DrawTools 3.1

by Ken O. Burtch

Copyright 1992-3 by Pegasoft of Canada
Copyright 1992-3 par Pegasoft of Canada

For questions or comments, please write to the following address:

}

Pegasoft
--Honsberger-Avenue, RiR.#1-- "Veon 2 o
Jordan Station, Ontario, Canida

- LOR 1S0 -

Some examples use libraries from ORCA/Pascal, CQ;}iyr‘ight 1991, .The:Byte Wbrk's," Inc.

. Unless otherwise noted, trademarks belong to thqir'respt;gti\'/e comgaﬁies.

cia CAUDY ARG BOX 1089
DHAHRAN 31311

KINGDOM OF SAUDI ARABIA

vyt S DRSS G
F s i])
4 L Foro b, /

g

gRar Wi (}2)‘3&{_’-’ A,

AOARNA GIAG o er

KNI LJAREAE 5 YOS

¥
i
i
3

Table of Contents

Part 1. User Guide
1. Introducton
2. Graphics on the 1IGS
3. Animation
4. Other Functions

Part I1. Reference
Introduction
Housekeeping Tools
Low-level Drawing Tools
Drawing Tools
Library Management Tools
Animation Tools
Screen Tools
Scrolling Tools
Palette and Colour Tools
SCB Interrupt Tools
Printing Tools
Driver Tools
Miscellanecus Tools

Part 1Il. Appendices
Appendix A - DrawTools' error summary
Appendix B - Direct Page Usage
Appendix C - DrawTools and Other Toolsets
Appendix D - Game and Net Drivers
Appendix E - Pic Ed
Appendix F - Library Coaverter
Appendix G - Changes Since DrawTools 3.0

Tool Index

pg.
pe.
pE.
Pg.

pe.
PE.
pg.
pg-
pg.
pg.
pg.
pe.
p8.
pg.
pg.
Pg.
pe.

Pg
pPe.
pg.
pe.
pg.
pe.
PE.

pe.

1
4
8
22

28
30
32
34
37
38
42
45
46
49
5t
33
56

60
61
62
63
66
67
68

69

DrawTools 3.1 l

I. User Guide

1. Introduction

1.1. Introduction & Legal Stuff

The part of this manual is a general introduction to DrawTools, It isn’t a futorial on computer graphics, although
some basic topics are discussed. For more in depth information on specific tools, consult the reference section.

We’'d love to hear from you. If you have any questions, comments, or complaints, please feel free to write to
Pegasott at:

Pegasoft

Honsberger Avenue, R. R, #1
Jordan Station, Ontario, Canada
LOR 180

This manual and the related software contained on the diskettes are copyrighted materials. Al rights reserved. Duplication
of any of the above deseribed materials, for other than personal use of the purchaser, without express written permission of
Pegasoft of Canada is a violation of the copyright law of the United States and Canada, and is subject to both civil and
criminal prosecution.

Pegasoft and DrawTools are trademarks of Pegasoft of Canada.

1.2, What is DrawTools?

Welcome to DrawTools, a collection of over 100 useful graphics and animation tools for the IIGS, The first version
was released as shareware around the fall of 1990, Since then, it has significantly grown, with new features and
more versatility,)
Feel free to distribute the TOOLO098 file with any programs you make, but if you wish to distribute any other
files on the DrawTools disks, please get prior permission from Pegasoft.
}

1.3, System Requirements
DrawTools 3.1 requires the following:

An Apple HIGS with systemn software 5.0.2 and at least 9K free RAM in bank 0.
To use DrawTools, the following toolsets must be active: Tool Locator, Misc, Tools, Memory Manager,
QuickDraw I1.

1.4. Installation

1. Copy the TOOL098 file to the Tools folder of your startup disk. (This is DrawTools.)
2. Copy the DT.Drivers folder (the folder and its contents) to the System:Tools folder of your startup disk.
3. Copy the icon file to your Icons folder.

The DrawTools disks also contain the following:
a. PicEd 3.0, a simple editor for picture libraries
b. Lib.Converter 1.2, a utility which translates a screen template into a picture library. The folder
includes some sample templates.
¢. Demo,Game, a small assembly language game that demonstrate some of the animation fools

DrawTools 3.1 2

d. Demo.Sys16, a demo program written in Micol Advanced Bastc 4.2
¢. sample programs for a wide variety of computer languages

1.5. Using DrawTools with ...

Complete/TML Pascal II - an interface file written in TML Pascal II is included on the disk in the TML.Pascal
folder. Copy the object file to the folder containing the interface files for the other toolsets. Include DrawTools in
your USES list at the beginning of your program.

Micol Advanced BASIC - You need to use the TOOLBOX command, A set of aliases are supplied for users with
the latest version of BASIC! you can copy these into your program or you can use the INCLUDE command. Each
alias requires a space after the tool name.

DrawShadow will not work unless you are running a stand-alone application. There are also some tools
P that require a Pascal string (not a BASIC string): a length (byte) followed by the text of the string. You
cannot use these tools directly: you will either have to construct a string with POKEs, or use Micol Macro.
All the toolsets that DrawTools requires are started for you when you use HGR or HGR2.

Merlin 16+ - a macro file (Draw.Macs.S) is included on the disk. Copy it into your MACRO.LIBRARY
subdirectory, and USE it in your source files.

ORCA/Pascal - an interface file (Drawtools.int) is included on the disk. Copy this file into OrcaPascalDefs. In
your program, include DrawTools in your USES list.

ORCA/M - A macro file (m16.DrawTools) is included on the disk. Copy this file into your ainclude folder. Use it
like any other macro file.

ORCA/C - There are no interface files available: you can use DrawTools if you use the necessary tool definitions.

P DrawTools will not work with Prizm,

Pegasus Pascal - Follow the ORCA/Pascal directions,

Example: Starting DrawTools 3.1,
Pegasus Pascal: Start it like any other toolset.
Uses Common, ..., Drawlools
| start required tools, or use StartGraphice
LoadOneTool 98, 0O
DPHandle = NewHandle (256, MyID, $C005, 0)
DP = ord{ DPHandle* }
DrawB8tartUp DP, MyID
ExtendBuffers

Load DrawTools

allocate direct page space
convert to an integer
start Drawlocls

if using a lot of pixies

ORCA/[Pascal: Start it like any other toolset.
Uses Common, ..., brawloole;
{ start required tools, or use StartGraphics }
LoadOneTool (98, 0);
DPHandle 1= NewHandle (256, MyID, S5C005, 0);
DP 1= ord{ DPHandle*);
DrawdtartUp(DP, MyID)}
ExtendpBuffers;

Lroad DrawTools }

allocate direct page space }
convert to an integer }
start Drawlools }

if ueing a lot of pixies }

o~ ey g g

DrawTools 3.1

BASIC: Use the following commands:
REM Start required tools, or use HGR/HGRZ.
TOOLBOX(1, 15: 98, 0) : REM Tool Locator’s LoadOneTool
bDrawFools Handle = 256 : REM Allocate direct page space
brawTools Addrese = 0
POKE 202, 1
Get_Mem{ Drawl'ools Handle, DrawTools_Address)
Addresst = INT{DrawTools Address): REM Convert to an integer
MyID% = Peek{238) + Peek(233) * 256
TOOLBOX{ ~DrawBtartUp : Address$, MyID%)
REM Without aliases: TOOLBOX{ 98, 2 : Addresst, MyID%)
TOOLBOX{ ~ExtendBuffexs) : REM If ueing a lot of pixies

Merlin 16+: Start it like any other toolset.
USE 4:Draw.Macs
~LoadOneTool #98;#0
~NewHandle #35100;MyID;#3C005;40
PLA
PushWord MyID
_PrawB8tartUp

_BExtendBuffers i if using a lot of pixies

ORCAIM: Start it like any other toolset,
MCOPY mlé.Drawlools
ph2 #98 t load DrawTools
ph2 #0
_LoadOneTool
phd #0
phd #$100
ph2 MyID
ph2 #$cods
phd #0
_NewHandle
pha)
rh2 MyID
_DrawB8tartUp
_ExtendBuffars 3 if ueing a lot of pixies

Examples: Stopping DrawTools 3.1,
Pegasus Pascal:
DrawBhutDown

ORCA/Pascal:

DrawShutDown;

BASIC:
TOOLBOX (~DrawShutDown)
REM Without aliases: TCOLBOX(98, 3}

Merlin 16+:

_Drawg8hutDown

ORCAM:

_DrawBhutDown

PrawTools 3.1 4

2. Graphics on the [IGS
2.1. A Brief Introduction

Graphics is the art of drawing with a computer. In the IIGS, there is a special toolset dedicated to drawing called
“QuickDraw 1I", or QuickDraw for short. QuickDraw provides all the basic drawing functions for the average
application: it draws lines, rectangles, ovals, text, cursors and many other things you see on the screen. It's
impossible to make & complete list of the QuickDraw tools here since there are well over 200; consult the Apple
HGS Toolbox Reference or any book introducing 1IGS programming for more information.

P BASIC: Whenever you use HCOLOR, HPLOT, or the other BASIC commands, BASIC uses QuickDraw.

Before discussing the details of DrawTools, you should know a little bit of how pictures are displayed on the
1IGS screen. We will be discussing 320 mode to keep things simple. The super high-resolution graphics screen is
located in bank $E1 of memory. Each dot on the screen, or “pixel”, consists of half a byte of memory , or 4 bits.
This means up to sixteen colours can normally be displayed on the screen. The screen consists of 320 pixels
horizontally and 200 pixels vertically. These pixels are located in the area $E12000 to $B19CFF of memory.

