 5 holds the total number of Parts in the Dialog Box. Any Parts added to
the Dialog Box during the execution of the program are NOT counted here. The

other array elements contain the descriptions of the Parts in the Dialog Box. A
Dialog Box may have as many Parts as necessary.

» Element 6 is the identification(ID) number of the Part. This is the value passed
back to the MOUSE command to inform you what the user response was. ID
numbers must be unique for each Part and range from 1 to 255.

« Elements 7 through 10 contain the local (relative to the Dialog Box) coordinates
of the Part. The coordinates are expressed in pixels. The coordinates are listed
in this order: Y minimum coordinate, X minimum coordinate, Y maximum
coordinate, X maximum coordinate.

+ Element 11 stores the Part Type Number (see Table 4.4.1).

» Element 12 holds the Part Value (see the specific control).

+ Element 13 contains the Part Flag (see the specific control).

o Element 14 holds the element number of the string array storing the label. Use
zero if no label is required.

To define other Parts in the Dialog Box, repeat elements 6 through 14 in subsequent
array elements for ¢ ch Part until the number of Parts specified in element 5 are
satisfied. All Dialog Box Parts will appear in the reverse order in which they were
defined. Thus, the Part defined with the highest ID number will appear first and the
one with the lowest ID number will appear last.

Next, the elements of the string array storing the labels must be defined. Thea_;e
array elements contain the strings referenced in the integer array as specified in
element 14 (and subsequent integer array elements).

Example:

PROC DialogBoxl {Define Dialog Box}
{0 = Close, 1 = Create Dialog Box}

Array$ (0) =1 {Create the Dialog Box]}
Array% (1) = 99 {Y height of Dialog Box}
Array% (2) = 319 {X width of Dialog Box}

Part Four: Creating the Apple IIGS Desktop

Chapter Four: Dialog Boxes 208

Array% (3) = 50 {Y height of Dialog Box}
Array$ (4) = 150 {X width of Dialog Box}
Array% (5) = 2 {Number of Parts on panel}
{Partl definition}

Arravk (6) = 1 {Part ID number}

Arrays (7) = 27 (¥ min start positioh}
Array% (8) = 2 {X min start position}
Array% (9) = 198 {Y max start position}
Array% (10) = 317 {X max start position]
Array% -(11) = 15 {Part type: StatText]}
Arravy¥% (12} = O {Part value: unused}
Array% (13} = 0 {Part flag: unused}
Array¥% (14) = 1 {String array # for “Dialog Box"}
{Part2 definition}

Array% (15) = 2 {Part ID number}

Array% (1l6) = 27 {Y min start position}
Array% (17) = 2 {X min start position}
Array% (16) = O {Y max start position}
Array% (19) = 0 {X max start position}
Array% (20) = 10 {Part type: Push Button}
Array% (21) = 0 {Part value: unused}
Array% (22) = 0 {Part flag: single/round}
Arrav% (23) = 2 {String array #2 “OK"}

{Part names}

Array$ (1) = “Dialog Box”

Array$ (2) = “OK”

{End of definition of the Dialog box}
DIALOG (Arxray$ (, Array$ ()

After the Dialog Box is created, you may wish to fetch the Dialog Port handle
returned in integer array elements zero and one of the integer array passed to DIALOG.
The low part of the handle is in array element zero; the high part of the handle is in
array element one. Be certain to save this handle if you wish to make ToolBox calls
later.

Example: <Program fragment>

Array$ (0) =1

{Create Dialog box]}

DIALOG (Array%(, Array$()}

{Get the Dialog Box GrafPort handle}
DlgHdle Low = Array% (0) {Low Handle}

Part Four: Creating the Apple IIGS Desktop

209 Chapter Four: Dialog Boxes

DlgHdle High = Array% (1) {High Handle}

IMPORTANT i _
If you are creating a Dialog Box, the Dialog Box will not

be displayed until the MOUSE command, monitoring the
Dialog Bozx, is executed.

Add a Part to a Dialog Box (2)

A Dialog Control Number of two is designed to add another Part to a Dialog Box
besides those that were included when the Dialog Box was created. The integer array
passed to DIALOG must have the following entries:

Element Part Type

Part ID Number

Minimum relative Y coordinate of Part

Minimum relative X coordinate of Part

Maximum relative Y coordinate of Part

Maximum relative X coordinate of Part

Part type (see Tables 4.4.1)

Part flag (see specific Part)

Part value (see specific Part)

Element number in string array containing text display.

W 0 =2 & U W N

Remove a Part from a Dialog Box (3)

If element zero of the integer array contains a three, the Part number assigned to
element one of the integer array will be removed from the current Dialog Box.
Example:
Array% (0) = 3 {Remove Dialog Part}
Array$ (1) = 3 {Part ID number to be removed}
DIALOG (Array% (, Array$()

Enable a Part in a Dialog Box (4)

If element zero of the integer array passed to DIALOG contains a four, the Part with
the number assigned to element one of the array will be enabled. Thereafter, the user
will be able to respond to this Part.

Example:

Array% (0) = 4 {Enable Part in box}
Array% (1) = 3 (Part ID number to be enabled}

Chapter Four: Dialog Boxes 210

DIALOG (Array% (, Array$()

Disable a Part in a Dialog Box (5)

If element zero of the integer array contains a five, the Part with the number
assigned to element one of the integer array will be disabled. Thereafter, the user will
not be able to access this Part.

Example:
Array% (0) = S5 {Disable Part in box}
Array% (1) = 3 {Part ID number to be disabled}

DIALOG (Array$% (, Array$ (-)

Programmers

Micol Advanced BASIC uses the standard Parts defined
by the Control Manager, LineEdit, and QuickDraw II Tool
sets. The Control Manager directs standard controls.
The LineEdit Tool manages edit lines. QuickDraw II
displays the StatText Parts.

Monitoring the Dialog Box

MOUSE (Integer_Array ()

Once you have defined a Dialog Box, you must monitor it for a user response. Like
monitoring the response to a Menu and Window, the MOUSE command is used to
monitor Dialog Boxes. Unlike monitoring a Window or a Menu however, MOUSE is not
placed within a loop to monitor a single response from the user; MOUSE will not return
control to your program until the user has responded to the Dialog Box. Once the user
has responded to the Dialog Box, the Part ID number (defined by you in the DIALOG
command) will be returned in element zero of the integer array passed to MOUSE.

When monitoring the Dialog Box with MOUSE, the Part ID Numbe: received in
element zero of the integer array passed to MOUSE is used to direct the program flow to
the program code handling the action for that control. The Dialog Box is displayed until
the user selects the close button and the program closes the Dialog Box.

Example:

{The Dialog Box is previously defined}
DialogExit! = FALSE
REPEAT (Display until True}
MQOUSE (EventRecord® ()
ItemID% = EventRecord% (0)
CASE_OF ItemlID%
DO 1 {OKAY Button}

211 Chapter Four: Dialog Boxes

DialogExit! = TRUE
ENDDO
DO 3, 4, 5 {Check Boxes}
{GetDitemValue}
TOQOLBOX (21,46:0,t1,t0, ItemID;ItemValue)
{ItemValue = 0 if CheckBox is not checked,
ItemValue = 1 if CheckBox is checked.
If ItemValue = 0 then ItemValue = 1
If ItemValue = 1 then ItemValue = 0 }
ItemValue = ABS (ItemValue - 1)
{SetDitemValue}
TOOLBOX (21,47:ItemValue, tl, t0, ItemID)
ENDDO
ENDCASE
UNTIL DialogExit! {Radio_Buttons}

See the demonstration program DIALOG to see how to use the Dialog Control
Numbers and CONTROLS to see how to define the different types of controls. These
example programs are or the MAB.SUPPORT disk in folder Desktop.Samples/.

Part Four: Creating the Apple IIGS Desktop

Chapter One: Direct ToolBox Access 212

Part Five: The Apple IIGS ToolBox

Chapter One

Direct Toolbox Access

Overview

This chapter demonstrates how to use Micol Advanced BASIC's TOOLBOX
command to get direct access to the Apple IIGS ToolBozx.

Defining the ToolBox

What 1s the ToolBox? The ToolBox is a series of routines designed to perform specific
tasks. Each particular task, like memory management or graphics, is divided into a
specific Tool. Each Tool is given a unique ID number. Within each Tool are specific
Functions which perform individual tasks. Each Function within a particular Tool set is
also designated by a unique ID number.

For example, Tool number two is the Memory Manager and QuickDraw II, which
does Super High Resolution graphics, is Tool 4. Function number two within each Tool
starts up the Tool, while Function 15 in QuickDraw II returns the contents of a color
table.

Books describing ToolBox functions will be necessary to write Micol Advanced BASIC
programs that use the Apple IIGS Toolbox. The list of Tools appears in Table 5.2.1 and
5.2.2. (As this manual goes to press, thirty-three tool sets have been defined; of these,
thirty-two sets were released in ROM and the IIGS System Disk v5.04.)

The Universal TOOLBOX Command

TOOLBOX (ToolNum, FuncNum [:Push List] [;Pull List])

The TOOLBOX command is designed to call virtually any Tool and consists
essentially of four parts. The first part consists of the Tool Number. The second part is
the Function number within the Tool. The third part, the Push List, consists of the
parameters required by the Tool Function, and the forth part, the Pull List, is a set of
integer variables which will contain the values returned by the Tool Function itself.

The first argument, the Tool Set Number, is an integer literal (expressed in decimal
or hexadecimal) or integer variable.

The second argument, the Tool Function Number, is an integer literal (expressed in
decimal or hexadecimal) or integer variable. Any value greater than 255 ($§FF) generates
an error. ’

Part Five: The Apple II1GS ToolBox

213 Chapter One: Direct ToolBox Access

An optional list of integer literals (in decimal or hexadecimal) or integer variables,
separated by commas, follows the Function Number. This list is separated from the
Function number by a colon (:) and is a set of values that will be pushed onto the ToolBox
stack.

Last comes an optional list of integer variables, separated by commas, which will
contain the values returned by the Tool Function. A semi-colon (;) precedes this list.

Most Tool Functions require values to be placed onto the ToolBox stack before the
Function can be used. These values are often a four-byte memory location which may be
represented within two two-byte integer literals or variables. Toolbox reference manuals
list the values to be pushed or pulled from the stack in terms of words and long words. A
word is equivalent to an integer, and a long word is equivalent to two integers. For the
most part with the TOOLBOX command, long integers are treated like short integers.

Determining the Tool and Function Numbers

In any ToolBox reference manual, a Function is referenced in terms of a name and a
call number. This call number is used by assembly language programmers to make the
call to the Tool Function.

This call number is a hexadecimal number with the Function number and Tool
number appended. You can easily unappend this number to determine the Tool number
and Function number for use with the TOOLBOX command.

Let’s say that the call number of a particular Tool Function is $2C08 (SysBeep). The
dollar sign simply means that the number is hexadecimal. The next two characters in
the number are the hexadecimal value of the Function Number, or $2C (44 decimal).
The following two letters are the hexadecimal value of the Tool Number or $03 (3
decimal). Therefore, in this example, the Tool number is three, and the Function
number is 44. Please note that TOOLBOX can accept either decimal or hexadecimal
numbers, 80 there is no need to make any conversions.

Example:
TQOLBOX (03, 44) {SysBeep $2C03}

T" e Push List

The Push List of the TOOLBOX command is used to pass values to the particular
Tool Function. Every description of a Tool Function will describe what values have to be
pushed unto the stack. These are the values that go into the TOOLBOX Push List.

Values contained within the Push List will consist of either integer literals or integer
variables. An integer is the same as a word that needs to be pushed onto the ToolBox
stack. Two short integers must be used to equal a long word.

Be very careful when specifying values for the Push Stack. There is a one-to-one
correspondence between values that are contained in the TOOLBOX command, and
values that are pushed onto the ToolBox stack as defined in any ToolBox reference
manual. TOOLBOX pushes values onto the stack in the order they are specified.

Part Five: The Apple IIGS ToolBox

Chapter One: Direct ToolBox Access 214

Example:
Colour = 15 {Clear to White}
TOOLBOX (04, 22: Colour) {ClearScreen $1504}

The Pull List

Many Tool Functions return values after their work is done. The values from the
Tool Function will be returned in the integer variables in the Pull List in the order they
were defined within the TOOLBOX command.

Example:

Rnd_Num% = 0
TOOLBOX (04,134: 0; Rnd Num%) {Random 38604}

Example:
XCoord% = 240
YCoord% = 120
Pixel% = 0
{GetPixel 58804}
TOOLBOX (04,136: 0, XCoord%, YCoord%; Pixel%)

Error Checking

If the call to the Tool Function is successful, zero wil be returned in True_Value
(locations 202 and 203). If the Tool Function should return an error, the error value will
be returned in True_Value in LSB, MSB order. MSB (location 203) will be the Tool
Number which returned the error, not always the Tool that was called.

PEEK location 202 to determine if the call was successful. If the value is zero, the
call was successful, otherwise you should be able to determine the problem.

TOOLBOX and Long Integers

The TOOLBOX command will use long integers when the LONGINT compiler
option is specified. Only two bytes (one word) from the long integer’s value will be used,
usually the two least significant. The Greater Than symbol (>) may be used to reference
the most significant word in the long integer; if the long integer is storing an address,
this is the bank number of the address.

Example: <Program fragment>

PROGRAM Show_LonglInt

@ LONGINT

{Get the address of the pointer}

Address% = ADDR (Address$% ()

TOOLBOX (14, 19: >Address%, Address%) {ShowWindow $130E)

Part Five: The Apple IIGS ToolBox

215 Chapter One: Direct ToolBox Access

Long integers may be used in this manner only with the TOOLBOX command.

Future ToolBox Additions

The TOOLBOX command is a very versatile command. It was designed to let you
take advantage of present and future Tool sets to come from Apple Computer Inc. or from
third-party companies.

Allocating ToolBox Buffers

Many ToolBox calls need the use of a supplied buffer to accomplish their tasks.
Essentially, there are two methods you may use to fetch memory for a ToolBox call.

The more difficult method to fetch this memory is to either use a TOOLBOX call to
the Memory Manager, or the GET_MEM command. This method needs to be used if you
are fetching Direct Page memory for the Tool, otherwise, use the easier method.

We will outline the easier method here. Allocate some memory within a dummy
array with the DIM statement. Be certain this array is large enough for its work and do
not use it for any other purpose, as internal values may become corrupted by the ToolBox
call. The ADDR command may then be used to get the address of this dummy array,
and this address may then be passed to the Tool call.

The following example program below should answer any questions you may still
have about the TOOLBOX and ADDR commands. The exarple below uses
Miscellaneous Tool (Set 03) to read the time and date as an ASCII representation, and
then displays this time and date to the screen.

Example (line numbers are for reference only):

1. PROGRAM Display Time

2. @ LIST

3. DIM ToolBox_Buf% (10)

4. Adr¥% = ADDR (ToolBox Buf% ()

5. Bank Number% = PEEK (202}

6. TOOLBCX (3, 2} {Turn on Misc. Tools}
7. {ReadASCIITime S$0EQ3}

8. TOOLBOX (3, S$OE: Bank_Number%, Adr%)
9. Adr& = ADDR (Toolbox Buf% ()

10. HOME

11. PRINT "“The Current time is “;

12. FOR Loop_Ctr = Adr& TO Adr& + 19

13. Char = PEEK (Loop_ Ctr)

14. Char$ = CHRS (Char)

15. PRINT Char$:

16. NEXT Loop Ctr

Part Five: The Apple IIGS ToolBox

. NN B B N B B OB OB OB OO OB OB OO O ETT/RET™

Chapter One: Direct ToolBox Access 216

17. PRINT

18. {Turn off Misc Tools}
19. TOOLBOX (3, 3)

20. END

How this program works...

1L

AR

At line 3, a 23 byte buffer is defined for the ToolBox output. This buffer should
never be used as an array.

At line 4, the address of the ToolBox buffer is determined as an integer value.

At line 5, the bank number of the ToolBox buffer is obtained.

At line 6, the Miscellaneous Tool set is started.

At line 8, the ReadASCIITime function call from the Misc. Tools is done by pushing
the bank number and the address of the buffer onto the ToolBox stack as

required by this Tool Function.

At line 9, the full address of the ToolBox buffer is determined as a real value. We
need the real address to be able to PEEK the Tool Function results from

memory.

At lines 12 - 16, the time and date returned by the Tool are displayed. Note the use
of PEEK within the loop. Because of the way Micol Advanced Basic parses a
statement, we cannot use an integer variable at line 13, because, if we did,

PEEK would try to take the integer value of Loop_Ctr, a value too great for an
integer, and we would therefore receive an error.

At line 19, the Misc. Tools is shut down. It is wise to always wait until the end of
your programs before performing any shutdowns as these Tools may also be

used by the run time routines.

Part Five: The Apple IIGS ToolBox

Chapter Two: Tool Set Tables 217

Chapter Two

Tool Set Tables

Some of the Tools listed below are used automatically by the run time routines: do
not start them up or shut them down using the TOOLBOX command. Use the
TOOLBOX command to start or shut down the tools that have no Micol Advanced
BASIC equivalent or are not started by a run time routine (if the respective command is
not active in your program).

Startup notes: You must observe the following:
» The following Tools are always necessary and should never be shut down by your _

program: Tool Locator, Misc. Tools, Memory Manager, Text Tools, and SANE.

« The Desktop Tools (Event Manager, Line Editor, Window Manager, Menu
Manager, Dialog Manager, Scrap Manager, and Control Manager) are activated
when one of these Micol Advanced BASIC commands is executed: DIALOG,
MENTU, or WINDOW.

» The Sound Tool Set is activivated by the NOISE command.

+ The Sound Tool Set and the Note Synthesizer Tool are activated by the MUSIC
command.

¢ QuickDraw II is started by the HGR or HGR2 command.

Shutdown Notes: As a general rule, shutdown of the Tools is done in the reverse
order as they were started up. You must observe the following:

» The Tools started by the Library routines are all deactivated and memory is
deallocated by the END, STOP or BYE command.
« The Desktop and Graphics Tools are deactivated by TEXT.

= The Sound Tool Set and the Note Synthesizer Tool are both deactivated by the
SILENCE command.

« The memory necessary for the Tool is deallocated automatically when the Tool is
shut down.

The tables in the following pages enumerate the Tools, their startup, shut down
order, and the memory needed by each set.

Legend:

+ “AN” means “After N”. N is a Tool Number that indicates that the tool with that
number must be started before this one.

* (d)indicates a Desktop command (MENU, WINDOW or DIALOG)

Part Five: The Apple IIGS ToolBox

218

Tool #

O W 1N A WD =

c.owoaoac.oMMNNNMNBMMHHHHHHHEHH
> N = O O 0D~ W = © W 0 -1 h &~ W - O

Tool Set Name

Tool Locator
Memory Manager
Miscellaneous Tool
QuickDraw I1
Desk Manager
Event Manager
Scheduler

Sound Tool Set
Apple Desktop Bus
SANE

Integer Math

Text Tools

Internal Use
Window Manager
Menu Manager
Control Manager
System Loader
QuickDraw IT Aux.
Print Manager
Line Edit

Dialog Manager
Scrap Manager
Stnd File Operation
(Not Defined)
Ivote Synthesizer
Note Sequencer
Font Manager
List Manager

ACE Tool
Resource Manager
(Not Defined)
MIDI Tool

Video Overlay Card
Text Edit Tool

Chapter Two: Tool Set Tables

Table 5.2.1 Startup List

Started by

Library

Library

Library

HGR or HGR2

(d)

(d)

Library Routine
NOISE

Library Routine
Library Routine
Library Routine
Library Routine
Cannot Be Called
(d)

(d)

(d)

Do Not Call
TOOLBOX (18,02)
TOOLBOX (19,02)
(d)

(d)

(d)

TOOLBOX (23,02)

MUSIC

TOOLBOX (26,02)
TOOLBOX (27,02)
TOOLBOX (28,02)
TOOLBOX (29,02)
System Loader Al

TOOLBOX (32,02)
TOOLBOX (33,02)
TOOLBOX (34,02)

Part Five: The Apple IIGS ToolBox

Order

B W b e

18 (Last)

A5
A6

Chapter Two: Tool Set Tables 219

Table 5.2.2. Shutdown List

Tool #

W 3 DU LN -

[W+] [} NN NN N D DN = b et ek e e b Pt
f@w%gogmqmwﬁ@m»—tommqmm%wsa—lo

Tool Set Name

Tool Locator
Memory Manager
Miscellaneous Tool
QuickDraw II
Desk Manager
Event Manager
Scheduler

Sound Tool Set
Apple Desktop Bus
SANE

Integer Math

Text Toal set
Internal Use
Window Manager
Menu Manager
Control Manager
System Loader
QuickDraw I1 Aux.
Print Manager
LineEdit Tool
Dialog Manager
Scrap Manager

Stnd File Operation

{Not Defined)
Note Synthesizer
Note Sequencer
Font Manager
List Manager
ACE Tool
Resource Manager
(Not Defined)
MIDI Tool

Video Overlay Card
Text Edit Tool

Shutdown by

Library Routine
Library Routine
Library Routine
TEXT

TEXT (if started as (d)
TEXT if started as (d)
Library Routine
SILENCE
Library Routine
Library Routine
Library Routine
Library Routine
Cannot Be Called
TEXT if started by (d)
TEXT if started by (d)
TEXT if started by (d)
Do Not Call
TOOLBOX(18,03)
TOOLBO0OX(19,03)
TOOLBOX(20,03) (d)
TOOLB0X(21,03) (d)
TOOLBOX(22,03) (d)
TOOLBOX(23,03)

SILENCE
TOOLBOX(26,03)
TOOLBOX(27,03)
TOOLBOX(28,03)
TOOLBOX(29,03)
System Loader

TOOLBOX(32,03)
TOOLBOX(33,03)
TOOLBOX(34,03)

Oi'der

29 (last)
25
21
19
First
17
20
11
28
24
27
20
NA
16
14
15
NA
18
3
13
12
6

7

10

23
22

A5

Part Five: The Apple IIGS ToolBox

220

Tool #

08
10
14
15
16
18
19
20
21
23
25
26
27
29
31
32
33

Chapter Two: Tool Set Tables

Table 5.2.3 Tool Sets Direct Page Memory Requirements

Tool Name

QuickDraw IT
Event Manager
Sound Tool Set
SANE Tool Set
Window Manager
Menu Manager
Control Manager
QuickDraw II Auxiliary
Print Manager
LineEdit Tool
Dialog Manager
Standard File

Note Synthesizer
Note Sequencer
Font Manager

ACE Tool

(Not Defined)

MIDI Tool

Video Overlay Card
Text Edit Tool

Direct Page Allocation

Yes, 768 bytes

Yes, 256 bytes

Yes, 256 bytes

Yes, 512 bytes

No, Shares Tool 06 Direct Page
Yes, 256 bytes

Yes, 256 bytes

No, Shares Tool 04 Direct Page
Yes, 512 bytes

Yes, 256 bytes

No, Shares Tool 16 Direct Page
Yes, 256 bytes

No, Shares Tool 26 Direct Page
Yes, 768 bytes

Yes, 256 bytes

Yes, 256 bytes + memory for buffers

Yes, 768 bytes + memory for buffers
Unknown
Yes, 256 bytes

Part Five: The Apple IIGS ToolBox

Chapter One: Program Debugging 221

Part Six: Program Management

Chapter One

Program Debugging

Overview

This chaper is designed to help you debug your programs.
What Is Debugging? Debugging is the act of finding errors within a program.

In general, two classes of errors can occur in a program; syntax errors and logic
errors.

Syntax errors occur when the syntax rules of the language are violated and are
caused mainly by typing errors or by a misunderstanding of the rules of the language.
These errors are almost always very easy to solve and will not concern us here.

Logic errors are much more difficult to determine than syntax errors and occur when
a program is not properly designed to solve the problem in question. Logic errors cause
the program to give different results and/or behave differently than what was expected.

No language system can find such logic errors because no language system can do
what a human can do, think. The most a language system can do is to give the
programmer some tools to help him/her find these logic errors. This is what Micol
Advanced BASIC does and this is the subject of this chapter.

Debugging Statements

Often, a variable has a different value than is intended, or an area of code has
executed when it should not have executed, or vise-versa.

Programs do exactly what you tell them to do; they do not do what you think you tell
them to do. This is very often the cause of logic errors; the progr..nmer has told the
computer to do something other than had been intended. Do not assume that any code is
automatically correct, this is a big mistake.

Another cause of logic errors is that the programmer has devised an incorrect
solution to the problem. The program operates as intended, but incorrect results are
coming out. This is a more serious problem, and more difficult to solve. Once the
problem is located, the code must be rewritten.

The following statements are designed to help inform you where you are going
wrong; they cannot find the problems themselves. Use these commands wisely, and your
job will be a lot easier.

Part Six: Program Management

222 ' Chapter One: Program Debugging

BELL

BELL can be a good tool to help you find your logic errors. Just place BELL in the
section(s) of code where the program seems to be malfunctioning. If the speaker beeps
when it should not or fails to beep when it should, a bug may have been found in the
program. The beep gives you an aural message telling that something may be wrong.

Example:

IF PEEK (202) = 2 THEN BELL

PRINT

Insert a PRINT statement at strategic points in the program to determine what the
contents of a particular variable are.
Example:
Alpha% = PEEK (True_Value)
PRINT “Alpha% = “; Alpha

STOP

STOP halts the program’s execution, prints the line number where the program
halted, and returns control to the Command Shell while using the programming
environment.