The next 200 bytes, starting at $E19D00, are for the Scanline Control Bytes, or SCB’s, one for each line on the
screen, The SCB’s determine the attributes for that line:

bit 0...3 - the palette of the line (0 to 15)

bit 4 - zero

bit 5 - 1 if £ill mode is active. With fill mode active, colour 0 (usually black) behaves differently.
If you draw an area of the screen in colour 0, it will appear in the same colour as the area of the
screen to the immediate left, ‘The colour is “pulled” across the black areas of the screen, filling
them in.

bit 6 - 1 will cause an SCB interrupt on this line

bit 7 - 1 for 640 resofution; 0 for 320 resolution

The memory located from $E19E00 to $E19FFF contains the 16 colour paleites (or “color iables”). Each
palette contains 16 integer RGB values that describe the 16 colours you can see on the screen. QuickDraw oniy uses
palette O (see Figure 1). Palettes and RGB colour words are discussed more below. !

Fi 1 Th ic in3)
Name RGB ¢ Name RGB
0 black $000 8 flosh pink $FA9
1 dark grey $7177 9 yellow $FFO
2 brown $841 1O($A) green $0EO
3 purple $72C 11($B) light blue $4DF
4 blue $00F 12.($C) lilac purple $DAF
5 dark green $080 13($D) periwinkle blue (desktop) ~ $78F
6 orange $7F0 14 ($B) light grey $CCC
7 rd $DO0 15($F) white $FFF

This whole section of memory, from $E12000 to $E19FFF, can be “shadowed” from $012000 to $019FFF in
bank 1. This area is called the shadow screen. You can use the shadow screen if you set bit 15 in the Master SCB
when you start QuickDraw up. When the shadow screen is in use, drawing takes place much faster than usual. In
addition, the shadow screen can be made invisible (with DrawTools ShadowOff) so that QuickDraw & DrawTools

DrawTools 3.1 . 5

draw many times faster than without shadowing, but the pictures will remain hidden until use DrawTools’
QuickWipe,

2.2 Working with Colour

On the IIGS, the super hires screen can display 16 colours at a time with a single palette. You can change the
current drawing colour using QuickDraw's SetSolidPenPat(c) or BASIC's HCOLOR=c. The hue and brightness of
each colour is described by an RGB colour word, a combination of red, green and blue components. Each
component can be in a range from 0 to 15. For example, black is 0,0,0; white is 15,15,15; bright red is 15,0,0;
orange is 15,7,0.

DrawTools has a tool called SetColour that will take the red, green and blue components and give you the
corresponding RGB value.

Example: Creating the colour “orange” with SetColour.
Pascal: RABColour := BetColour{ls, 7, 0);
BASIC: tooLBoX{ ~SetColour : 0, 15, 7, 0; RGBColours }
REM Include 0 at start for REBColour%$l Add one 0 for each result value,

Example: You can use QuickDraw’s SetColorEntry to change a default colour:

Pascal: setcolorEntry(0, 5, BetColoux(15, 7, 0) };

BASIC: mooLBox(~8etCelour : 0, 15, 7, 0; RSBColour$)
TOOLBOX(4, 16: 0, 0, RGBColour$ }

Besides SetColour, there is a SetColPercent will do the same thing, accept you use percentages (0...100) of
red, green and blue components instead of values from 0...15. FadeColour will make an RGB value darker or
brighter. BlendColour will blend to colours together to make a new colour. FindColour will find the closest
colour in a palette to the colour word you specify.

Although QuickDraw uses one palette, the IIGS can actually display colours from 16 different palettes at one
time, Each line must have only one palette. DrawTools has a tool called SetPalette that will change the palette
for a set of lines.

}
Example: Changing the top half of the screen (lines 0...99) to palette 1,
Pascal: sgetPalette{ o, 99, 1} ;
BASIC: mooLsox(~getpPalette : 0, 99, 1)

Now anything you draw on the top half of the screen will appear in the colours of palette 1 instead of paiette 0.
You can set the colours of any of the palettes using SetColorEntry(palette, colour, RGBvalue); or in BASIC,
TOOLBOX(4, 16: palette%, colour%, RGBvalue%).

FadePal will make make all the colours in & palette darker. UnfadePal will make all the colours in a palette
brighter. A more powerful version of FindColour is FindPalette. Give FindPalette a palette of colours, and it
will try to match them up to colours in the current palette. This tool is useful for NDAs: you can never be sure
which colours are on the screen if an NDA is running under & paint program. FindPalette can tell you if the colours
have changed, and to what.

Example: See the reference for more details. If you want to find the closest colours on the screen to the standard 320
palette:

Define the colours array:0, 1,2, 3,4, 5,6,7, 8,9, 10, 11, 12,13, 14, 15

Define the Palette:$000, $777, $841, $72C, ..., $78F, $CCC, $FFF

After the call is made, the values in colour list will change to reflect the actual numbers for these colours on the
current screen {or the closest colours them),

DrawTools 3.1 6

2.3 Fades, Wipes, and Dissolves

What set of tools would be complete without some way to gracefully change from one scene to another? There
are four basic ways to make such a transition. The simplest way is to erase the screen and draw a new picture; it’s
easy, effective, but it lacks a certain class, especially on a computer with the possiblities of the IIGS. A common
way to switch pictures is with a fade. A fade changes all the colours to a single colour, and then reverses the process
to reveal a new picture. While the colours are identical, any drawing you do is invisible. DrawTools provides two
fades: (1) QuickFade, the standard fade used in so many applications, which dims all the colours in the first eight
palettes to black; (2) InerFade, which fades out everything except the red component, and then fades to black

A second method of switching pictures is with a wipe. A wipe copies a picture from shadow screen onto the
screen in a special order. DrawTools provides two wipes which copy the shadow screen to the main screen: (1)
Quick Wipe, which instantly copies one to the other, and (2) VB Wipe which copies using a Vencian blind effect.

The last way to change screens is a dissolve. This is a special kind of wipe which operates on a pixel-by-pixel
basis. There are no dissolves in DrawTools.

Example: How to fade to black, draw something new, and unfade to reveal it.
Pascal;

QuickFadeOut(l};

repeat until FadeDone;

{draw the new screen here}

QuickFadeIn{l);

repeat until FadeDcone;

BASIC:

TOOLBOX (~QuickFadeOut 1}

REPEAT
TOOLBOX (~FadeDona : 0; FadeDoned)

UNTIL Fadebone® < 0

REM Draw the new ecreen here

TOOLBOX {~QuickFadeIn : 1)

REPEAT .
TCOIBOX (~FadeDona : 0; FadeDone%)

UNTIL FadeDone% <> 0

Merlin 16+:

~GguicokFadeOut #1
QFOLOOD ~FadeDone

PLA

BEQ QFOLoOp

* Draw new screen here
~guilckFedeIn #1
QFILoop ~FadsDone
PLA
BEQ QFILocop

Bxample: How to use the Venician Blind wipe tool to wipe a new screen over an old one.
Pascal:

{make sure the shadow screen is allocated}

Draw8hadow;

BhadowO£E;

{draw the new screen here}

VBWipe;

DrawTools 3.1

DrawMain; { or sShadowOn, if you want to use the shadow screen }

BASIC: Reminder; Uses the shadow screen: stand-alone programs only!
TOOLBOX ({~DrawB8hadow }
TOOLBOX (~8hadowOfE)
REM Draw new screen here
TOOLBOX (~VBWipe)
TOOLBOX{~DrawMain)}

Merlin 16+
_DrawBhadow
_B8hadowOff

jdraw the new screen here
_VBHipe
_DrawMain

DrawTools 3.1 8

3. Animation

3,1 What is Animation?

Animation is the illusion of motion created when a sequence of pictures is rapidly displayed. Each picture,
called a cell or frame, is a modified version of the picture before it. When each of these still frames is displayed
quickly, one after another, they give the illusion of smooth motion. A movie displays 24 frames per second, and at
60 or beyond the eye can’t distinguish animation from real motion. Reasonable computer animation can be achieved
at speeds of even 4 frames per second,

To show & flag being raised, you would first start with a picture of flag pole. Then you would create a series of
pictures, each with the flag a little farther up the pole. The final picture would be drawn with the flag at the top of
the pole. Each of these pictures of the flag and the flag pole is a frame, When you display these pictures rapidly and
in order, the flag appears to smoothly rise up the pole. This is the fundamental principle of animation,

3.2 Animation Examples: Dialog Ideas

To view some sample animation sequences, start PicEd and load the dialog.pics picture library included in the
PicEd folder. This file is an unpacked picture library created from the Dlog.Ideas320 file using the Library Converter
utility. Once the file is loaded, try some of the following animation sequences. ‘

Name Sequence Speed
1. Note Alert 0,1,2,3,3,3,255,0 4
2. Caution Alert 4,5,6,7,6,5,255,0 2
3. Stop Alert 8,9,10,11,255,0 3
4, Working GS 12,13,14,12,13,14,12,13,14,15,15,15,255,0 5
5. Swap Disks 16,17,18,19,20,21,22,23,255,0 2

To try one of these animations:
1, Click on the ani button,
2. Click on the seq button.)
3. Type in the picture sequence, one number at a time,
4, Click on the Go! button.
5. Type in the speed number.
6. To stop the playback, hold down the mouse button.

Try some experiments,

3.3 Colour Cycling

One of the simplest methods of performing animation is colour cycling, 1t is the process of changing RGB
colour words to make objects on the screen appear and disappear. Most paint programs for the [IGS have some kind
of colour cycling feature.