Line number information can be valuable information in debugging as it is
sometimes the case that a particular line should or should not be executing at a certain
point in the program’s execution. Then it’s necessary to trace the logic in your program
to determine why the program flow got to where it did.

This is what is known as setting a break point, and is the most frequently used
debugging technique in assembly language programming. Break points may also be
useful in high level debugging.

STOP may be placed anywhere in a prograr. as it closes all text files currently open
and sets the screen to text mode.
Example:
Variable = 3
IF Variable = 3 THEN STOP

TRACE

TRACE will print the sequential line numbers of the program as the line or
structured loop statement is executing. Tracing a program’s flow can be a great aid in
determining the program’s actual logic.

TRACE may be placed anywhere in a program and follows the flow of execution used

Part Six: Program Management

Chapter One: Program Debugging 223

in the program.

To use TRACE, place it before the location from which you wish to begin the trace of
your program. Any code executing before TRACE will not be displayed.

The tracing may be paused by pressing any non-Control character. Restart the
tracing by pressing any non-Control character again.

WARNING) 0 s
Do not use the OPTIMIZ compiler option as it hinders
the generation of line information required by TRACE.
Example:

PROGRAM Try_Trace
PRINT "“This program will be traced”
HOME
TRACE
FOR Number$% = 1 TO 4
PRINT “Number% = *;Number%
NEXT Number$
NOTRACE {Turn off the TRACE}
END

STRACE

STRACE stands for SuperTRACE. STRACE will print the sequential line nu:;ibers
of the program and the text of the line that is executing to the current output device as
the line is executed.

To use the STRACE command, place it before the location at which you wish fo
begin the trace of your program. Any code executing before the STRACE will not be
displayed. STRAC ' may be placed anywhere in a program

STRACE follows the flow of execution used in the program; so the lines will not be
shown consecutively.

The fracing may be paused by pressing any non-Control character. Restart the
tracing by pressing any non-Control character again.

WARNING

STRACE takes the text it displays from the program
currently in the Text Editor. This means that the
program you wish traced must be in the Text Editor,
which is normally the case. Do not use the OPTIMIZ
compiler option.

Part Six: Program Management

224 Chapter One: Program Debugging

Example:
PROGRAM Try_ STRACE

STRACE (Turn on the STRACE}
HOME
FOR Number% = 1 TC 2
PRINT Number%
NEXT Number%
NOTRACE
PRINT
PRINT “This program has been traced”
END

The above program produces something like this on the screen:

/<3>HOME\

/<4>FOR Number% = 1 TO 2\
/<5> PRINT Number%\

1

/<6>NEXT Numberk\

/<4A>FOR Number% = 1 TO 2\
/<5>PRINT Number%\

2

/<6>NEXT Number%\
/<7>NOTRACE\

NOTRACE
NOTRACE turns off the effects of a TRACE or STRACE. The number of the line

and its text of code will no longer appear after NOTRACE is executed.
Example: (see example under TRACE and STRACE.)

Part Six: Program Management

Chapter Two: Program Optimization 225

Chapter Two

Program Optimization

Overview

This chapter discusses some simple tricks to help you maximize the speed of your
programs while at the same time minimizing the program size.

Saving Memory

Because of the large amount of memory available to the Apple IIGS, you may never
have to worry about memory used for either programs or data. Under Micol Advanced
BASIC, a program may have a maximum of over one million bytes and data space is
limited only by the available memory in the machine.

However, if you have a system with only 768K, this section may be of use to you.
Consider buying more memory as soon as your finances permit.

Generally, the tricks to help save memory are the same as in Applesoft BASIC.

Working within the Editor’s Workspace

The text editor has enough work space for about 4000 lines of code. Use INCLUDE
or CHAIN in the program if the program exceeds 3000 lines.

Saving Space in a Program

« Use the OPTIMIZ compiler option once your program is free of bugs; this can
shrink your programs as much as one-third. If limited space is a problem during
program development, you may use this compiler option to save memory, but
determining where run time errors occur will become much more difficult.

* Avoid the use of the ERROR compiler option. The only function this compiler
option has is in regards to the RESUME command, but ERROR causes a
significant amount of code generation. You will have to handle your error
recovery in a different fashion.

« Analyze your programs for repeated code. It may be possible to create one
subroutine that will do the work of several portions of your program.

« Use arrays as rarely as possible. If you must use arrays, use integer arrays
whenever possible. Do not make arrays any larger than you have to.

» Avoid DATA statements. DATA statements require significant memory. Data
may just as well be stored on disk and recalled at run time.

» Do not use the EXTEND or the LONGINT compiler options if very large arrays

Part Six: Program Management

226 Chapter Two: Program Optimization

are used within your program.
« Avoid mixed arithmetic. Mixing reals and integers within a statement forces the
Compiler to generate extra code, code that may possibly be avoided.

« As with any programming language, code efficiently.

Speeding Up Your Programs

Certain methods may be used to make a program execute more quickly. Some of the
tips mentioned above apply here too.

» Make use of the OPTIMIZ compiler option as soon as your program is
completely free of bugs. The code required for debugging purposes usually takes
significant time to execute. Once your program is debugged, this code no longer
has a useful purpose and may be eliminated.

« Do not mix your arithmetic. If calculating in real, be consistent with real;
likewise for integers.

» Use integer variables whenever practical. Micol Advanced BASIC has its own
built-in integer routines. The average increase in speed over real arithmetic may
be as great as 300%.

« Use arrays wisely. Some time is needed at run time to calculate the address of
the array element. However, if you have an algorithm which is faster than
another and uses arrays, feel free to use them

+ Avoid disk access as much as possible. If you have frequent disk access with the
same file(s) being read again and again and you also have a lot of available
memory, make use of a RAM disk together with the COPY command to transfer
the files from a static disk to the RAM disk before your program reads these files.

Part Six: Program Management

Chapter Three: Program Segmentation 227

Chapter Three

Program Segmentation

Overview

This section shows how to segment both source code and executable load modules
under Micol Advanced BASIC and how to conceive large programs which would
otherwise be very difficult to do.

Chaining Source Code Files

For very large programs, it may be necessary to segment your source code into two or
more portions in order to manage the source code within the Text Editor. Micol
Advanced BASIC has two methods to allow you to segment your program code: chaiming
text files, and creating a library of modules. Because the creation of library modules has
been discussed in Part Three, Chapter 9 in this manual, it will be only briefly discussed
here.

Segmenting the Source Code Files

In order to segment the source code file, you must first decide where you can logically
brealk the program. You must make every attempt to keep subroutines intact.

Using the Text Editor, break this large program into several smaller source code files.
To be safe, keep the original file safe just in case something goes wrong.

Then, simply terminate each source code segment, except the last, with a CHAIN
statement, using the next source code filename as the CHAIN string parameter.

The second, and subsequent source code file(s) begin without a PROGRAM
statement. The next file finishes with an END or with another CHAIN if another file is
to be chained.

CHAIN String_Literal

The CHAIN statement must be the only statement on the line. It should be the last
statement in the file: any subsequent line(s) of code following the CHAIN statement will
be ignored by the Compiler.

String_Literal must be the Pathname of the source code file you wish to compile after
the previous source code has finished compiling. The only accepted parameter to
CHAIN is a string literal; a string variable will be rejected by the Compiler.

The file referenced must be online at the time of compilation, otherwise the
appropriate operating system error will occur.

The Compiler displays the message “Chaining <Pathname>” before it starts reading

Part Six: Program Management

228 Chapter Three: Program Segmentation

the file to be chained.

Example:
(Contents of file: Chainl)
PROGRAM Chain_Example
@ LIST
FOR Ctr% = 1 TO 10
PRINT Ctr%
NEXT Ctr%
CHAIN “/RAM5/Chain2"™

(Contents of file: /RAMS/Chain2)
FOR Ctr$ = 11 TO 20

PRINT Ctr$
NEXT Ctr% (End of chained program}
END

How to Debug a Chained Program

The Compiler does not number the lines of a segmented chained program the same
way the Editor does; the Text Editor always begins numbering from the first line in the
editor buffer.

During compilation, the chained file is treated as if it were a part of the previous file.
This means that the sequential line numbers continue uninterrupted. If an error with a
specific line number within a chained file occurs during execution, you will have to
recalculate its editor line number to be able to correct the problem in the Editor. The
same situation is true of syntax errors.

Consider using the INCLUDE statement as an alternative method of compiling
large source code files. See Chapter Nine in Part Three for additional information.

Segmenting Executable Code Files

Micol Advanced BASIC programs may be a maximum of about one megabyte of
memory. However, because of a limitation of the Apple IIGS microprocessor, a single
program code segment may only occupy a maximum size of 64 kilobytes (one bank) of
memory. The variable space is separate and is not affected by this limitation.

The vast majority of programs will not require a program space larger than 64
kilobytes, however, some will. Micol Advanced BASIC overcomes this 64K limitation
with the creation of executable program segments.

A segment is a large, self-contained program section. The segment is used to break a
program when it can no longer fit in one memory bank (64K).

A program using segments need not be broken up into different program files as
could be expected, but, space permitting, may be stored in a large continuous file.

Part Six: Program Management

Chapter Three: Program Segmentation 229

The Compiler resets its internal program counter to zero when it compiles a new
segment and generates code that will cause the Loader to load this program segment as
a separate entity and store its loading location in a suitable location.

How to Segment a Program

A Micol Advanced BASIC program may have up to sixteen segments sequentially
numbered from 0 to 15. Each segment is given a sequential value by the Compiler; take
note of this number as it will be needed to start the execution of the segment. The
Compiler will display a message when it recognizes a new segment, and will display the
number given to the segment.

Each segment shares the entire variable space with all other segments, so any
change in global values in one segment will also be recognized in the others.

The executable code of segment zero (the starting segment) should not be larger than
50K to leave room for maintenance. All segments should leave room for enhancements
of current features, and additions of new features. If the segment is too large for a single
memory bank, the Linker will repert that program space is exceeded.

The first segment containing the line PROGRAM Identifier is segment zero;
execution always begins with segment zero. Compiler directives, declaration of literal
data, type identifiers, and DIMension statements may appear only in segment zero.

Because one segment cannot have direct access to the Functions, Procedures and
Routines of another segment, all segments must be self-contained. Functions,
Procedures and Routines necessary to one or more segments have to be duplicated in
each of the segments needing them.

You may use the CLEAR statement only in segment zero; otherwise the program
may crash.

SEGMENT [Identifier]

The SEGMENT statement forces the Compiler to segment a program. It must be
the first and only statement on a line of code.

. ZGMENT may have an optional segment identifier. The segment identifier shquld
be a digit or word which describes the segment and is designed to help in documentation;
it is ignored by the Compiler.

The keyword SEGMENT signals the end of the preceding segment and the start (?f
the new one. When the Compiler encounters the reserved word SEGMENT, it
generates code which will inform the Micol system loader to load that segmen_t of code as
a separate entity, and to set the program counter of the microprocessor accordingly.

Using a Segmented Program

Like a Function or Procedure, a segment will not execute by letting the program flow
reach the SEGMENT statement; the segment must be called using CALL.

230 Chapter Three: Program Segmentation

CALL Segment_Number

The CALL statement branches the program flow to the segment number in'dicated.
Segment_Number must be a digit between 0 and 15. If the segment number is not of
this range, an error will be signaled during compilation.

WARNING _
Do not use the CALL statement from a Function,
Procedure, or Routine, as the maintenance done at the
end of the modules has not been completed.
Example:

PROGRAM Segment Ex1
{This 1s segment zero}
IF Counter% = 0 THEN HOME {Want only one HOME executed}
IF Counter% < 5 THEN BEGIN
PRINT “Counter = ”; Counter%
PRINT “Start of segment zero”
FOR Ctr% = 1 TO 100
PRINT Ctr%
NEXT Ctr%
CALL 1 {Going to Segment One}
ENDIF
END
SEGMENT One
PRINT “Start of segment one”
FOR Ctr% = 101 TO 200
PRINT Ctr%
NEXT Ctr%
CALL 2 {Going to Segment Two}
SEGMENT Two
PRINT "“Start of segment two”
FOR Ctr$ = 201 TO 300
PRINT Ctrk
NEXT Ctr%
Counter% = Counter% + 1
CALL 0 {Going to top of program}
END

This program simply prints the segment number followed by the sequential values

Chapter Three: Program Segmentation 231

five times. Note that the counter is incremented in the final segment, and the test is
done in the program segment.

If another segment has been called using the CALL statement, and the program
must return to the statement following the original CALL, use LRETURN.

LRETURN

LRETURN (for Long RETURN), similar to RETURN, instructs the program to
return to the statement following the CALL statement that called this segment. Only
one LRETURN statement should appear in a segment.

WARNING .
LRETURN must never be used to end a Function,

Procedure or Routine as unexpected results will occur.

Unlike RETURN, no automatic error handling is done with LRETURN, so be
certain there is a segment to return to.
Example:
PROGRAM Seg Example?2
{This is segment zero}
IF Counter$ = 0 THEN HOME
IF Counter% < 5 THEN BEGIN
PRINT Counter$% = ;Counter$%
PRINT “Start of segment zero”
FOR Ctz% = 1 TO 100
PRINT Ctr%
NEXT Ctr%
CALL 1
ENDIF
END {Terminate each segment with END or LRETURN}
SEGMENT One
PRINT "“Start of segment one”
FOR Ctr% = 101 TO 200
PRINT Ctr$%
NEXT Ctrg
Counter% = Counter% + 1
LRETURN {Go back to Segment Zero AND finish}
END {End of program}

Part Six: Program Management

Chapter Four: Linking Assembly Language Programs 232

Chapter Four

Linking Assembly Language Programs

Overview

Sometimes, a specific task cannot be performed by a higher level language or even
greater speed is needed than is possible in a higher level language.

In these cases, a good solution is to integrate (or link) an assembly language module
into your program. Under Micol Advanced BASIC, it is very easy to link in machine
language programs you have developed.

Linking in the Assembly Language Program
LINK PathName

The LINK statement links in the assembly language program specified by
PathName. PathName must be a string literal and is the complete Pathname of the
assembly language file to be linked. The file must be online at compilation time. If it
cannot be found, the Compiler will signal an error. The assembly language program
must be already assembled and error free.

The Compiler will indicate, “Linking file” Pathname when it is linking a Micol Macro
file into a Micol Advanced BASIC program.

Example:
LINK “/Assm.Prog.Util/ClrScreen,B”

IMPORTANT

Micol Advanced BASIC for the GS uses assembly
language files of type MCL ($F1) written with the Micol

Macro GS assembler only. If you uo not have this
assembler, then you may purchase one directly from us.

How to write an assembly language program to be linked into a Micol Advanced
BASIC program:
1. Write the assembly language program as required:

a. Save all the registers at the start of the assembly language source code. Note
that in Micol Advanced BASIC, the CPU is in 8 bit accumulator mode and 16
bit X and Y registers mode

b. At the end of your assembly language code, restore all the registers to the
values they had before the start of the assembly language routine

Part Six: Program Management

233 Chapter Four: Linking Assembly Language Programs

¢. Do Not use an RTL ($6B) or RTS ($60) instruction to end the program; just let
the assembly language code “fall” through. The Micol Advanced BASIC
program will resume on its own

d. Thoroughly test this program for any errors.
2. Link the assembly language file into the Micol Advanced BASIC program:
a. Using the LINK statement, link this assembly language module into your Mico!

Advanced BASIC program where it is required. We recommend allocating a
special Procedure for the assembly language module

b. Remember, it is the MCL file (type $F1) which gets linked in, not the assembly
language source code text file.

Getting a Direct Page

An area of 256 ($100) bytes in memory bank zero is reserved for use as a Direct Page

for your assembly language programs and is placed directly above the one used by Micol
Advanced BASIC.

How to Use this Direct Page

Simply add $100 (256) to the current Direct Page Register upon entry of your
machine language program and subtract $100 from the Direct Page Register upon
exifing your assembly language program.

WARNING .
If you alter the value in the Direct Page register, be

certain you reinstate it exactly as it was before or your

Micol Advanced BASIC program i8 certain to
malfunction.

On the system disk marked /MAB.SU.’PORT, in folder Demo.Files/Prg.Examplesisa

file called LINKDEMO which demonstrates the use of assembly language routines with
Micol Advanced BASIC. You may want to take a look at this file.

Chapter Five: Creating Independent Programs 234

Chapter Five

Creating Independent Programs

Overview

This chapter tells how to take a compiled Micol Advanced BASIC program out of the
programming environment - making it “stand alone”, and execute it with a program
launcher such as the Finder or as a turnkey system.

There are many ways to make Micol Advanced BASIC programs stand alone. This
chapter will explore all the possibilities. Pay special attention if you intend to use your
programs outside of the normal Micol Advanced BASIC programming environment.

Creating a Startup Disk for Launchable Programs

To create a system disk which you may use with the programs created with Micol
Advanced BASIC, take the following steps (you may use any suitable GS/OS or ProDOS
8 copy utility (the Finder or Copy II Plus will do just fine):

1. Make an exact copy of the Micol Advanced BASIC System Disk (the disk labeled
Master Disk). You may change the name of this copied disk, if you wish.

2. From this new copied disk, in folder Micol.Adv.BASIC/, remove the files
COMPILER.SHELL, EDITOR, AutoExec and the UTILITY folder. This
should only leave the files MicoLAdv.BASIC and LIBRARY remaining.

3. Move the Finder to this new disk:
a) Delete the file named START under folder SYSTEM/ of the new disk

b) Copy the file Finder from the MAB.SUPPORT disk (under the SYSTEM/
folder) to the SYSTEM/ folder of the new disk

¢) On the new disk, rename file Finder to Start.

4. Locl .he files and label your disk with an appropriate name. You should also
include the version number of Micol Advanced BASIC you are using, as well as
the version number of the operating system.

Now, if you boot this new system disk, you may directly launch your Micol Advanced
BASIC programs by double clicking them with the Finder. Note, that such a disk canpot
be booted for program development, as the Loader will be searching for the non-existant
files COMPILER.SHELL and EDITOR in the MicolLAdv.BASIC folder.

Hard Disks and Launchable Programs
A normal Micol Advanced BASIC program may be easily launched directly from a

hard disk using the Finder and need not be converted to a GS/OS application.
What is required to launch Micol Advanced BASIC programs from the Finder are:

Part Six: Program Management

235 Chapter Five: Creating Independent Programs

1. Afolder called MicolLAdv.BASIC directly under the boot volume. The boot volume
i8 the volume that the operating system, GS/OS, was taken from when your
computer was started up (this is probably your hard drive).

2. The files Micol.Adv.BASIC and LIBRARY taken from the MicolLAdv.BASIC
folder of the disk labeled Master Disk. These files must reside in the folder
Micol.Adv.BASIC described in 1.

3. The file MicoLIcon from the Icons folder from the disk labeled Master Disk. This
file must reside in the Icons folder of the boot volume.

Now if, after booting, you were to double click a Micol Advanced BASIC program
icon from the Finder, the Micol Loader will load and begin execution of the separate run
time Library and BASIC program as if they were a merged application file.

IMPORTANT

Utilizing the method described here as opposed to
creating S16 files described below, has the major
advantage of keeping your compiled programs small and
can save a great amount of valuable disk space and speed
loading time. The method described here is the
recommended method for creating launchable programs.

Stand Alone Micol Advanced BASIC Programs

A Micol Advanced BASIC program which is completely self-sufficient (converted to a
TurnKey system, an S16 application or a CDA) is written just like any other program.
The one rule you must follow is that the Micol Advanced BASIC program must be
thoroughly debugged before you make the conversion. This is because the Micol
Advanced BASIC Programming Environment is designed for program debugging, and
stand alone applications are not. If a bug should appear in a stand alone application,
you will have to return to the programming environment to locate the problem.

How Micol Advanced BASIC Boots

In order for you to better understand what is required to create a stand alone
application, we will describe what happens when you boot Micol Advanced BASIC from
disk.

Contained under the SYSTEM folder on the booting volume is the Micol Advanced
BASIC loader named START. After the operating system (GS/0OS) has booted, START
is the first file executed. During its execution, START searches first for the run time
Library (file LIBRARY) located in a folder called MicoLAdv.BASIC under the boot
volume. If this search is unsuccessful, it begins the same search, but this time on the
same volume and directory as START is located. If this search fails, it searches outer
directories until it locates LIBRARY in any folder, or the search fails.

Once LIBRARY is found, the folder in which LIBRARY resides is set as the system

Chapter Five: Creating Independent Programs 236

folder from which all subsequent system access is done.

If a file called MICOL.SYSTEM is detected of type MAB ($F2), it iz assumed the
disk is a turnkey disk, and attempts to load the run time Library and load and execute
the file MICOL.SYSTEM.

If the file MICOL.SYSTEM is not detected, it is assumed the system is intended for
program development, and the files COMPILER.SHELL, EDITOR arnd LIBRARY are
loaded, and you are placed into the programming environment.

If all of these tests fail, the file START issues an error message and gives up.

The file Micol.Adv.BASIC contained under the folder Micol.Adv.BASIC/ on the
Master Disk is identical to the file START just described. This file is intended for
launching Micol Advanced BASIC programs directly from a program launcher. This
process was described earlier in this chapter.

Creating a TurnKey System

A TurnKey system is simply a program that automatically executes when the disk on
which it resides is booted. The normal GS/OS system disk is actually a TurnKey system
for the Finder, as the Finder is automatically executed after GS/OS has booted. You will
be creating a similar system, but for a Micol Advanced BASIC program.

To create a TurnKey system, take the following steps (you may use any suitable
GS/0S or ProDOS 8 copy utility such as the Finder or Copy II Plus):

1. Make an exact copy of the Micol Advanced BASIC System Disk (the disk labeled
Master Disk). You may change the name of this copied disk if you wish.

2. From this new copied disk, in folder MicolLAdv.BASIC/, remove the files
COMPILER.SHELL, EDITOR, Micol.Adv.BASIC, AutoExec and the
UTILITY folder. This should only leave the file LIBRARY remaining in this
folder.

3. Copy the Micol Advanced BASIC program you wish to be automatically executed to
the folder Micol.Adv.BASIC/ on this new disk.

4. Rename this Micol Advanced BASIC program to MICOL.SYSTEM.
5. Copy all files required by your Micol Advanced BASIC program to this new disk.

Now, whenever this disk is booted, your Micol Advanced BASIC program will
automatically load and execute.

Creating GS/OS Applications

There is a utility on the MAB.SUPPORT disk in folder MAB.T0Q.S16/ which you may
use to make the conversion from a normal Micol Advanced BASIC program to an S186
GS/OS application file. This utility is called MAKE.SA. Also in the same folder is a
special version of the run time Library, file LIBRARY.S.A which will be merged with
your program to make the S16 application.

NOTE

NOTE

NOTE

237 Chapter Five: Creating Independent Programs

The 516 files created with the method described here are
much larger than the normal Micol Advanced BASIC
compiled programs. This means they occupy much more
memory on disk, and require more time to load. In earlier
versions of Micol Advanced BASIC, it was not possible to
launch programs directly from a program launcher. This

is the main reason the method described here was
devised. Unless you have some pressing reason for
having a single, self-contained application on disk, we
recommend you keep your Micol Advanced BASIC
programs in the normal format and follow the rules on
making your programs launchable described above.

Take the following steps to create your independent S16 application:

1. Start Micol Advanced BASIC.

2. Once the command shell prompt appears, insert the disk labeled MAB.SUPPORT
into a suitable drive.

3. Using the PREFIX command, set the default prefix to
/MAB.SUPPORT/MAB.TO.S186.

4. Enter RUN MAKE.SA followed by a carriage return (remember the system will
append the .LNK extension automatically).

5. Follow the instruction which appear on the screen. You will receive detailed
instructions what to do next. Briefly, two inputs are required: the Pathname of
the file to be converted (complete with extension, if any) and the Pathname the
converted file will have.

By specifying the full Pathname each time, you may
convert any MAB file on the system, and have this file
written to any volume anywhere within the system.

If you include files MAKE.SA and LIBRARY.S.A, just
described, inside the UTILITY folder under the Micol
Advanced BASIC system folder, you may create S16
applications by simply entering MAKE.SA<CR> from the
Command Shell. This method is only suitable if you have
a hard drive.

Part Six: Program Management

Chapter Five: Creating Independent Programs 238

Creating Classic Desk Accessories

Micol Advanced BASIC supports two types of CDAs, Primary CDAs and Secondary
CDAs.

Contained on the MAB.SUPPORT disk, under folder MAB.TO.CDA, is a utility for
converting your MAB programs to CDAs. Also under this folder are two versions of the
run time Library designed for creating CDAs: LIBRARY.CDA is intended for merging
with your MAB programs to create Primary CDAs, and a dummy run time Library,
LIBRARY.SML, intended for creating Secondary CDAs.

All systems that contain CDAs written under Micol Advanced BASIC must have one
Primary CDA. This is because the Primary CDA contains the full run time Library
which all CDAs, including Secondary CDAs, will use. For this reason, your first CDA
must be a Primary CDA, and all other CDAs must be Secondary. Secondary CDAs are
little more than a MAB file converted to CDA type files.

The Primary CDA must always be executed first. This is
because there are pointers that must be set for the
Secondary CDAs to use. If you attempt to access a
Secondary CDA without first having executed a Primary
CDA, the computer will probably crash.

In order to convert a MAB file to a CDA, take the following steps:

Boot Micol Advanced BASIC.

Insert the disk labeled MAB.SUPPORT into any suitable drive.

At the Shell monitor, enter PREFIX /MAB.SUPPORT/MAB.TO.CDA/<CR>.
Enter RUN MAKE.CDA<CR>.