To use ¢colour cycling, you draw only one picture, buf you paint different frames in different colours, With the
flag pole example, you could draw a series of flags up the flag pole, each in a different colour, the lowest flag in
colour 1, the second lowest in colour 2, and so on. When you are finished, you have a flag pole full of coloured
flags (see Figure 2). If you change all of the colours except colour 1 to black, the only flag that is visible is the one
on the bottom of the flag pole. If you change colour 1 to black, and change colour 2 to the colour of the flag, the
second flag on the flag pole appears. By cycling through the current palette, making one colour after another visible,

DrawTools 3.1 9

the flag appears to rise up the pole.

Figure 2: Fla ¢ Example

To do colour cycling in the current palette, all you need are two QuickDraw tools: GetColorEntry and
SetColorEntry. The first gives you the RGB colour word for a particular palette entry. The second lets you change
a colour in a specified position in a palette to a new colour. There is also a GetColorTable and SetColorTable that
lets you change whole palettes at a time, Here's an example of how you might write the flag animation:

Example: Colour Cycling of a flag pole with five flags.
Pascal:
procedure AnimateFlagPole;
var OldColours : ColorTable;
FlagColour, LastFlagColour, i : integer;
begin
QetColorTable(0, OldColours);{ save the original colours }
LastFlagColour := 5;{ used to erase old flagse }
for 1 1= 1 to 5 do SetColorEntry{(0, i, $000);{ erase all the flaygs }
for 1 1= 1 to 100 do begin{ one hundred times }
for FlagColour t= 1 to 5 do begin{ for each flag colour }
SetColorEntry(0, LastFlagColour, $000);{ Make the last flag invieible 1}
SetColorEntry {0, FlagColour, S$FFF);[draw the flag in white }
LastFlagColour i= FlagColour;{ this flag gets erased next }
end;
end; 3
SetColorTable (0, OldColours);{ restore original colours }
end [AnimateFlagPole};

BASIC:
DIM OldColoure$ {15)
PROC AnimateFlagPole
oldColourshs = ADDR(OldColours®({ } 1 REM Get address of array
OldColoursH% =PEEK (202}
TOOLBOX(4, 15 i 0, OldColoursH%, OldColoursl®& } : REM Save coloure in the array

LastFlagColours = & 1+ REM Used to erase old flags

FOR it = 1L TO 5 y REM Erase all the flage
TOOLBOX{ 4, 16: 0, i%, 0)

NEXT i%

FOR 1% = 1 TO 100 t REM One hundred times
FOR FlagColour® = 1 TO & + REM For each flag colour
TCOLBOX(4, 16: 0,hastFlagColour$, 0) 1 REM Make the last flag invisible
TOOLBOX(4, 16: 0,FlagColour¥, 4085} : REM Draw the flag in white
LastFlagColours = FlagColour$® 1+ REM thie flag gets erased next
NEXT FlagColour$
NEXT i%

DrawTools 3.1 10

TOOLBOX (4, 14: 0, OldColoursH%, OldColoursL%) : REM Restore original colours
ENDPROC

You can do even more impressive colour cycling by changing an entire palette at a time. This is used by many
video games fo create animation across the whole screen without having to do a lot of work. For example, the
pixels for water may never be redrawn, Water looks like it’s moving because the colours of the water pixels are
slowly changing. This is an impressive animation effect that take very little effort on the part of a program.

DrawTools provides two tools for palettes that work like GetColorEntry and SetColorEntry. GetPalette gives
you the palette being used for a particular line on the screen. SetPalette, which we have seen before, lets you change
the current palette over a range of lines,

Example: Palette Cycling.
Pascal:
procedure CyclePalettes;
var OldPalette, Pallum, Delay, i : inkteger;
begin
OldPalette 1= detPalattea(l);{ save the original palette number }
for i 1= 1 to 100 do begin{ one hundred times }
for PalNum := 0 to 15 do begin{ change the screen palette }
BetPalette (0, 199, PalNum);{ to each of the 16 palettes }
for delay 1= 1 to 5 do WaltVvB;{ time delay = 1/6 second }
end;
end;
BetPalette (0, 199, OldPalette);{ restore the original palette }
end {CyclePalettes};

BASIC:
PROC CyclePalettes
TOOLBOY{~@GetPalette : 0, 1 ; OldPalette%) : REM save the original palette
FOR 1% = 1 TO 100
FOR PalNum$% = 0 TO 15 1 REM change the screen palette
TOOLBOX (~BetPalette :0, 199, PaliNum$)
FOR delay% = 1 TO &
TOOLBOX{~WaltVB }: REM time delay = 1/6 second !
NEXT delay®
NEXT PalNum$
NEXT 1%
TOOLBOX(~BetPalette (0, 199, OldPalette$) : REM restore the original palette
ENDPROC

3.4 The Art of Animation: Draw, Erase and Redraw

Colour cycling is fine for some kinds of animation, but a program often needs to save many of the coiours in
the palette for other uses, The more conventional approach to animation is to draw an object on the screen, erase it,
and then draw it again somewhere else. This cycle of draw, erase, draw, erase, is the technique used in most
computer games,

The one problem with draw/erase/redraw animation is flicker. ‘This occurs when the object being animated can’t
be redrawn fast enough. The eye sees the picture when it's there and when it isn’t there, and this makes the object
you're animating appear fo flicker. One of the easiest ways of reducing flicker is to use DrawTools® Wait VB tool
before you try to erase anything.

Example: The following procedure moves a white box across the screen by drawing it, erasing it, and then redrawing

DrawTools 3.1 11

it. WaitVB is used to keep the flicker low. To see the box flicker, try replacing the WaitVB loop with “for delay :
1 to 5000 do ;” and change the number of iterations.

[

Pascal:
procedure MoveABox;
var Box i rect; i, delay : integer;

begin
SetRect({ Bax, 0, 10, 30, 40);{ the 30 x 30 box }
Set8olidPenPat(15 };{ the box colour }
SetsolidBackPat({ ¢ };{ the arasing colour }
for i 1= 1 to 20 do begin{ 20 times }
offsetRect { Box, 10, 0)};{ move the box 10 pixels to the right }
PaintRect{ Box };{ draw it }
for delay t= 1 to 5 do WaitVvB; {time delay = 1/6 second }
[we just finished a Waitvs!l }
EraseRect { Box }3{ erase the box without flicker }
end;
end;
BASIC:

DIM Box%(8} : REM Space for a rectangle

PRCC MoveABox
REM I'm assuming BoxH$ & BoxL& is the address of the box% array.
TOOLBOX(4, 74 : BoxH%, BoxL$%, 0, 10, 30, 40) : REM create a 30 x 30 box
HCOOLOR = 15
BKCOLCR = O
FOR i% = 1 TO 290 : REM 20 times
TOOLBOX (¢, 75 : BoxH%, BoxL$, 10, 0) : REM move the box 10 pixels to the right
TOOLPOX {4, 84 : BoxHY%, BoxL$) : REM draw it
FOR delay% = 1 TO b

TOOLROX(~WaitVB) : REM time delay = 1/6 eecand
NEXT dalay$.
TOOLBOX {4, 85 i1 BoxH%, BoxL%¥): REM erase the box without flicker:
END i%
ENDPROC

3.5 Bit-Mapped Pictures

Bach time QuickDraw paints an object on the screen (like our box) it has to do a number of things:

a) Make sure the mouse arrow isn’t erased.

b) Make sure the object is actuatly on the screen.

¢) Make sure the object is within the clipping & visible regions of the current window or grafport,
d) Calculate which colours to use with the pen pattern and pen mask.

e) Compute which pixels to change in the current pen mode & size,

All this is what makes QuickDraw so handy and powerful, but it also makes it slow, too slow except for the
simplest kinds of animation, After all, if we are drawing a space ship, we don’t need speciai pen modes, sizes,
patterns and the rest of those features. To draw a picture very quickly, DrawToals provides a special set of tools call
the drawing tools. There are 8 drawing tools: Draw, Draw48, DrawAt, Drawd48At, DrawOn, Draw480n,
DrawOnAt and Drawd480nAt. The basic tool, Draw, draws a bit-mapped picture library picture (24 pixels wide
and 24 pixels high, the ones used with PicEd and the Library Converter). The other tools are variations on Draw:

DrawTools 3.1 i2

the “48” tools draw 4 pictures at once (like you see in the double-sized window in PicEd); the “At” tools let you
specify the screen position to draw at; and the “On” tools let you draw matted pictures. We'll talk more about
pictures and mattes later. Because each of these tools is customised for a particular size and “pen mode”, they draw
pictures many times faster than QuickDraw can.

Before we can use the drawing tools, we need to load a pictuire library from a disk with the LoadLibrary tool.
A picture library is a set of 32 bit-mapped pictures created with PicEd or the Library Converter utility. LoadLibrary
loads picture library from a disk and it gives you an “ID code” that you can use later on to refer to the library.
LoadLibrary has some special parameters that will be described later on when we talk about matting, There is also
an UnloadLibrary tool, but you normally don’t reed to use if.

You can only draw with one library at & time. To specify which library we want to draw with, we need to use
the SetLibrary tool. There is also a GetLibrary tool that returns the ID code for the current library.

LoadLibrary uses a GS/OS string for the pathname: there is no direct way in BASIC to use G$/0S strings.
jo ‘We can fake the LoadLibrary/SetLibrary calls with BLOAD. This only works with unpacked libraries,

Example: Loading a library in BASIC without LoadLibrary or SetLibrary.

BASIC:

REM PrawTools Addr$ is the direct page space you allocated when you started DrawTools.
Drawlools Buffer = PEEK{Drawlools Addr$+4) + PEEK{Drawlools Addr¥+5) * 256

POKE 202,0 : REM In BASIC 5.0, we what to load the whole library

BIOAD “path name of picture library”, Drawlools_Buffer, 9216

Example: The following procedure demonstrates how to load and display the pictures in an (unpacked) library. The
LoadLibrary tool requires a GS/OS string (a two-byte length followed by the string itself}, so refer to your particular
language on how to define a GS/OS string.