Follow the detailed instructions that appear on the screen. This utility functions
essentially the same as the MAKE.SA utility described above.

Once the conversion is completed. copy the CDAs to the folder
SYSTEM/DESK.ACCS/ on the boot volume. The next time this disk is booted, these
CDAs will appear in the control panel of your Apple IIGS.

A o

Part Six: Program Management

Chapter Six: Converting Applesoft Programs 239

Chapter Six

Converting Applesoft Programs

Overview

Micol Advanced BASIC is a language system that is based on Applesoft BASIC. This
means, that when Micol Advanced BASIC was first being developed, Applesoft was
taken as the root language. Structured capabilities and the ability to access the power of
the Apple IIGS were added to make what is now Micol Advanced BASIC for the Apple
IIGS.

What this means to you is that, with a little work, you should be able to use your
Applesoft programs under Micol Advanced BASIC.

It is the purpose of this chapter to explain most of the modifications you will have to
perform in order to compile your Applesoft programs as Micol Advanced BASIC
programs.

Source File Conversion

Applesoft files are essentially tokenized text files. Whenever you entered an
Applesoft line of code and pressed Return, you probably noticed a slight delay before the
curgor returned. - This delay was caused by the Applesoft interpreter tokenizing this line
of code. This means the Applesoft reserved words were converted into numeric
equivalents, pointers to the next line were established and line numbers were converted
into binary. This was done to speed the execution of the Applesoft program. If you think
Applesoft is slow, think how slow it would be if these lines had not been tokenized.

The first task you will have to perform is to convert these Applesoft source files into
text files which Micol Advanced BASIC can use. Don’t worry, this task has been largely
automated, so all you have to do is follow a few steps.

There is a file on the MAB.SUPPORT disk, under the volume directory, called
CONVERT designed wo convert your Applesoft programs to text files. Simply take the
following steps:

1. Boot any ProDOS 8 System Disk. This will probably be the disk you used when you
were originally developing your Applesoft programs.

2. Load the Applesoft program you want to convert into memory. This program must
not have a line number less than twenty.

Insert the MAB.SUPPORT disk into any suitable drive.
Enter EXEC /MAB.SUPPORT/CONVERT<CR>. \
Enter RUN<CR>. Your Applesoft program will be converted into a text file.

Enter SAVE <Pathname><CR> where Pathname will be the source filename of this
text file.

7. Boot Micol Advanced BASIC and get into the Text Editor.

S Ov o Lo

Part Six: Program Management

240 Chapter Six: Converting Applesoft Programs

8. Load this converted text file into the Micol Advanced BASIC source code Editor.

You are now in a position to make the changes required to compile this file.
Unfortunately, your first task will be to remove the leading spaces in each line generated
by the file conversion.

General Conversion Rules

Following is a list of things to look out for when modifying a converted Applesoft
program into a Micol Advanced BASIC program. Although this list is as complete as
possible, we unfortunately cannot forsee every circumstance. Some problems probably
will require a good knowledge of Micol Advanced BASIC.

DIM Statements

Applesoft allows DIM statements anywhere in a program and the dimensioning may
be done with variables. Micol Advanced BASIC requires the DIM statements to be at
the top of the program, and only integer literals are accepted as parameters.

DATA Statements

DATA statements must be at the top of the program, they cannot reside anywhere as
in Applesoft. The following rules also apply with DATA statements:

1. Quotation marks must be around string literals, for example “This is a string”.

2. Values read into real variables must be expressly specified as reals. For example,
22 must be written as 22.0.

3. No empty entries such as ,, are allowed.

Strings
If you are forcing a string garbage collection with a PRINT CHR$(4); “FRE (0)”,

simply remove it. Qur garbage collector is far faster anyway.

String functions such as LEFT$ and MID$ check for overflow errors which Applesoft
does not do. You may have to check the string lengths before making these calls.

Slot Input/Qutput

Replace IN# and PR# with INSLOT and OUTSLOT respectively. Refer to the
appropriate sections in this manual to understand the use of these commands.

Part Six: Program Management

Chapter Six: Converting Applesoft Programs 241

Turning the Printer On and Off

Turn the printer on with a PRTON instead of PR#1. Your printer must be in slot
one, however.

Turn the printer off and the screen on with a TEXT.

PRINTing

Unlike the PRINT statement in Applesoft, semi-colons are required and cannot be
implied. The statement PRINT “Your name is ” N$ may be rewritten as PRINT
“Your name is ”; Name$

FLLASH Command

FLASH is not supported. Replace FLASH with INVERSE.

Cursor Positioning

HTAB and VTAB require parentheses around the parameter. SPC, TAB, and POS
must have a semi-colon following the parameter to hinder a carriage return.

Control of Flow

1. IF <Real Variable> THEN is not allowed. Only boolean variables may be so used.
You may replace this statement with IF <Real Variable> > 0 THEN.

2. IF Relop GOTO is not allowed. An IF statement requires a THEN.
3. NEXT without its corresponding variable is not allowed. You will have to explicitly
_specify this variable.
4. Statements like NEXT X, Y are not allowed. These should be rewritten NEXT X
NEXTY.

5. FOR loops behave a little differently than they do under Applesoft. If you are
having trouble with your FOR loops, check the FOR loop rules described in this
manual.

High Resolution Graphics

Under Appleseft, High Resclution graphics only has a resolution of 280 by 192.
Under Micol Advanced BASIC, although the Super High Resolution graphics commands
are the same as Applesoft’s High Resolution graphics commands, the resolution is much
higher.

Under Micol Advanced BASIC’s Super High Resolution graphics, the resolution is

Part Six: Program Management

242 Chapter Six: Converting Applesoft Programs

either 320 by 200 (for HGR) or 640 by 200 (for HGRZ2). You will have to modify the High
Resolution graphics coordinates in your Applesoft programs accordingly.

Also, the colors you set using the COLOR command are different; Micol Advanced
BASIC has far superior colors to Applesoft. You will have to determine the best colors for
your graphics and redefine them.

Shape Tables are not supported. You will have to create these shapes using the
Functions described in Chapter Ten, Part Three of this manual.

PEEKs and POKESs

Some of the addresses you may have referenced in your Applesoft program with
PEEKSs and POKEs may be different under Micol Advanced BASIC. In particular, pay
attention to addresses in zero page, that is, addresses betweeen 0 and 255.

Check Appendix A in this manual. Appendix A is the memory map for Micol
Advanced BASIC. This should tell you which locations need to be modified. Note that
some locations have no equivalent.

Functions

Any DEF FN lines may be converted to multi-line functions using the
FUNC..ENDFUNC construct.

Disk Filing

Filing commands are the most complicated to modify. Unfortunately, these lines will
have to be rewritten. Here are some thing to note:

* PRINT CHRS (4); has no affect on the operating system under Micol Advanced
BASIC

« Setting a new default prefix is PREFIX “String” or PREFIX Svar

+ Getting the default prefix is Volume_Name$ = PREFIX$

* You will have to use CATS$ to get a catalog

The following tables should help you make additional filing conversions:

Sequential Access Commands

Reading a File
Applesoft Micol Advanced BASIC
“OPEN /VOL NAME/FILE NAME” ROPEN (1) “VOL.NAME/FILE NAME”

“READ VOL.NAME/FILE.NAME”

Part Six: Program Management

Chapter Six: Converting Applesoft Programs 243
“INPUT L$” INPUT (1) Line$
“CLOSE VOLNAME/FILE.NAME” CLOSE (1)
ONERR GOTO <Line Number> IF EOF (1) THEN <Stms:»
Writing a File
Applesoft Micol Advanced BASIC

“OPEN /VOLNAME/FILE NAME”
“DELETE VOL.NAME/FILE NAME”

“OPEN VOL.NAME/FILE.NAME” WOPEN (1) “VOL.NAME/FILE.NAME”
“WRITE /VOL.NAME/FILENAME” '
“PRINT L$ PRINT (1) Line$

“CLOSE /VOL.NAME/FILE NAME” CLOSE (1)

If you are using random access files in your program, then you will have to learn the
use of the SEEK command in Micol Advanced BASIC. Its usage is too complicated to
explain here.

Note that the PRINT CHRS (4); statement in the above tables has been removed
from the Applesoft lines for reasons of space.

Go for It

Now that you have made the conversion, the fun can begin. Start using Micol
Advanced BASIC as more than just an Applesoft compiler.

The first thing you will probably want to do is speed up your programs. If practical,
convert the real variables into integers. You may want to use the Compiler Directive
INT (A-Z) to force all reals to integers; then, in your program, you may selectivly convert
some of these integers into reals with the “&” character.

Add structure to your programs. Make your arrays larger. Use extended arithmetic.

‘Ete. Ete. Now, get your money’s worth out of Micol Advanced BASIC.

Part Six: Program Management

B

Appendix A: Memory Usage

Appendices

Appendix A

244

Memory Usage

Because all of Micol Advanced BASIC’s system files are relocatable, we cannot tell
you where the Compiler, Editor and run time Library reside in memory. These locations
will vary according to the conditions under which they were loaded. Besides, there is
probably no time that you will need to know these locations as the files generated by the
Linker are also relocatable load files and will load in the locations the system says are

free.

Note the distinction between Direct Page locations for the run time Library given
bere, and Zero Page locations used by Applesoft. There is no relationship between the
two. Because of system requirements, we could not make any locations the same, so all
PEEKs and POKEs to Zero Page under Applesoft will have to be modified. Some
locations in Applesoft will have no comparable locations in Micol Advanced BASIC.

Location Usage

0

1-2

3

4-5
6-15
16-17
18-19
20-23
24-25
26-27
28-31
32-35
36-39
40-41
42-43
44-45
46-47
48-55
56-59
60-73

$5C, Absolute long jump constant
COUT vector, absolute address
COUT bank vector, part of bytes 1-2
Mazx. characters allowed for INPUT
Temporary storage

Temporary string usage

Long Integer flag

Temporary storage

Library routine n* nber

Free locations

Variable one relative location
Variable two relative location
Variable three relative location
Integer random number

WAVE and INSTRUM buffer counter

Left border of text screen
Right border of text screen
Misc. usage

Pointer to DATA storage
Misc. usage

Comment

Don’t Modify
LSB, MSB order, restore if modified

3 bytes together for long address jurp

Default of 255

Don’t modify

Frequent usage

Don’t Modify

ML usage okay

Set by Linf:ér, don’t modify
ML usage okay

Don’t Modify

Don't Modify

Don’t Modify

Don’t Medify

See WAVE & INSTRUM
Modify to shrink text screen
Modify to shrink text screen
Don’t modify

Don’t Modify

Don’t modify

Appendices

245

Location

74
76-95
96-99
100-101
102-103
104-115
116-117
118-119
120-127
128-129
130-131
132-135
136-143
144-145
146-147
148-151
152-153
154

155
156-157
158-161
162-165
166-169
170-173
174177
178-181
182-185
186-187
188-189
190-193
194-197
198

199

200

202
204-205
226-239

Usage

Back space flag

Misc. usage

Fast file buffer pointer

Bottom of text screen

Top of text screen

Misc. usage

Horizontal position of cursor
Vertical position of cursor

Screen output usage

PRINT USING usage

PRINT USING misc. usage
Misc. usage

Internal string usage

Cursor character, default inverse space
Output character mask (default 255)
Video memory

Internal stack counter

Library error code storage

GS/0OS error code storage
Extended real storage flag
Actual address of first variable
Actual address of second variable
Actual address of third variable
Start of DATA storage ‘
Last byte of DATA storage

Start of string storage

End of string storage

SPEED setting

TRACE flag

ONERR GOTO address
RESUME address

PRINT USING “,” character
PRINT USING “$” character
PRINT USING “.” character
True Value

Line number where error occurred
Misc. uses

Appendix A;: Memory Usage

Comment

Delete mode flag for INPUT
ML usage okay

Don'’t Modify

Modify to shrink screen
Modify to shrink screen

ML usage okay

Best not to modify

Best not to modify

Don’t Modify

Don’t Modify

Don’t Modify

ML usage okay

Don’t Modify

Modify for another screen cursor
Modify will change output char.
Don't Modify

Don’t Modify

Needed in error trapping
Needed in error trapping
Don’t Modify

Don’t Modify

Don'’t Modify

Don’t Modify

Don’t Modify

Don’t Modify

Don’t Modify

Don't Modify

Set by SPEED, don’t Modify
Set by TRACE, don’t Modify
Don’t Modify

Zero if no ERROR comp. option
Modify as required

Modify as required

Modify as required

Many uses

Useful in error trapping
Don't Modify

Appendix A: Memory Usage 246

Location Usage

240-255 System usage

$E100EC-$E100EF
$E100F0-$E100F3
$E100F4-$E100F7
$E100F8-$E100FB

Comment

Protected, POKESs cannot modify

Other Memory Usage

Secondary CDA jump location

Jump location to Run Time Library

Jump location to integrated Compiler/Shell
Jump location to Text Editor

Appendices

Appendix B: Screen Output 247

Appendix B

Screen Output

Micol Advanced BASIC has its own super fast screen output routines, as you
probably already have discovered. The screen output, however, functions very much as
the screen output on older Apple IIs in that certain control codes perform certain actions,
and certain memory locations control certain features. We will describe these briefly
here.