Pascal:
procedure DumpOutLibrary(pathname : GS088tring);
var TheLibrary : integer;{ ID code for the library }
begin
Thelibrary 1= LoadLibrary(pathname, 0, 0);{ load the library from disk }
SatLibrary{ ThelLibrary };{ use this library to draw with }
for vy 1= 0 to 3 do { 4 rows }
for x 1= 0 to 7 do { 8 pictures per row }
DrawAtb(x * 32, v * 32, x + vy * 8 };{ draw picture # x+8y }
end;

BASIC:
PROC DumpOutLibrary
REM Fake the Iovadlibrary/SetLibrary as described above (or use Micol Macro & LINK).
FOR vy = 0 TO 3 : REM 4 rows
FOR X% = 0 TO 7 1+ REM 8 pictures per row
ScreenX% = x% * 32
Soreen¥$ = y% * 32
PicNum% = X% + v * 8
TOOLBOX{~DrawAt i ScreenX$, Screen¥%, PicNum®%)
NEXT x%
NEXT v¥%
ENDPROC

Examnpfe: You can animate pictures with the drawing tools in the same way that we animated the box. If you create
a picture of a box using PicEd in picture 0 of a library, and you leave picture 1 of the library blank (to erase with),
then you can animate this box using the following procedure.

DrawTools 3.1 i3

Pascal:
procedure MoveBoxInADrawToolsbLibrary(pathname ! @8088tring) ;
const Box = 0; [box is picture zero }
Blank = l;{ blank picture is picture 1 }
var i, delay ! integer; BoxLib 1 integer;
begin
Boxiib s1= LoadLibrary(pathname, 0, 0);{ load the pictures }
SatLibrary(BoxhLib);{ draw with this set }
for i 1= 1 to 28 do begin{ 28 times }
DrawAt(1 * 10, 20, Box)};{ draw a box }
for delay := 1 to 5 do WaitVB;{time delay = 1/6 second }
DrawAt{ 1 * 10, 20, Blank);{ erase the box }

end;
end;
BASIC:
PROC MoveRoxInADrawloolsbhibrary
Box% = 0
Blank% = 1
REM load and set the library
FOR i% = 1 TO 28
X% = 1% * 10
TOOLBOX{~DrawhAt : x%, 20, Box%)
FOR delay% = 1 TO &
TOOLBOX (~WaitVB)
MNEXT delay%
TCOILBOX (~Drawht : x%, 20, Blankg)
NEXT 1%
ENDPROC

3.6 Caching with Library Buffers
¥

DrawTools provides a caching mechanism that can reduce the swapping time when you change from one library
to another with SetLibrary, If you need the extra speed that caching provides, use the ExtendButfers tool after
DrawStartUp. Now each time you use SetLibrary, the library will be loaded into a library buffer in bank 0. If you
use SetLibrary to select a library which is already in a buffer, DrawTools will switch to the appropriate buffer
without reloading the library from main memory.

DrawTools can allocate up to 5 library buffers. Only the libraries you use the most will be cached; in order to
get the best performance from the caching mechanism, use the Reset Buffers tool when you are about to use a new
set of libraries. This clears the old libraries from the library buffers in preparation to receive a new set of libraries,
such as when a new level in a game is about to start,

You can pre-load the library buffers when they are clear by using SetLibrary once for each library you will be
using.

3.7 Mattes : Merging the Background with a Picture

Using DrawAt, we can create animated objects that move about the screen by drawing, erasing, and redrawing,
But these tools destroy anything they are drawn on. For instance, if the screen contains a picture of a tree, and we
use DrawAl to place a picture of a man on top of it, we get a tree with a 24x24 rectangle in it and a man within the
rectangle. The picture is drawn “as is” overtop of the background, What we need is a way to combine the picture of
the man with the tree. We want the empty pixels about the man to act as if they were transparent.

DrawTools 3.1 14

Matting is the process of merging a picture with what is on the screen by using a special matte, or mask, which
indicates the portions of the picture which should be treated as transparent. if you have used QuickDraw II, you have
already seen mattes used, When you create a cursor, you create a picture of the cursor and then you make a mask to
indicate where the screen pixels show through. The pen mask works in a similar way: pixels marked as white show
through.

Figure 3: Merging the Background with a Picture

A
AT AT

ARY

Background Matte Mask Picture Result

b
e
b

S5
O %
Lt
Py
GLGY
4
STSG

faN .

DrawTools also uses mattes {o merge pictures with a background. This is done with the “on” drawing tools
(DrawOn, DrawOnAl, ...). Each of these tools requires a matte to immediately follow the picture you are trying to
draw. Creating a matte mask is easy. In PicEd there is a button named “mask”. When you click on the button,
PicEd will create a matte for the current picture and place it in the following picture position. The effect is shown in
the window with the red background. When the mask is made, each black pixal in the original picture is assumed to
be transparent. To view the matte, edit it. Each white pixel represents a pixel that will be taken from the
background, and each black pixel represent a pixel that will be taken from the proceeding picture. 1t looks rather like
a silbouette of the original picture,

If we want to make an entire library of matted pictures, there is even an easier way to create the matte masks,
We draw pictures in each of the even numbered library positions (0, 2, 4, ..., 30). Then we can tell LoadLibrary that
the masks are missing and that SetLibrary will have to generate ail the masks in positions (1, 3, 5, ..., 31) for us.
The following procedure shows the pictures in this kind of library. Note that the pictures will be drawn on top of
whatever was previously on the screen. ‘ :

Example: Drawing the contents of a picture library with matted pictures
Pascal:
procedure DumpOutMattedlibrary(pathname : GS08String});

var Thelibrary i integer;f{ ID code for the library }

begin

ThelLibrary 1= LoadLibrary{ pathname, 0, $4000);{ bit 14 = we’ll need maeks! }

BetLibrary(Thelibrary);{ uee this library to draw with }

for v 1= 0 to 3 dof{ 4 rows)

for x 1= 0 to 7 do { 8 picturee per row }
if not odd(x) then{ Skip the maske @ 1,3,... }
DrawOnAt(x « 32, y * 32, X + ¥y * 8 };{ draw picture # x+8y]

and;
BASIC:

PROC DumplutMattedlibrary
REM Load and set the library
TCOLBOX (~GenAllMasks)} : REM Generate matte masks for even-numbered pictures
FOR y% = 0 TO 3
FOR X% = 0 PO 7 STEP 2
Screenx® = x% * 32

PrawTools 3.1 ‘ 15

Screeny®% = y% * 32
PicNum$é = X% + y% * B
TOOLBOX (~DrawlnAt i1Screenx®, Screeny$, PicNum$)
NEXT x%
NEXT v%
ENDPROC

If we don’t want every black pixel to be treated as transparent, we will have to create the masks by ourselves,
For instance, we may create a picture of a man with a black pixel for an eye. Create a matte mask using the mask
button, and then edit the matte and remove the white pixel where the eye is. Now the eye won’t be freated as
transparent,

Now we can create pictures like we see in video games which move overtop of the background. However,
erasing these pictures becomes a problem. We can't simply use a blank picture as we did before because the
background isn’t blank, To erase the pictures drawn with draw on, we need to replace the piece of the background
that lay under the picture. But when we use DrawOn, we’ve changed the background on the screen by adding our
DrawOn pictures.

The answer to this dilemma is to store the background in the shadow screen. DrawShadow and DrawMain
tools let you switch whenever you want between the shadow screen and the main screen. ShadowOff turns off the
shadow screen; you can still draw to it, but what you draw remains invisible until you “wipe” it to the main screen,
ShadowOn turns the shadow screen on so that anything you draw will be copied to the main screen and become
visible.

4: The shadow screen and animation

Lo a a0 %" The main screen holds the
o anararanara sl foreground and background

The shadow screen holds an uncorrupted copy of the)
background

Rather than get into the details of how the shadow screen works, here's how we get around the erasing problem.
First, we put the background into both the shadow screen and the main screen at the same time. The easiest way to
do this is to use DrawShadow & ShadowOn and start drawing., Second, we use DrawMain and draw our matted
pictures. The copy of the background that is sitting in the shadow screen remains unchanged, Finally, to erase our
matted pictures, we use DrawShadow and draw empty matted pictures. Since all pixels are transparent in an empty
matted picture, the background is copied to the main screen and erases any picture that we drew previously. 1f it
sounds complicated, it is, but it’s easier than trying to capture the pixels in the background each time we draw with
matted pictures,

Example: This is the MoveABox procedure rewritten to move the box overtop of a background picture. 1t should
help you put things together:

Pascal:
procedure MoveMattedBoxInADrawToolsLibrary(pathname : GS08String);
const Box = 0;{ box is picture 0 {picture 1 will be the matte mask} 1}
Blank = 2;{ blank picture is picture 2 (picture 3 will be the matte mask} }
var i, delay : integer; BoxLib : integer;

DrawTools 3.1 i6

begin
DrawBhadow; { remember to specify the shadow ecreen in QDStartup }
8hadowOn;
cL8(0);{ erase the shadow screen {and the main screen) }
{ Draw some stuff on the screen here - this will be in the background }
BoxIib 1= LoadLibrary{ pathname, 0, $4000);{ load the pictures }
SBetLibraxy({ BoxLib };{ draw with this library }
for i 1= 1 to 28 do begin{ 28 times }
PrawHain;{ switch to the main screen }
DrawOonAt(1 * 10, 20, Box);{ draw a box }
for delay 1= 1 to 5 do WaltVvB;{time delay = 1/6 second }
DrawBhadow; [switch to the shadow scrn }
DrawOnAt(1 * 10, 20, Blank);{ erase the box }
end;
end;

3.8 Pixie Power: Automatic Animation

Up until now we’ve been looking at how to draw pictures in PicEd that we can animate and move around the
screen. You could do all the animation yourself using the drawing tools to play back pictures in a specific order and
erase them as appropriate. Animation involves not only pictures, but arranging them into sequences and moving the
pictures about the screen. DrawTools has a special data structure to help you do just that, and it’s called a pixie. It's
sort of the software counterpart of 2 hardware sprite such have you may have seen on a Commodore 64.