Use PRINT CHRS$ (Value); to perform the stated action:

Value Action
8 Move cursor left one position
10 Move cursor down one line, scroll if necessary
11 Move cursor up one line, scroll if necessary
13 Carriage return
14 Set normal text mode
15 Set inverse text mode
21 Move cursor right one position
22 Scroll screen down one line
23 Scroll screen up one line
29 Clear to end of line
64-95 MouseText characters; issue MS_TEXT first

Important Direct Page Locations

Location Function
4 Left border of text screen, default is 1.
46 Right border of text screen, default is 80
100 - w2 . Topborder of text screen, default is 1
102 Bottom border of text screen, default is 24
116 Current horizontal cursor position
118 Current vertical cursor position
144 Cursor character, default is 32, inverse space
146 AND mask for character output, default is 255

The above direct page locations may be modified (POKEQ) to alter the text screen
display. But be careful! Incorrect values may cause a system crash. For example, if you
wish to create text windows, you may shrink the text screen by changing locations 44,
46, 100 and 102. Be certain the values are valid, and the cursor is within the new text
screen before PRINTing. '

Appendices

- - ’

Appendix C: Run Time Error Codes

248

Appendix C

Run Time Error Codes

Whenever a run time error occurs, the error code is placed into one of two locations in
the run time Library’s Direct Page which may be accessed by a user’s program.

If the error is generated within the run time Library itself, the error code is placed
into location 154 and location 155 is zero. If the error was generated by the operating
system, location 155 will contain the error code, and location 154 will be zero.

Each code is generated by a unique error situation which causes a unique message to
be printed, if ONERR GOTO is not active. The run time Library’s error codes are listed
below, in this appendix, while GS/OS’s error codes are listed in Appendix D.

You may disable an active ONERR GOTO by POKEing zerves into locations 191
and 192. Note that both locations must contain zerces for ONERR to be disabled.

Code Message output to screen

oo SR BN N A A

NBNNHHHH)—‘HHHHI—‘
Y] H O © 0 -1 M U W N = O

Error in exponentiation
RETURN without GOSUB
RESUME without ERROR option
End of data

Bad subscript error

llegal value in function

Illegal POKE value

Overflow in addition operation
Return stack error

Comma tab error

EXP error

Out of string data

Overflow in TAB

Division by zero error
Overflow in subtraction

String function overflow
Overflow in concatenation
Dlegal string assignment attempted
String overflow error
Applesoft graphics error
Illegal real literal error

FOR variable overflow
Overflow in multiplication

Comment

Integer '~ range exceeded

Perhaps GOTO instead of GOSUB
Need ERROR compiler option

No more DATA to READ

Array limit exceeded

Probable bad math function parameter
Value > 255 or bad address

Integer addition range exceeded

Too many RETURNS for GOSUBs
Implied tabs overflowed before <CR>
EXP function exceeded limits

DATA is not of string type

TAB paramet. . is negative or > 80
Integer division by zero

Integer subtraction result < -32767
Attempt to create string > 1023 chars.
Same as 16

General string error

General graphics error message
String cannot be converted to real
Integer FOR counter out of range
Integer multiplication out of range

Appendices

249

Code

24
25
26
27
28
29
30
31
32
33

35
36
37
38
39

AR&EB RS

46
47
48
49
50
51
52
53
54
55
56
57

Message output to screen

String overflow

FOR loop underflow

Negative square root attempted
Ilegal PDL value

legal SPEED value

Insufficient string space reclaimed
String access to unassigned variable
File output error

Attempt to read past EOF

Invalid pathname in filename
Dimension and array use mismatch
Mismatch in parameter type
Assign in ADDRESS mismatch
Specified value > 255 for SPC
Maximum of 255 matches in INDEX
Time or date error

READ data mismatch

Invalid floating point operation
Floating point underflow

Floating point overflow

Floating point division by zero
Floating point inexact conversion
Floating point error

Undefined segment call

Stack underflow

No direct page memory for graphic-
Quick Draw II startup error

Nlegal tool number

Illegal function number

Unable to start up sound

Music or Noise startup error

Limit seven items off stack

No direct page memory for sound
Cannot start Noise Synthesizer tool
Music or Noise error

Appendix C: Run Time Error Codes

Comment

Maximum of 1023 characters in string
FOR loop stack problem

Omly 1, 2, 3 or 4 allowed

Attempt to set SPEED > 255

Use BANK_NO compiler option
String var. in shaping function not set
Probable SEEK error. No data at point.
Read past last write, or SEEK error
Probable unassigned string variable
Number of dimensions mismatch
Procedure and call parameters wrong
Probable parameter corruption, rare
Only 0 through 255 allowed in SPC
INDEX position parameter > 255
System error

READ attempt to other type

General floating point error

Try using EXTEND compiler option
Try using EXTEND compiler option

Cannot convert real to string

General floating point error

No SEGMENT number for CALL
Perhaps bad recursion attempted
Bank zero memory used up

Cannot start High Resolution Tool
TOOLBOX accepts only Tool # < 256
TOOLBOX accepts only Func. # < 256
Cannot startup Tool(s) for Noise/Music
Similiar to 53

Too many pull variables in TOOLBOX
Bank zero memory used up

System error in NOISE command
Sound system error

Appendix C: Run Time Error Codes

Code Message output to screen

o9
60
61

SERAR

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85

Parameter stack overflow

Function stack overflow

String buffer allocation

File buffer allocation error

INPUT length out of range
FUNCtion return incompatable type
System memory error

Undefined library routine

Cannot RUN program or application
No HGR/HGR2 issued for DESKTOP
Cannot start Dialog Tool

Cannot start Event Manager

No direct Page for Event Manager
Cannot start Window Manager
Cannot draw Dialog Box

No direct page for Control Manager
Maximum of 16 items for Dialog Box
Cannot start Control Manager
Cannot start up Line Editor

Item error

Unable to create Window

Unable to close Window

Mouse Control error

Unable to startup Menu

Mouse control without Desktop
Cannr* start Scrap Manager

Only class one calls supported

250

Comment

Cannot store more function parameters
Too many unresolved FN calls
Probably BANK_NO set too large
Not enough memory to read files
POKE to location 5 > 3

FN call to wrong function type
Fatal error condition

Bad compiler code generation (call us)
Bad RUN command issued

Must set graphics mode for Desktop
Fatal Desktop system error

Fatal Desktop system error

Bank zero memory used up

Fatal Desktop system error
Desktop system error

Bank zero memory used up

Too many parts in DIALOG

Fatal Desktop system error

Fatal Desktop system error

Part bad in DIALOG

Desktop system error

Desktop system error

Desktop system error

Error in MENU

MOUSE needs Desktop command

‘Desktop system error

Probable GS/0S call number < $2000

Appendices

Appendix D: GS/OS Error Codes 251

Appendix D

GS/OS Error Codes

As mentioned in the previous Appendix, whenever GS/OS signals an error, that error
is placed into location 155 and location 154 is zero. On some rare instances, the library
routine may have trapped the error first.

Decimal Error Code Message sent to screen

1 Invalid GS/OS call number
GS/0S 18 busy

16 Device not found

17 Invalid device request

32 Invalid request

33 Invalid control or status code

34 Bad call parameter

35 Character device not open

36 Character device already open

37 Interrupt vector table full

38 Resource not available

39 Input/output error

40 No device connected

41 Driver is busy

42 Error not defined

43 Write protected

44 Invalid byte count

45 Invalid block address

46 Disk switched

47 Device not online

64 Invalid pathname or device name syntax

67 Invalid file reference number

68 Subdirectory not found

69 Volume not found

70 File not found

71 Duplicate pathname

72 Volume full

73 Volume directory full

Appendices

252 Appendix D: GS/OS Error Codes

Decimal Error Code Message sent to screen

74 Version error

75 Unsupported storage type

76 End of file encountered (out of data)
77 Position out of range

78 Access not allowed

79 Buffer too small

80 File is open

81 Directory structure damaged
82 Unsupported volume type

83 Parameter out of range

84 QOut of memory

87 Duplicate volume name

88 Not a block device

89 Invalid level

90 Block number out of range
91 Ilegal pathname change

92 Not an executable file

93 QOperating system/file system not available
95 Return stack overflow

926 Data unavailable

97 End of directory

98 Invalid FST call

99 Missing Resource

100 Invalid FST ID

127 Nlegal numeric value in file

All the error codes and messages but the last are standard GS/OS errors. The last is
a special Micol error code.

Appendices

Appendix E: Compiler Reserved Words 253

Appendix E

Compiler Reserved Words

The following words have a special meaning and may not be used for any other
purpose then they were intended. In particular, they may not be used as Program,
variable, Function, Procedure or Routine names.

ABS, ADDR, ADDRESS, ALIAS, AND, APPEND, ASC, AT, ATN
BEGIN, BELIEVE, BELL, BKCOLOR, BLOAD, BSAVE, BYE

CALL, CASE_OF, CAT$, CHAIN, CHR$, CLEAR, CLOSE,
COPY, COLOR, COS, CREATE

DATA, DATES$, DELAY, DRAWSTR, DECLARE, DELETE,
DIALOG, DIM, DISPLAY, DO, DOUBT, DUNNO

ELSE, ELSE_DO, END, ENDCASE, ENDDO, ENDFUNC, ENDIF,
ENDPROC, EOF, EXP

FALSE, FILE, FLUSH, FOR, FORMAT, FN, FRE, FREEMEM, FUNC
GET, GET_MEM, GOSUB, GOTO, GR, GS_OS
HCOLOR, HGR, HGR2, HLIN, HPLOT, HOME, HTAB

IF, INCLUDE, INDEX, INKEYS$, INPUT, INSERTS, INSLOT,
INSTRUM, INT, INVERSE

LEFTS$, LEN, LET, LINK, LOCEK, LOG, LOWERS, LRETURN
MENU, MID$, MOD, MOUSE, MOV_MEM, MS_TEXT, MUSIC
NEXT, NOISE, NORMAL, NOT, NOTRACE, NOTICE

OPEN, ON, ONERR, ONLINE$, OR, OUTSLOT

Appendices

254 Appendix E; Compiler Reserved Words

PDL, PEEK, PERFORM, PLOT, POKE, POP, POS, PREFIX,
PREFIX$, PRINT, PRTON, PROC

QUIET

READ, REM, RENAME, REPEAT, RESUME, RESTORE, RETURN,
RIGHTS$, RND, ROPEN, ROUND, ROUTINE, RUN

SCRN, SEEK, SEGMENT, SGN, SILENCE, SIN, SQR, SPC,
SPEED, STEP, STOP, STRACE, STR$

TAB, TAN, TEXT, THEN, TIME$, TO, TOOLBOX, TRACE, TRUE
UNTIL, UNLOCK, UPPERS$, USING

VAL, VALUE, VLIN, VTAB

WARNING, WAVE, WEND, WHILE, WINDOW, WOPEN

Note: compiler options are not reserved words within a program.

Appendix F: ASCH Character Codes ' 256

Appendix F

ASCII Character Codes

The following is the table of the ASCII (American Standard Code for Information
Interchange) codes supported by Micol Advanced BASIC. You may use the ASC and
CHRS$ functions to go between the code and the character representation.

Value Character Value Character
0 NUL 29 GS
1 SOH 30 RS
2 STX 31 Us
3 ETX 32 (Space)
4 EOT 33 !

5 ENQ 34 "
6 ACK 35 #
7 BEL(Bell) 36 $
8 BS (Left Arrow) 37 %
9 HT (Tab) 38 &
10 LF (Line Feed) 39 ’
11 VT (Up Arrow) 40 (
12 FF (Form Feed) 41)
13 CR (Carriage Return) 42 *
14 SO ' 43 +
15 SI 44)
16 DLE 45 -
17 CDh1 46 .
18 DC2 47 /
19 DC3 48 0
20 DC4 49 1
21 NAK (Left Arrow) 50 2
22 SYN 51 3
23 ETB 52 4
24 CAN 53 51
25 EM 54 6
26 SUB 55 7
27 ESC (Escape) 56 8
28 FS 57 9

Appendices

o

e

=]

o

g

m

h ~

&) 3

=] ” ?

Q g a
[

M & =

i .m]A e © QO 0T O % 80 et .m M4~ HH © O @ o 3 > B M P Nw— . 1 QO

..m o

8 m o N M O O = N 0 bt~

- - 0 O o0 O [Te]

m. m34567890000000000mnmBMBMH1122222222

[« V99999991111111111111111111111111111

<

WV I A @ <A UARRKIOIDTD ~m ¥ A8 Z0A0BneD>BEMPEN o -~

Character

256
Value
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Glbssary

6502 addressing format
6502 microprocessor

65C02 microprocessor

65816 microprocessor

Alphanumeric
ASCI code
Assembler

Assembly code

Assembly language

Batch processing

Binary code
Binary files
BIT

Byte

Chaining

257

Glossary

Two byte addresses specified in least significant byte, most
significant byte order.