A pixie is an animated object that can move around the screen. Pixies are very flexible. They can be matted or
unmatted. They can have a direction or stand still. They can temporarily become invisible and then reappear
somewhere else. They can use pictures from more than one library, In the DrawTools’ game demo, the mother ship
and the bombs it was dropping were all pixies.

Each pixie consists of two parts: 1) a sequence of picture numbers and pixie commands; 2) a data record
describing the position and direction of motion. We have already seen examples of a picture sequence: we had to
type in a picture sequence to do the animation examples that we did at the start of the animation section. The size of
data record depends on what type of pixie you create: a simple, coarse, or fine pixie. The simple pixie is used to step
through the picture sequence: it doesn’t actually draw or move anything, The coarse pix,ie is a 24x24 bit-mapped
picture that has a location and a direction. The fine pixie is similar to the coarse pixie, except that it can move with
greater precision. For the rest of this section, we’ll be talking about fine pixies because they are the most versatile.
Most of what we’ll discuss will more or less apply to the other two types.

The data structure for & fine pixie data record is already defined for you in Pascal if you are using the DrawTools
interface file supplied with your DrawTools disk.

Table 5: Fine Pixie Data Record (Pascal)

Type FinePixie = record
XVectorLow, XPositionLow : integer;
XVectorHi, XPosifionHi : integer;
Y VectorLow, YPositionLow : integer;
Y VectorHi, YPositionHi ; integer;
index : byte;
status : byte;

end;

DrawTools 3.1 . 17

Here is a description of each part of the record;

XPosition - this is current position of the fine pixie (0..320, the same as the drawing tools use). If “h1” is the x-
coordinate, and the “low” is in fractions of a coordinate. Normally, you will want to leave the low's at zero.

Y Position - this is the current line number of the pixie (0...199)

XVector - this is the speed of the x direction (<0 is left, >0 is right).

Y Vector - this is the speed in the y direction (<0 is up, >0 is down).

Index - this is the location of the next picture in the pixie sequence; set to 0 for the first.

Stafus - user-defined value; we’ll get to later.

P BASIC: To create a fine pixie record, use the DIM statement or GET_MEM. For example, DIM
MyPixie%(9): You will have to POKE the values into the record: the offsets for the different fields are listed
in the reference. You will also need to use DIM or GET_MEM to create the sequences.

P For instance, XPositionHi = 100, XPositionLow = 0, YPositionHi = 50, YPositionLow = 0, means the
pixie is at (100, 50). If XVector and Y Vector are all zero, the pixie is standing still,

A picture sequence is simply list of bytes with the picture numbers to draw. The index to the sequence is in the
data record.

Example: The following is an example of iow to create a pixie of the swap disks animation that we saw in the first
section. If uses SetPixie to create a new pixie. The constants dVisible and dFinePixie are in the DrawTools
interface file and are used here just to make things easier to read. SetPixieSeq lets you select the sequence of pictures
that will make up the pixie. There are also GetPixie and GetPixieSeq tools that retumn fo you a pointer to the data
record or sequence for one of the pixies.

Pascal:
procedure SetUpDiskSwapPixie(Dialog Pics Path G8088tring)
type APictureSequence = array[0..9] of hyte;
var Pice 1 APictureSegence;
DigkPixie : FinePixie;
pialoglib 1 integer;

begin)
Pica[0] := 16; [list of pictures }
Picall] := 17;Pice([2] 1= 18;Pice[3] = 19;{ in the animation }
pice(4] t= 20;Picel5] 1= 21;Pics[6] 1= 22;
Pice7] 1= 23;Plce([8] 1= 265;Pica[9] 1= O}

DialogLib 1= LoadLibrary{Dialog Pics Path, 0, 0);{ load the dialog pice }
SetPixie(0, dvisible+dFinePixie, @DiskPixie);{ pixie 0 vieible & a fine pixie }
SeatPixieBeq{0, Dialogiib, @Pice);{ pixie uses dialog.pics }
{ & the picture sequence }
with DiekPixie do begin
XPositionLow 1= 0;XVectorLow := 0;{ place it at (50,50) }
XPositionHi 1= 50;XVectorHi 1= 0;{ and don’t move around! }
YPogitionLow 1= 0j¥YVectorLow 1= 0}
YPoaitionHi := BO;Y¥VectorHi 1= 0;
Index 1= 0;{ the first picture is }
{ the first in the arrayl]
end;
end;

Once a pixie is created, it is easy to animate it with the AnimatePixie fool. Animate pixie moves the pixie (if
necessary) and then uses the drawing tools to draw the pixie. Note: it doesn’t erase the pixie for you, but we don’t
have to erase anything for this pixie because it isn’t matted nor is it moving around.

DrawTools 3.1 18

Example: How to animate a single non-matted fine pixie.
Pascal:
procedure AnimateDiskSwapPixie(Dialog Pics_Path 1 GSO0SStriag);
{ --- you can fill thise in from the above example }
bialogLib 1= LoadLibrary(Pialog Pics Path, 0, 0);{ load the dialog pics }
BetPixie (0, dVisible+tdFinePixie, @DiskPixie);{ use pixie #0 }
BetPixleSeq{0, DialogLib, @Plcs);{ pixie uses dialog.pics }
[--- Initialiee the data record in here }
BetLibrary(DialogLib };
for i 1= 1 to 100 do begin
for delay 1= 1 to 5 do WaitVB;{time delay = 1/6 second }
AnimatePixie(0 };{animate pixie #0}
end;
end;

3.9 Pixie Commands

A pixie sequence can contain pixie commands, A command is a special instruction for the pixie, such as to
change the pixie's vector or to switch to a different library. We have already seen one pixie command: 255 is “end of
sequence” command and every sequence must end with it. The number following the end of sequence cormand is -
the position in the sequence to loop back for the next picture. In our disk swapping animation, we are looping back
to position 0, the start of the sequence in order that the sequence will keep repeating over and over again.

There are eight command that you can use with pixies, and they are outlined as follows:

255 - End of Sequence {All Pixies)
Marks the end of a sequence; it’s followed by the index for the sequence to loop to, It can also be used to to jump
forward in a sequence.

254 - Change Library (Coarse or Fine)
Switches to a different library; it’s followed by a logical library number (The second parameter in LoadLibrary).
.]

253 - Change X Vector (Fine)
Changes XVectorLow & XVectorHi; it’s followed by the new low and high values. eg. 254, 0, 0, 2, 0 changes low
to 0 and high to 2.

252 - Change Y Vector {Fine)
This works the same way as Change X Vector,

251 - Change X & Y Vectors (Fine)
Changes X Vector then Change Y Vector, a total of 8 new bytes plus the command byte.

250 - Change Vector (Coarse)
Changes the vector word for a coarse pixie.

249 - Change X & Y Vectors Relative (Fine)

This command works like 251 except that it ADDS the new vector values to the old ones.

For example, you have a sequence of an aeroplane and you want to make the aeroplane bounce during the
sequence. There is no way to know the X & Y vector values, so you use 249, (3, 0, G, 0, 0, 0, 1, 0, <picture> ,
249, 0, 0,0, 0, 0, 0, 254, 255, <picture>, 249, 0,0, 0, 0, 0, 0, 1, 0. If the acroplane Y vector is $0100 (dropping
one line at a time) when this sequence is used, the following will happen. The first 249 causes the aeroplane Y

DrawTools 3.1 19

vector to increase by | so the plane drops 2 lines at a time. The second 249 changes the vector by -2 to 0, The third
changes the vector back to one (the starting value). The plane does a little vertical bounce whether its gaining
altitude, losing altitucle, or flying straight.

248 - Change Status (Coarse or Fine)

The status field in the data record is for your own use. It works much like the RefCon values in things like
windows. 248 is followed by the byte that you want stored in status. For instance, if you have a sequence of
someone jumping, you can start the sequence with a 248, 1 and at the peak of the jump you can use a 248, 2. Now,

to tell whether the player is jumping up or is starting to fall, all you have to do is check status to see if there is a |
or 2.

Example: The following example is how to enbed speed changes right inside of a sequence. It’s a sequence of
someone jumping, where pictures 1, 2 and 3 are to be repeat during the jump. Without the speed changes, the
sequence would be 1,2,3,2550. But we want a nice looking jump where the jump starts fast (reduce the Y
coordinate by 2 each animation), slows when the peak of the jump is reached (reduce by 1), and speeds up past the
peak (see Figure 6). Because all these speed changes are embedded in the sequence, all our program has to do is
check the pixie position to see when the jump is over.