CPU used in the Apple I+ and early models of the Apple
Ile.

CPU used in the enhanced Apple Ile and Apple Ilc.
Software written for the 6502 will run on it. This chip has
27 additional machine language instructions.

CPU used by the Apple IIGS and Apple ITe upgraded GS.
Most software written for the 6502 and 65C02 will run on
it. It is more than just a 16 bit version of the 6502 since it
has many more instructions and can acess as many as 16
million bytes of memory.

Usually used to describe characters which consist of letters
of the alphabet and digits.

The acronym of American Standard Code for Information
Interchange. A standardized code used to represent letters,
digits and punctuation symbols. The capital letter Ais 65
(decimal) in ASCII code.

A program which can take as input an assembly language
text file and translate it into the binary code the computer
can execute,

A formatted text file an assembler can translate into binary
code.

The lowest level of the programming languages, specific to
a given microprocessor. AL uses short mnemonics
corresponding directly to machine instructions and allows a
programmer to use symbolic codes. At this level, the
programmer is programming the CPU.

~ Allows the system to take its commands from a file on disk

rather then the keyboard. Under Micol Advanced BASIC,
the BATCH command creates a batch process.

The same as machine code.

Machire language files saved to tape or disk.

Acronym of BInary digiT. The smallest unit of information
in a computer. Has a value of zero or one.

A collection of bits wired together. In almost all cases, a
byte consists of 8 bits. A byte can represent a character, a
number between 0 and 255 or a machine instruction,
among other things.

The process of joining separate text files by the compiler.
The compiler can successfully compile separate text files, as
though they were a whole program.

Appendices

258

Compiler

CPU

Cursor
Decimal

Direct Page

Editor

Error condition
Executable module
Flag

File

Hexadecimal

Integer

Interpreter

Library

Appendices

Glossary

A program that converts a program, usually a text file
written in a higher level language, into an intermediate
code called an object module. A linker is then required to
convert this object module into a machine usable file that
can later be executed.

Stands for Central Processing Unit, the “brain” of a
computer. When writing in machine language, you are
programming the CPU.

A special character, often blinking, used to show the user
where on the screen he/she is entering characters.

A numbering system based on the number 10; the
numbering system we use in every day life.

A special 256 byte area in memory bank zero which can be
treated as a zero page by a program. Unlike zero page,
which begins at location zero in bank zero, direct page is
referenced by a special register for this purpose and can
begin at any location in bank zero. This distinction
between direct page and zero page is important because
PEEKSs and POKEs referencing addresses less than 256
under Micol Advanced BASIC reference the run time
library’s direct page, and not zero page.

Same as text editor. A program which allows the user to
create, modify and save text files.

The state of a program after it has detected an error during
its execution.

The binary code created by the linker, which is the actual
code which will be executed.

Aboolean variable which can be set or unset, so that later a
determination can be made based on its value.

A collection of data stored in some memory device; this can
be the computer’s memory, disk or tape. On magnetic
media, a file name is usually associated with the file.

A number system based on the number 16 (base 16).
Letters A through F are used to stand from 10 to 15.

A variable type which has a limited range and no fractional
part. Micol Advanced BASIC for the GS has two ranges of
integers, short and long. Short integers have a range of

132767, while long integers have a range of £2,147,483,647.

A program which reads program code written in a
high-level language one statement at a time, executes it,
then goes to read the next instruction until the program
terminates. Traditional BASIC language systems are
interpreted. Interpreters are remarkable for their
convenience and lack of speed.

Containg the run time routines required by the executable

Glossary

Linker

Load

Machine code

Memory location

Micol Systems

Mnemonie

Modularization

Octal
Program

Real number

Reserved word

Run time library
Save

String

Structured design

259

module at execution time.

A program that converts the object module(s) created by the
compiler into an executable load module.

The act of bringing in information to the computer’s
memory from a long term storage device such as a disk
drive.

Almost synonymous with assembly code. Usually refers to
the binary code which the computer directly executes.

The same as a byte of memory. Can be thought of as an
addressable little box in the computer containing a piece of
information.

A dynamice software house located in a suburb of Toronto,
Canada. Dedicated to quality systems’ software, MICOL is
an acronym of MIcro COmputer Languages.

A collection of characters which can help you remember
something. “JMP”, for example, can represent $4C in
machine code and is a mnemonic for it.

The act of breaking a program into small, easily
maintainable parts. While little overhead is involved, it
greatly minimizes program maintenance.

A number system based on the number 8 (base 8). Octal
was once used more than today. A 10 in octal is decimal 8.

A collection of instructions designed to perform (a) specific
action(s).

The same as floating point number. A number which can
contain a fractional part and has a large range. Under
Micol Advanced BASIC there are two ranges of real
numbers, normal and extended. Normal reals require two
bytes of storage and have about seven digits of accuracy.
Extended reals require 10 bytes of storage and have about
19 digits of accuracy.

A, usually English, word whic' has a special meamng to
the compiler and cannot be used as a variable name.
GOSUB is an example of a reserved word in BASIC.

See Library

The act of storing all or part of a computer’s memory to
some long term storage device such as a disk.

A collection of characters. The double quotation mark is
used by the compiler to declare strings, e.g. “Thisis a
string”.

A systematic approach to the creation of software by ﬁsi.ng
a step-by-step procedure for solving the problem. It

consists of a smooth program flow, modulanzatlon of code,
meaningful identifiers, ete.

260

Glossary

Two’ complement value A number in which the negative value is achieved by

Zero Page

Appendices

adding one to the inverse bit pattern of the positive value.
-11is $FFFF in two’s complement for short integers.

The area in memory between locations 0 and 255 in bank
zero. Do not confuse zero page with direct page which can
be anywhere in bank zero.

Index Two Hundred Sixty-One
Index
! Booting MAB 235
\ 62 Branching
""""""" Selective 119
B o e e e e e e e 62 Unconditional 118-119
& g?{ BSAVE 165
""""""" BYE17
S 67,77
e 67 C
[67
N 47 CALL 229-230
.............. 48 Case statement
48 Defining 87
Case statements
A Nesting 88
CASEOF 87,172
g% L Z?sa CAT 18
------------ CAT$103
Ae:xpr 11 Catalog 14, 18
Aliases 55 CHAIN 207
Order 49 CHR$ 78
QII;)II’)END """""" }(1]9 Classic Desk Accessories 2
""""" Classic Desk Accessories . 238
Applelle/c 10 CLEAR M
Arithmetic operators67 CLOSE109
Arrags . ..o 65 CODE 50
;&::En Dimensional g? Code optimization . 54
B v CodeSmith 15
Subseripts 67 COLOR 139
QSS((J:II """"""" %—77 Command Shell 1
"""""" Command Shell 2
Assembl, language 232 Commercial license 44
ATN ...t 74 COMPILE 19, 38
AutoExec 5, 18 C ompiler
B Aborting compilation . 39
Advantages 3
BANKNO 50 ALIASES 65
BASIC 12 AND 68
BASIC.SYSTEM 16 Arrays 69
Batchfiles 17 Chaining 227
BELIEVE 159 Code generation ..o 41
BELL 222 Comments 47
BKCOLOR 143 Compiled listings . 40,58
BLOAD 164 Control-C 39

Appendices

Two Hundred Sixty-Two Index
Control-S40 DELAY 95
Directive definition . . .50 DELETE 105
Error messages 40 DIALOG 172, 206
Filing Commands103 DIM 65
L 40 DO 87
Line continuation47 DRAWSTR 145
Listings 52, 54, 58 EISE 84-85
Logical operators68 ELSE_.DO 87
NOT 68 END 109, 116, 157
Options 50 ENDCASE 87
OR 68 ENDDO 87
P ... e 40 ENDFUNC 131
Precedencerules68 ENDPROC 132
RAM disk usage 39 EOF 113
Scratch files 39 EXP 72
Statistical information .59 EXTEND 66
Symbol Table 58 FAISE 129
Syntaxerrors 40 FILE 110
Variables 61 FLUSH 105

Compiler Commands FN 126, 133
ABS 72 FOR 120
ADDR 163 FORMAT 105
ADDRESS 130 FRE®@) 83
APPEND 109 FREEMEM 167
ASC 77 FUNC 126, 131
ATN 74 GET 91, 110
BELL 222 GET_ MEM 165
BKCOIOR 143 GOSUB 125-126, 132-133
BLOAD 164 ‘ GOTO 53,119
BSAVE 165 GR 139
BYE 117 GSOS 107

CALL 229-230 HCOLOR 144
CASE OF 87,172 HGR 143, 171
CAT$ 103 HGR2 143,171
CHAIN 227 HLIN 140
CHR$ 78 HOME 95
CLEAR 71 HPIOT 145
CLOSE 109 HPLOTTO 145
COLOR 139 HTAB 100
COPY 104, 226 Ir 84-85
COS 75 INCLUDE 136
CREATE 105 INDEX 79
DATA 89, 225 INKEY 92
DATE$ 82 INPUT 92, 111
DECILARE 133 INSLOT 94

Appendices

Index Two Hundred Sixty-Three

INSTRUM 152 REM 48

INT 56, 72-73 RENAME 107

INVERSE 95 REPEAT 124

LEFT$ 80 RESTORE 91

LEN 78, 145, 200 RESUME 51,170, 225

LET 70 RETURN 125, 132

LINK 232 : RIGHT$)

LOCK 106 RND 158-159

LOG 73 ROPEN 113

LONGINT 66 ROUND 73

LOWERS 80 ROUTINE 118, 126-127

LRETURN 231 RUN 116

MENU 172, 182 SCRN 141

MID$ 81 SEEK 114

MOD 67 SEGMENT 229

MOUSE 172, 185, SGN 74
.............. 196, 210 SILENCE 151,157

MOV MEM 167 SIN 75

MS_TEXT 96 SPC 99

MUSIC 150, 1562, 156 SPEED 96

NEXT 121 SQR ... 74

NOISE 150-151, 156 STOP 109, 117, 157, 222

NORMAL 95-96 STR 56

NOTRACE 224 STR$ 78

ON..GOTO 119 STRACE 223

ON..GOSUB 135 TAB 99

ONERRGOTO 53, 169 TAN 75

OPEN 112 TEXT 102,141, 171

OUTSLOT 101 TIME$ 82

PDL 148 TOOLBOX 212

PEEK 162 TRACE 222

PERFORM 125, 134 TRUE 129

PLOT 141 UNLOCK 107

POKE 162 UNTIL 122, 124, 134

POP 134 UPPER$ 81

POS, 99 VAL 78

PREFIX 106 VALUE 130

PREFIX$ 82 VLIN 141

PRINT 96, 112, 222 VIAB 100

PRINTUSING 97,112 WAVE 150

PROC 126, 132 WEND 124

PROGRAM 49 WHILE 124

PRTON 100-101 WINDOW 11,172, 188-191

QUIET 151, 157 WOPEN 113

READ 90 Compiler Directives

Appendices

Two Hundred Sixty-Four
ALIAS 49
DECLARE 70
INT 56, 62-63
STR 56, 63-64

Compiler Options
BANKNO 50, 83
CODE 41, 50
ERROR 51, 170, 225
EXTEND 52, 64, 72, 225
LIST 52
LONGINT 52, 63, 72,
.............. 163, 214, 225
NOGOTO 53
NOTC 53, 93
OPTIMIZ 54, 223,
.............. 225-226
PRINTER 54
VARZ 54
COMPILER.SHELL5,236
Concatenation i
Conditional statements . .84-85
Control Panel 8
ControlPanel 8-9, 39, 54
Control-C 39, 53, 93
Control-S 93
Controlled uncertainty . . .159, 161
Table 160
CONVERT 239
COPY 19, 104, 226
Copyright i
COS 75
CR 12
CREATE 19
D
DATA 89, 225
Dataentry 89-92
Dataoutput 96
DATA Statement
Order 49
DATE$ 82
Debugging 221, 223-224,
.............. 228
Default prefix 106
DELAY 95-96

Index
1 DELETE 19, 105
Deletekey 93
Demo.Files 6
DIALOG 172, 206
Dialog Box
Checkbox 204
Closure 206
Control Number 206
Creation 207
Defining 206
Dialog Control Number 206
Displaying 209
Editline 205
IDNumber 202
Itemtype 203
Monitoring 206
Part addition 209
Part disable 210
Part Enable 209
Part Removal 209
Parts 207
Push button 203
Radio button 204
Scrolbar 204
Staticline 205
DialogBoxes 202
DIM 65
Directpage 233
Directory 103
Disk filing 109
DO 87
DOUBT 159
DRAWSTR 145
DUNNO 159
E
EDIT 13, 20, 26
Editor 2,5
Applekey 28
AppleM 33
Arrows 30

Beginning ofline . . . 30
Compilation from . .. 35,42
Controlkeys 27
Control-B 28

I

|

|
1

Index
Control-X 28
Control-Y 28
Converting numbers . .37
Copytext 32
Delete character 28
Deletekey 29
Deletetext 32
Deletionmode 28
Downscreen 30
End ofline 30
Entermode 29
Enteringthe 26
Esckey 28
Find (backward) 33
Find (forward) 33
Gotoline , 31
Helpscreen 29
Insertfile 34
Loadfile 35
LowerCase 29
Moveblock 33
Movementin, .. 30
Newfile 34
Optionkey 28
Overstrikemode 29
Previousword a1
Printing 36-37
Quitting 26
Relative motion 31
Returnkey 28
Savingafile 36
Settingtabs 31
SRCfile 36
Tabbing 32
TXTfiles 36
Upscreen 30
UpperCase 29
Version number 37
Editor Commands
Apple-# 37
Apple-? 29
AppleeB 33
Apple-C 30, 32
Apple-D 30, 32
Apple-Delete 28

Two Hundred Sixty-Five
Apple-Digit 31
Apple-Down Arrow . . 30
Apple-E 29
Apple-F 33
Apple-G 31
AppleH 29
Apple-I 34
AppleK 35, 38, 42
Apple-L 35
Apple-Left Arrow . . . 30
AppleeM 30
AppleeN 34
Apple-P 36
Apple-Q 26
Apple-Right Arrow . . 30
Apple-S 36
Apple-T 36
Apple-Tab 31
Apple-V 37
AppleW 37
AppleX 29
Option-Left Arrow . . . 31
Option-Right Arrow . . 31

ELSE 84-85
ELSE_DO 87
END 109, 116, 157
ENDCASE 87
EOF 113
ERROR 51, 170, 225
Trapping 169
Error handling 168
Example Programs
CONTROLS 211
Desktop.Samples .. 173
DIALOG 211
Fractal generator .. 6
LINKDEMO 233
MABug. DEMO .. 6
MENU 187
WINDOW 188, 200
EXP 72
Expr 11
EXTEND 52, 66, 72

Appendices

Two Hundred Sixty-Six
F

Factorial 137
FAISE 159
FILE 110
File Access Number109
Filename 11
Files

Deleting 105

Locking 106

Random access 114

Renaming 107

Sequential 113

Unlocking 107
Filing Commands 104, 106-107,

.............. 109-110,
.............. 112-113

Find 33
FLUSH 105
FN 133
Folder

Micol.Adv.BASIC5

UTILITY 5,25
FOR 120
FOR..UNTIL 122
FORMAT 20, 105
Formatted text output . . .97
FRE®@) 83
FREEMEM 167
Functions 127-131

G

Game 6
Garbage collection 82
GET 91, 110
GET_MEM 165
Global Variables 128
GOSUB 132-133
GOTO 53,119
Graphics

Colors 139, 144

Low resolution 139-141

Shapes 146

Super High Resolution .142-145
GS/OS, 1

Accessing 107

Index
GSO0OS 107
H
HardDisk 7,234
Hardware
Minimum requirements 6
HCOLOR 144
HELP 12, 21, 29
Hexadecimal numbers . . 68
HGR 143,171
HGR2 143,171
High resolution graphics . 142
HLIN 140
HOME 21,95
HPLOT 145
HPLOTTO 145
HTAB 100
1
IF 84-85
INCLUDE 136
Indenter 25
INDEX 79
INFO.DOC i, 6
Informationfile i
INKEY 92
INPUT 92, 111
INSLOT 94
INSTRUM 152
INT 62, 72-73
Integers
Long 52, 63
Short 63
INVERSE 95
J
dJoystick 148
K
Kompile 38
L
Laser Printer 9
LEFT$ 80

Index
LEN 78, 145, 200
LET 70
LIBRARY 5,44
Library of routines 135
Library routines 41
Library.S.A 236
Limit of Liability i
Line Numbers 46-47
LINK 232
The Linker 42
LIST 21, 52
loadFile 2,235
Local variables 128
LOCK 21, 106
LOG 73
Longintegers 52
LONGINT 52, 66, 72
Loops
FOR 120-121
FOR..UNTIL 122
Repeat 124
WEND 124
While 124
LOWERS 80
LRETURN 231
M
MAB.SUPPORT i, 5, 25, 173,
.............. 187-188, 211,
.............. 233-234,
.............. 236-239
MAB.TO.CDA folder238
MAB.T0.516 folder . . .236
MABug 198
MAKE.CDA 238
MAKESAINK 236
MasterDisk 5, 234-236
Memory 225
Allocation 165, 167
Memory Manager 44
ID 165
Memory Requirements . . .1
MENU 172,182
Attributes 176
Bar 174

Two Hundred Sixty-Seven
Control Numbers .. 183
Creatton 183
Disable 178, 184
Fonts 180
m............ 175
Item 174, 176, 178
Keyboard equivalents . 177
List 174
Monitoring 185
Pulldown 174
Removal 184
Title 174-175
Unhighlight 185
Micol Advanced BASIC

Earlier versions .11
Micol Advanced BASIC e/c 2
Micol BASIC 12
MicolMacro 232
Micol Systems

Address 9

Telephone 10
Micol.Adv.BASIC 236
MICOL.SYSTEM 236
MID$ 81
MOD 67-68, 73
Modularity

Advantages 125

Defining 125
MOUSE 172, 185, 196, 210
MouseText characters . 96
MOV_MEM 167
MS_TEXT 96
Multi-Decision

CASE_OF 87
Music 149-150, 152, 156

Instruments 152-153

N

Nesting

CASEOF 88

FOR.NEXT 123

Function 128

IF statement 86

Procedure 128

REPEAT.UNTIL- . .. 124

Appendices

Two Hundred Sixty-Eight

WHILE..UNTIL124
New Desk Accessories . . .185
NEXT 121
NOGOTO 53
NOISE 150-151, 156
NORMAL 95-96
NOTC 53, 93
NOTRACE 224

O
ON..GOTO 119
ON.GOSUB 135
ONERRGOTO 53, 169
ONLINE 13,21
OPEN 112
Operator precedence68
OPTIMIZ 54, 223,
.............. 225-226

Output

Formatted 97

Unformatted 96
Output through slots101
OUTSLOT 101

P

Parameters 129

Passing by ADDRESS .130

Passing by VALUE . . .130
Pathname 11
PDL 148
PEEK 162
PERFORM 134
Pixelsize 200
PLOT 141
POKE 162
POP 53, 134
POS 99
PREFIX 13, 22, 106

andCATS 104
PREFIX$ 82

and CAT$ 104
PRINT 96, 112, 222
PRINTUSING 97,112
Printer 8-9, 23, 40,

.............. 54, 101

Appendices

Index
Printeroutput 54
Procedures 127-130, 132
Program
Compiled listings . . . 58
Compiling 38
Examples 5
Execution start ... 24,116
Indentation 84,116
Line numbers 46-47
Loading 235
Loops 120
Name 49
Order 49
Segmentation 228
Termination 116-117
Programorder 126
Program Separator 46
PRTON 100-101
Q
QUIET 151, 157
QUIT 23
R
RAMDisk 8,39
Random numbers 158
READ 90
Real
Extended 64
Single precision . 63
Recursion 136
Relational operators . 6°
Relop 11
RENAME 24,107
REPEAT 124
Replace 33
RESTORE 91
RESUME 51, 170, 225
RETURN 132
RIGHT$ 81
RND 158-159
ROPEN 113
ROUND 73
ROUTINE 118
Routine declarations 118

Index
RUN 24, 116
Run time library 44
S
SCRN 141
SEEK 114
SEGMENT 229
Sexpr 11
SGN 74
Shell
Arrowkeys 16
Built-in commands . . .17-24
Command 25
Control-C 17
Control-R 17
Control-S 17
Control-X 17
Deletekey 16
Deletion modes 16
Returnkey 16
Utilities 25
Shell Commands
AutoExec 18
BATCH 17
CATALOG 18
COMPILE 19
COPY 19
CREATE 19
DELETE 19
EDIT 20
FORMAT 20
HELP 21
HOME 21
LIST 21
LOCK 21
ONLINE 21
PREFIX 22
PRINTER 23, 40
QUIT 23
RENAME 24
RUN 24
UNLOCK 24
SILENCE 151, 157
SIN 75
Sitelicenses 45

Two Hundred Sixty-Nine
Slotinput 94
Sound 149

Description 149
Waveform 150
Sounds 157
SPC 99
SPEED 96
SQR 74
Stand Alone Files 2
Stand Alone Programs . . 234-236, 238
START 235
Startupdisk 234
STOP 109, 117, 157, 222
STR$ 78
STRACE 223
String comparisons 77
String memory 50
Strings 64
Dynamic 65
Static 64
Systemdisk 5
T
TAB 99,112
TAN 75
Task Master 198
Technical assistance .. 9
TEXT 102, 141, 171
Text display
Qualityof 956-96
Speedof 96
THEN 84
Tunedelay 95
TIME$ 82
ToolBox 173, 212
Description 212
Error checking 214
Function Number . .. 212-213
Long integers 215
Memory allocation . . . 215
Pulllist 213-214
Pushlist 213
Tool Number 212-213
TRACE 222
TRUE:.... 159

Appendices

Two Hundred Seventy
True_Value 77, 83,
.............. 103-104, 108,
.............. 110, 145, 163,
.............. 166, 200, 214
Turnkeydisk 236
Turnkey system 117, 236
Tutorial 12
U
UNLOCK 24,107
Unop 11
UNTIL 122,124,134
UPPER$ 81
Utilities 24
Utility folder 5,24
A\
VAL 78
VARZ 54
Variables
L 62
/2 62
& ... 63
Addresses 58, 163, 215
Arrays 65-66, 226
Assignment 70
Declaration 70
DECLARE 133
Explicit declaration . . .69
Extended precision . . .64
Extendedreals 52
Flag 62
Floatingpoint 63
Forcedreal 63
Global 128
Implicit declaration . . .69
Integers 62, 226
Iocal 128
Longinteger 63, 108
Longintegers 52
Long integers & ToolBox 214
Name 54,61
Parameter passing 130
Passing 129
Real 63

Appendices

Index
Reinitializing 71
Rounding 73
Scientific notation . . . 64
Short integer 63
Single precision . 63
String 64
String length 78
Switch 62
Trunecation 72
Types . . .« « -« .. 56, 61
VLIN 141
Volume name 11
Volumes
Online 106
VITAB 100
W
WARNING 5
WAVE 150
WEND 124
WHILE 124
WINDOW 11,172, 188-191
Windows
Closing 194
Command parameters . 189
Control Number . . 188
Control Numbers . 189
Creation 189, 191
Definition 188
Drawingin 200
Frame 191
Grafport 200
Management 196
Number 1956
Pointers 189, 195
Task Record 197
Update events 198
Updates 198
Using 195

Printed in Canada ISBN 0-921270-04-6

	Cover

	Introduction
	Table of Contents

	Part One: Overview of the Language

	Chapter One: General Review

	Chapter Two: Getting Started

	Part Two: The Programming Environment
	Chapter One: The Command Shell

	Chapter Two: The Source Code Editor

	Chapter Three: The Compiler

	Chapter Four: The Linker

	Chapter Five: The Run Time Library

	Part Three: The Advanced BASIC Language

	Chapter One: Compiler Rules and Directives

	Chapter Two: Basic Elements of the Language

	Chapter Three: Mathematical Functions
	Chapter Four: Strings

	Chapter Five: Making Decisions

	Chapter Six: Basic Input/Output of Information

	Chapter Sever: Disk Filing

	Chapter Eight: Control of Flow

	Chapter Nine: Modularization

	Chapter Ten: Graphics

	Chapter Eleven: The Sound of Music

	Chapter Twelve: The Human Element

	Chapter Thirteen: Direct Memory Access

	Chapter Fourteen: Run Time Error Handling

	Part Four: Creating the Apple IIGS Desktop
	Chapter One: Desktop Programming

	Chapter Two: Menus

	Chapter Three: Windows

	Chapter Four: Dialog Boxes

	Part Five: The Apple IIGS ToolBox
	Chapter One: Direct Toolbox Access

	Chapter Two: Tool Set Tables

	Part Six: Program Management
	Chapter One: Program Debugging

	Chapter Two: Program Optimization

	Chapter Three: Program Segmentation

	Chapter Four: Linking Assembly Language Programs

	Chapter Five: Creating Independent Programs

	Chapter Six: Converting Applesoft Programs

	Appendices
	Appendix A: Memory Usage
	Appendix B: Screen Output
	Appendix C: Run Time Error Codes
	Appendix D: GS/OS Error Codes
	Appendix E: Compiler Reserved Words
	Appendix F: ASCII Character Codes
	Glossary

	Index