Pascal:

Seql0] = 253;8eq[l] 1= 0;Seq[2] = 0;8eq[3] 1= 254;Seq[4] 1= 255;
Seq{s] = 1;8eql6l 1= 2;8eq(7] 1= 3,

Seql8] 1= 1;8eq[9] := 2;8eqll0} 1= 3;

Seq(ll] := 283;8eqfl2] 1= 0;8eqll3] 1= 0;8%eq[14] 1= 255;Seq{15} := 255;
Seqgqllel 1= 1;
Begfl7] t= 253;8eq{l18] 1= 0;8eq{19] 1= 0;8eq{20] 1= 0;8eq[21] = 0;
Seqgf22] 1= 2
Seq{23] 1= 253;8eq[24] 1= 0;8eq[25] 1= 0;8eqf26] 1= 1;8eql27] = 0y
geql2s] 1= 3;
Seq(29) = 253;8eq[30] := 0;Seq[31] 1= 0;8eq{32] = 2;8eq([33] := 0y
Seq[34] 1= 1;8eq[35] 1= 2;8eq(36] =3;
Seql37} 1= 265;3eq[38] 1= 34;
}
Figure 6: A Typical Jumping Sequence
-1 +1
-2 +2

BASIC:

REM Assuming Seq_Addr is the address of the sequence

POKE deq Addr+0, 253

POKE Seq Addr+l, 0:POKE Seq Addr+2, 0:POKE Seq Addr+3, 254:POKE Seq Addr+d, 255
POKE Seq_Addr+5, 1:POKE Seq Addr+6, 21POKE Seq Addr+7, 3

POKE Seq Addr+8, 1:POKE Seq Addr+9, 2:POKE Seq Addr+10, 3

DrawTools 3.1 20
POKE Seq Addr+ll, 283
POKE Seq Addr+12, 0:DPOKE Seq Addrel3, 0:POKE Seq Addr+14, 255:POKE Seq Addr+ls, 255
POKE Seq Addr+l6, 1
POKE Seq Addr+1l7, 253
FOKE Seq Addr+18, 0:POKE Seq Addr+l9, 0:POKE Seq Addr+20, 0:POKE Seq Addr+2l, ©
POKE Seq Addr+22, 2
POKE Seq Addr+23, 253
POKE Seq Addr+24, 0:POKE Seq Addr+25, 0:POKE Seq Addr+26, 1:POKE Seq Addr+27, 0
POKE Seq Addr+28, 3
POKE Seq Addr+29, 253
POKE Seq Addr+30, 0:POKE Seq Addr+3l, 0:POKE Seq Addr+32, 2:POKE Seq Addr+33, 0
POKE Seq Addr+34, 1:1POKE Seq Addr+35, 2:POKE Seq Addr+36, 3
POKE Seq Addr+37, 2B5:POKE Seq Addr+38, 34
Merlin 16+:
db 253 ; start jump with a new Y vector
adrl SFFFE0000 ; (-2) move up 2 lines for each picture displayed
db 1, 2, 3, 1,2 ,3 ; display six pictures, moving up 2 lines each time
db 253 ; nearing top of jump; start slowing down
adrl SFFFFO000 ; (-1} move up one line next time
di 1 1 display picture, moving up one line
db 263 ; we're at the top of the jump; hover for one picture
adrl 500000000 ; don't move for next picture
db 2 ; picture
dio 253 ; starting to falll
adrl $01000000 ; (+1} move down one line each plcture
db 3 } plcture
db 283 ; fall at full epeed for as long as the seq. continues
adrl $02000000 : (+2) down two linee each picture
db 1, 2, 3 t pictures
db 255, 34 ; end of sequence - keep repeat the last 1,2,3

Example: Jumping with the above pixie sequence. '
Pascal:
DoneJumping := falaeg;
repeal
AnimatePixie(PixieNum);
if HasLandedOnSiomething{ PixieRec.XVectorHi, PixieRec.YVectorHi } then begin

PixieRec.¥YVectorHi = 0}
Donedumping 1= true;
end;
until DonedJunping;
BASIC:
DoneJumping! = FALSE

REPEAT
TOOILBOX{~AnimatePixie : PixieNum?%)
XVectorHi% = PEEK (Pixie Addr+6) + PEEK(Pixie Addr+7) * 256
YVectorHi% = PEEK(Pixie Addr+14) + PEEK(Pixie Addr#l5) ¥ 256
IF HasLandedOnSomething{ XVectorHi%, YVectorHi%] THEN BEGIN
POKE Pixie Addr+14, 0 1 REM Y vector to 0
POKE Pixie Addr+lb, 0
Donedumping! = TRUE
ENDIF

DrawTools 3.1 21

UIFPIL DoneJumping! = TRUE

3.10 Managing Multiple Pixies

We know know enough to create an animated figure that can move about the screen, even overtop of a
background, The final topic here is animating multiple pixies at once, especially about how to be careful when
erasing pixies.

Throughout our pixie examples we've been using pixie 0 to do our animation. DrawTools supports up to 16
pixies at once (0 ..I5). You can select any one of these pixies for your animation. However, there may be
occaisions when you don’t care which number you use. You could make a game where new bad guys can appear at
random. At any point in the game, you may not be sure of how many bad guys you have already on the screen, nor
do you know which pixies are being used. To make things like this a litile easier, DrawTools provides two tools
called NewPixie and ClearPixie. NewPixie returns the number of the first pixie that is not being used, starting
from 15 and working down towards 0. ClearPixie lets you free up a pixie that you aren’t going to use anymore,

If you temporarily want to suspend a pixie without using ClearPixie to free up it’s data record and sequence
information, there is DisablePixie tool. When a pixie is disabled, it will not be drawn or moved, but it still
exists and can be “started up” again by using EnablePixie. A pixie may also be rendered invisble by using
HidePixie. A hidden pixie will move around the screen, but it won't be drawn. It appears again with a
ShowPixiecall. Inthe demo game included on the DrawTools disk, a bomb is disabled when it hits the bottom of
the screen and it remains disabled until the Mother Ship is ready to drop it again. The Mother Ship is made-
invisible at one point in the game by using HidePixie.

Using several pixies is easy with the Animate command. It works the same way as AnimatePixie, but it
animates all the enabled pixies at once, and automatically calls SetLibrary when necessary. Animate works from
pixie t5 down to pixie 0. If you have two mafted pixies overlapping, the pixie with the lower number wilt be
drawn on top of the other one. Keep this in mind if the order of drawing is important. If you want a pixie airplane
to fly behind a pixie cloud, the cloud must have a lower pixie number.

The most difficult aspect of working with multiple pixies is erasing, Like AnimatePixie, Animate doesn’t do
any erasing. This is for two very good reasons. First, Animate can’t tell which piciure is blank, or in what library
it is in, to use for erasing. Secondly, when you are animating more than one pixie at a time and they overlap each
other, the order of erasing.is very important, Alil the pixies must be erased before they are animated since
overlapping pixies will interfere with each other. Some pixies may not even need erasing, buch as non-matted pixies
with wide a wide border of pixels that squashes old pixels as it moves slowly arcoss the screen (as in AniDemo),

However, there are two tools to make erasing matted pixies easy. ErasePixie erases a matted pixie by
copying the background on top of the pixie: this works with both coarse and fine matted pixies (that are not disabled,
of course).

Example: EraseAllPixies will erase all that matted pizies. The main loop of a simple arcade game wonld look
something like this:

Pascal:

Done 1= falee;

repeat
BraseAllPixies;
{ move the pixies }
Animate;

until Done;

BASIC:
Donel = PFALSE
REPEAT

DrawTools 3.1

TCOELROX{~EraseAlliPixies }
REM move the pixies
TOOLBOX{~Animate }

UNTIL bone! = TRUE

22

DrawTools 3.1 23

4, Other Functions

4.1 Random Number Ifunctions

DrawTools has three convenient random number tools. These all use QuickDraw II's Random, which returns a
random integer. RND returns a random integer between 1 and the another number, like BASIC’s RND function.
{dds is a boolean function that is true the given percentage of the time. NormalRND is a special funtion that
returns a normally distributed (bell curved) number between 1 and another number,

You can use SetRandSeed to set the “seed” for DrawTools’ functions as well as Random. (The seed
P determines which random numbers will appear, If you set the seed to a certain the number, the random
numbers returned by Random appear in the same order.).

Example: Suppose your are writing an adventure game. The player could find a treasure chest, and the chest may be
booby-trapped to explode 30% of the time. If the chest doesn’t explode, the player gets 10 to 15 pieces of gold,
Y ou could program it like this:

Pascal:
if 0dde(30) then
ExplodeChest
else
GoldPieces 1= 9 + RND(6};

BASIC:
TOOLBOX (~0dde :+ 0, 30; Result®)
IF Result® <> 0 THEN GOSUB ExplodeChest
IF Result% = 0 THEN BEGIN
TOOLBOX(~RND :10, 6; Result®) 1 REM or uee BASIC’'s RND
GoldPieces% = 9 + Result®
ENDIF

Exam plg A player in your game could also pick up a shovel lying abandoned in a corridor, and you want the shovel
to break after an average of 20 uses, If ShovelUses is a variable with the number of good uses left in the player’s
shovel, you could write this:

Pascal: shovelUses 1= NormalRND(40 };
BASIC: roormox(ss, 101: 0, 40; ShovelUses$)

With NormalRND, ShovelUses will usually have a value near 20 (half way between I and 40). However, there is a
small chance the the shovel could have as many as 40 uses (a super-shovel) or as few as | use (a real “lemon”).

4.2 Reading the Joystick

There are 3 tools for reading a joystick on your IIGS. To test the joystick buttons there are two tools: GetFire
and StillFiring. StillFiring is the easiest to use; it is 0 if the joystick buttons are down, and greater than 0 if they
are up. GetFire is only greater than 0 when a button is first down. If a button is held down, GetFire will be 0 until
the button is released and pressed again. The actual number retumed by these tools is a sum: button O has a value
of 1, button 1 has a value of 2, and both buttons have a value 1 + 2 =3,

GetJoy will determine the position of the joystick, either horizontally or vertically. GetJoy(0,0) returns the
horizontal position: a value <0 if the joystick is held to the left, 0 if it’s in the center, or >0 if its held to the right.

DrawTools 3.1 24

Getloy(0,1) is <0 tor up, O for centered, and >0 for down.

Example: Using GetJoy and StillFiring in a game.
Pascal:
if Onaladder then
VerticalDir 1= QatJoy(0,1);
alpe
HorDir 1= QetJoy{(0,0);
if 8eil1iFiring{0} > 0 then FireGun;

BASIC:
IF OnALadder! THEN BEGIN
TOOLBOX{~@etJoy ! O, 0, 1; VertDir%)
ELSE BEGIN
TOOIBOX(~Gatdoy 1 0, 0, 0; HorDiry)
ENDIF
TOOLBOX(~8¢t111Fixing 1 0, 0; Buttons%)
IF Buttons% > 0 THEN GOSUB FireGun

4.3 Game and Network Drivers

The newest version of DrawTools will let these 3 tools work with devices other than a joystick provided you
have a game driver. A game driver in DrawTools operates a substitute device for a joystick, like the keyboard or a
trackball. Up to 4 game drivers can be used at ore time. (For more information on how game drivers work, consult
Appendix D of the reference.)

Three sample game driver is included in the DT.Drivers folder on the DrawTools’ disk:

Joystiek.Drvr - simply operates the 1IGS joystick using GetJoy, GetFire & StillFiring

Keypad.Drvr - simulates a joystick on the HGS keyboard {with the Event Manager’s GetNextEvent)
* keys 1...9 specify your direction
s 0, -, +, * are fire buttons 0, 1, 2, and 3 respectively
s . allows you to change your speed (-2,0,+2) or (-1,0,+1)

Keypad.Drvr - simulates a joystick on the IIGS keyboard (with the Event Manager s GetNextEvent)
+ keys y,,ihjk,bn,m specify your direction
* space,a,s,d are fire buttons 0, 1, 2, and 3 respectively
» f allows you to change your speed (-2,0,+2) or (-1,0,+1)

Not all languages support the system loader directly: to load a driver, you can use LoadDriver. To start the
driver, use the DrawTools’ SetGameDriver tool,

Example: Loading and starting a game driver (as device #1).

Pascal:
DriverPtr 1= LoadDriver{ DriverbPath };
SetGamaeDriver(1, driverPtr };

BASIC:

REM LoadDriver requires a Pascal string.
TOOLBOX (~LhoadDriver : 0, 0, PathH%, PathL$; DriverPtrL%, DriverPtrH%}
TOOILBOX (~BetGameDriver: 1, DriverPtrH%, DriverPtrL¥)

Now whenever you use GetJoy, GetFire or StillFiring with a 1 (not Q) as the first parameter, DrawTools’ will
use the new device in place of a joystick.

DrawTools 3.1 25

There is also a second kind of driver you can install, a net driver, that keep you informed of devices operating on
other IIGS’s across a computer network or a modem.

Example: You are writing a Tetris™ clone to work with 2 players on a network. The object of the game is to be the
player who survives the longest. What we need to do is:

(1) use SendNetwork to synchronize the start of the game on two different computers

(2) use SendNetwork to find out who “died” first.

Pascal:

Const AbortGame = 8; {Sendietwork code to abort a gamel
Gamabborted = 1; {8.N, code for someone aborting a game}
ReadyPolo = 16 {define our own code to signall

{ that we’re ready to begin playingi
NoCmd = 0; {8, N code for no cormand}
Var Cmd 1 integer; { SendNetwork command word }
Data : integer} { 8.N, data word }

begin {main program}

{ do any initialization }

repeat
tmd 1= ReadyToGo; {eignal the other IIGS8 that}

{ we are ready }
fendNetwork(Cmd, Data }; { check the network }
if ¢md < ReadyToGo then Cmd := NoCmd; {ignore everything unless other IIGS}

{ i8 ready, too}
until Cmd = ReadyToGo;
{ both IIGS'e will only get here by both sending “ReadyToGo” over the }
{ network. This process is scmetimes called “handshaking” }
ImDead 1= falee;

repeat
{ do the Tetrie stuff in here }
if ImDead then [if player *died”/lost }
Cnd 1= AbortGame; { inform other GS that we lost first }
aelBe
tmd = NoCmd; i else just check the network 1}
S8endNetwork({ Gnd, Data };
until ImDead or {(Cmd = Gamedborted); { done if dead or other plaver dead }

if ImDead then

Writeln{’You lost to the other player.’)
else

Writeln(’You wonli’);
end;

4.4 Printing Tools

For assembly language programs, these are a simple set of tools for displaying Pascal strings and integers on
the super hi-res screen. Several of the printing tools have a mode word that comes after the rest of the parameters:
with this mode word, you can specify whether you want a carriage return, the rest of the line to be cleared, or if you
want to tab over to a new column.

Example: Printing in assembly language.
Merlin 16+

_Ready2Print } in any new grafport, use _Ready2Print

DrawTools 3.1 26

_Home ; home the cursor to top of Bcreen
~Print #Stringl;#o ; dispiay Pascal string Stringl
~PrintInt #§1234;#58000 ; display value of $1234 & do a /R
~Print #String2;#$8000 ; display String2 and do a C/R

Stringl gtr ‘The number is
String2 str ‘All done.’

Qutput:
The number is 4660
All done,

4,5 Interrupt Tasks

In Super-Hi-Res graphics mode, the computer can be interrupted when a certain line is about to be drawn by the
monitor and perform some quick task. By using interrupts, you can, for instance, have several different border
colours, or can cause different sets of palettes to be available (512 colours or more instead of 256). Each task has a
task header, which, strangely enough, need not be at the head of the task at all. A task could have more than one
header, one for each line which is to invoke the task. Needless to say, don't touch the header if the task has been
added, Once you've defined (and, hopefully, debugged before hand) your tasks, enable the interrupts
(EnableSCBInts), add the tasks (Set SCBInt), and start the execution of the tasks (ResumeSCBInts).

Example: How to put 512 colours on the screen instead of only 256.

To do this, we need two sets of 16 palettes: one for the top half of the screen, and one for the bottom half. We can
use the interrupt tools to switch the palettes around. Once _ResumeSCBInts is used, the palettes will be swapped
“in the background”, and the main program can do other things.

Merlin 16+:
~EnablefCBInts #-1
~Bet8CBInt HLine99Header
~Bet8CBInt #lLineld99%Header

_RespumedCBInts 1
Iine99Header adrl 0 jregexrved
dw 99 ithe line this header applies to
dw 5D44D 18lgnature word
adr]l SwapPalettes ;invoke swap palettes on line 99
Linel99Header adrl 0
dw 199
dw $D44D
adrl SwapPalettes jinvoke again at 199
SwapPalettes jour interrupt task
phd
phb
* gwap, in and out, the 16 palettes here
plb
pld

rtl

DrawTools 3.1 27

4.6 Scolling the Screen

The 1IGS is too slow to scroll a screen quickly enough without ugly, slanting jaggies appearing as different
portions of the screen are at different stages of scrolling. DrawTools has a couple of screen scrolling tools to shift
the screen contents and fill the void created with a picture. To scroll faster, the screen is divided vp into smali
blocks: if two adjacent blocks look the same, they are left alone; if they differ, they are scrolted. The result is that it
appears that the whole screen is scrolling, but only the portions that need to be moved are moved,

Figure 7: A Scrolling Block

Check Byte i

Each block is four bytes wide, and eight bytes high; on the screen, that’s up to 40 blocks across, 25 blocks -
down. The upper-left byte in a block s called the check byte. If the check bytes of two adjacent blocks match, the
blocks are assumed identical and no scrolling takes place. Obviously, not every picture can be scrolled using this
method. Pictures must be carefully constructed, making sure the check bytes differ whenever a block differs from a
neighbour. By this method, and clever art work, a picture can be made to look smooth and natural, and still scroll
very quickly,

P You can make two check bytes look the same but be treated as differing by using a pixel whose colour is
equal to another (eg. two greens (#1,#2) of the same shade; one check byte can use green #1, and the other
green #2 - they look the same, but they are actually different byte values),

The scroll tools use a scroll record, containing a description of the area of the screen te scroil, and of the picture
to be scrolled in. Scrolling may extend between any two screen lines, provided that the range is composed of
complete blocks (8 lines each), The scroll record parameter for width allows any rectangular picture to be scrolled
onto the screen, A screen wide pictire has a width of 160; DrawTools pictures have a width of 12,

4,7 Other Tools
DirawTools has a variety of other tools that may be useful in many programs,

* the work cursor, a pair of rotating gears, an alternative to the watch cursor,

* HLoad and HSave, to quickly and easily load files to handles and vice versa.
* a bar graph drawer

* a tool that let’s assembly language programs call certain tools at faster speeds
+ GetMHz returns the speed of the GS to the nearest MHz

* a tool to print windows or the screen on your printer

Example: How to use the work cursor.

Pascal.
HorkCursora(6)}; {animate the work cursor every 1/10th second}
for i 1= 1 to 20000 do begin{stillWorking calls]

DrawTools 3.1 28

=3+ L
8tillWorking;
end;
InitCursgor;

BASIC:
TOOLBOX (~WorkCursor2 i 6)
FOR i% = 1 TO 20000
jE = j¥ + 1
TOCLBOX{~8¢tillWorking }
NEXT i%
TOOLBOX (4, 202)

Merlin 16+:
~HoxrkQCureori 6
LDA #20000
STA i

loop INC j
_BtillWorking
DEC 1
BNE loop
_InitCursor

Example: Drawing a packed super hi-res screen (filetype $C1/$0001). This format is used by 8/16 Paint™ Screen
Pictures and DreamGraphix™ PackBytes 16/256. For other programs, save the picture as an unpacked screen and use
Lib.Converter 1.2 to convert the picture,

TML/Complete Pascal:
P2G8String(‘MyPic’, pathstr };
PicHandle := HLoad({pathstr, $Cl};
8atBackground2{ PicHandle, ¢ };

ORCA/Pascal:
Pathdtr,size 1= length('MyPic’); y
PathStr.theString 1= ‘MyPic’;
PicHandle := HLoad(pathstr, $Cl);
SetBackground2(PicHandle, 0);

BASIC:
REM Basic doesn’t support G8/08 strings directly
REM Use GET MEM to get 32768 bytes, and load the picture with BLOAD.
TOOLBOX(~8etBackground2 : PicH%, PicL%, 0)

Merlin 16+:
PathStr strl ‘MyPic’

~HLoad #PathStr; #3Cl
_SetBackground? ; handle is still on the stack

DrawTools 3.1 29

1. Reference

Introduction

This is section explains the layout of the reference section, and defines some of the terms vsed. For a more
general introduction to DrawTools, please read DrawTools Introduction manual,

Layout of Tool Entries

DrawTools provides over 100 tools. For convenience, these tools are divided up into different categories by use:

Housekeeping Tools, Low-level DrawTools, Drawing Tools, Library Management Tools, Animation Tools,
Screen Tools, Scrolling Tools, Palette and Colour Tools, SCB Interrupt Tools, Printing Tools, Driver Tools

and Miscellanecus Tools.

Each individual tool is described in the following format:

Dray ion 4 The tool name and number.

Returns the version number of DrawTools. A description of its use,

Examples : int := DrawVersion; An example in Pascal & BASIC.
TOOLBOX(98,4 :0; int%) (BASIC: Include 0’s for each result word!)

Parameters: int {word) - the version, ie. $0301 A description of each parameter,

Errors : none A description of eany ervors it may return,

Definitions of Terms

Here's an explaination of some of the terms you may encounter:
Absolute Screen Position: A pixel number, 0..31999; ASP=(x/2) + y* 160,

Pixel 0 Pixel 159 (159, 0)
Pixet 160

Pixel 31999 (319, 199)

Booleans & BASIC: Treat the booleans as an integer: 0 means false, and anything else s true.

Bound lines: Bound lines are used to specify a range of screen lines. In DrawTools, bound lines need not be in
ascending order.

Colour word: An RGB colour word of the form $ORGB, where R,G,B are the amounts of red, green & blue.
Current Drawing Screen: Some fools will work with either the shadow screen or main screen, whichever is
active.

Library huffer: a 9K area in back O where recently used libraries are kept.

Main Screen: the slow drawing area in back $E|, used by most applications.

Nil pointers & BASIC: use zeroes.

Shadow Screen: the fast drawing area in bank $01.

DrawTools 3.1 30

Housekeeping Tools

These are the standard tools in every toolset.

DrawBootlnit 162
Should never be called by an application; does nothing.

Examples : should never be called,
Parameters : none
Errors : none

DrawStartU 0262
Starts up DrawTools for use by an application, It must be made before any other DrawTools call. It does the
following:

* Searches for the special QuickDraw locations
* Saves user ID with auxiliary type $F (used for all memory allocation, including HLoad's & LoadLibrary’s)
*# Allocates one library buffer (about 9K in bank 0)

Examples : DrawStartUp{ dpage, MMID)
TOOLBOX(98,2 : dpage%, MMID%)
Parameters : dpage (word) - address of direct page workspace
MMID (word) - memory manager ID of your application
Errors : Bone
DrawShutDown ($0362)

Shuts down DrawTools when an application quits. This routine does the following:

* Ensures the system interrupt manager is in its normal state !
* Deallocates all memory used (including HLoaded handles & picture libraries)

* Shuts down the net driver, if one is installed

* Restores shadowing to its original state

Examples : DrawShutDown;
TOOLBOX(98,3)
Parameters : none
Errors ! none
Dr sion 4
Returns the version number of DrawTools,
Examples : int :=DrawVersion;
TOOLBOX(98,4:0;int%)
Parameters : int (word) - containing $0301, meaning version 3.1

Errors none

DrawTools 3.1

DrawR 2
Resets DrawTools; disables SCB interrupts. This tool must not be used by an application.
Examples : should never be called
Parameters : none
Errors none
Draw$ 662
Indicates whether DrawTools is active,
Examples : beol := DrawStatus;
TOOLBOX(98,6 : 0; bool%)
Parameters ; bool (word} - TRUE if DrawTools has been started up,

Errors : none

3t

DrawTools 3.1 32

Low-LevelTools

These are tools for changing DrawTools' parameters and/or performance.

ExtendBuffers (34A62
Allocates as many library buffers as possible, Use this to reduce the time it takes to switch between picture libraries
in graphic intensive programs (like games).

Examples ! ExtendButfers;
TOOLBOX(98,74)
Parameters : none
Errors : $6209 - not enough bank 0 memory for another buffer

$620A - already have maximum number allocated

ResetBuffer 7062

Clears the library buffers. The library buffers act as a caching mechanism for libraries: ResetBuffers clears the cache
memory. Use this when you are going to using a new set of libraries. For example, when you begin a new level in
a game, ResetBuffers will let you access new level libraries more efficiently.

Examples: ResetBuffers;
TOOLBOX(98,112)
Parameters: none
Errors: none
Draw? B62
Returns the absolute screen position for the next bit-mapped picture call.
Examples : int := DrawPos;
TOOLBOX(98, 11 : 0; int%)
Parameters int (word) - 0.,.31999
Errors : none !
Drawl 2
Sets the absolute screen position for the next bit-mapped picture operation,
Examples : SetDrawPos(int);
TQOLBOX(98,12:int%)
Parameters : int% (word) - 0...31999
Errors $62FF - the position is off the screen
DrawPage (30D62)
Returns the location of the buffer for the current picture library.
Examples : int% = DrawPage;
TQOLBOX(98,13:0;int%)
Parameters : int (word) - the bank 0 location of the active set of pictures

Ertors : none

DrawTools 3.1 33

setDrawl E62
Sets the location of the current picture buffer.
Examples : SetDrawPage (locn);
TOOLBOX(98, 14 : locn%)
Parameters : locn (word) - the bank 0 location of the active set of pictures
Errors : none
DrawMain ($0F62)

Directs DrawTools to use the main screen (bank $E1). The current grafport is also forced to the main screen,
Examples : DrawMain;
TOOLBOX(98,15)

Parameters : none
Errors : nene
Dr 1062

Directs PrawTools to use the shadow screen {bank $01). The current grafport is forced to the shadow screen instead
of the main screen. Micol Advanced BASIC’s shell interferes with this command, but it will work in stand-alone
applications.

Examples : DrawShadow;
TOOLBOX(98, 16)
Parameters : none

Errors ; none

DrawTools 3.1

Drawing Tools

These tools draw bit-mapped pictures from picture libraries, or produce masks

for matted bit-mapped pictures, without any animation. If you are using pixies,

see the animation tools.

Draw 62
Draws a 24x24 bit-mapped picture at the current screen position and advance to the right.
Examples : Draw({ pic };
TOOLBOX(98,9 pic%)
Parameters ; pic (word) - picture in the current library (0..31)
Errors : none
Drawd8 (30A62)
Draws a 48x48 bit-mapped picture at the current screen position and advances to the right.
Examples : Drawd8(pic);
TOOLBOX(98, 10: pic%)
Parameters : pic (word) - picture in the current library (3..28)
Errors none
DrawAt ($1462)
Draws a 24x24 bit-mapped picture at the specified screen position and advances to the right.
Examples : DrawAl(xco, yco, pic)}
TOOLBOX(98, 20 : xco%, yco%, pic%)
Parameters : xco (word) - x~coordinate (0.319)
yeo (word) - y-coordinate (0...199)
pic (word) - picture in the current library (0..31)
Errors : none (if bad coordinates are used, the picture is drawn at the upper-left eomer)
Drawd

Draws a 48x48 bit-mapped picture at the specified screen position and advances to the right.

Examples : Drawd8At(xco, yco, pic };
TOOLBOX{(98,21 : xco%, yco%, pic%)
Parameters : xco (word) - x-coondinate (0..319)
yeo {(word) - y-coordinate (0...199)
pic (word) - picture in the current library (0..28)
Errors none (if bad coordinates are used, the picture is drawn at the upper-left corner)
DrawOn_($2262)
Draws a matted 24x24 bit-mapped picture at the current screen position and advances one position to the right.
Examples : DrawOn(pic);
TOOLBOX(98,34 : pic%)
Parameters : pic (word) - picture in the current library (0..30)
Errors : none

34

DrawTFools 3.1 35

Drawd80n ($2362} .
Draws a matted 48x48 bit-mapped picture at the current sereen position and advances to the right,
Examples : Draw480n(pic);

TOOLBOX(98, 35 : pic%)
Parameters pic (word) - picture in the current library (0..24)
Errors : none

DrawOnA 2462
Draws a matted 24x24 hit-mapped picture at the specified screen position and advances to the right,

Examples : DrawOnAl(xco, yco, pic };
TOOLBOX(98,36 : xco%, yeo%, pic%)
Parameters : xco {word) - x-coordinate (0..319)

yco (word) - y-coordinate (0...199)
pic (word) - picture in the current library (0..30)
Errors : none (if bad coordinates are used, the picture is drawn at the upper-left corner)

Drawd80OnA 2562
Draws a matted 48x48 bit-mapped picture at the specified screen position and advances to the right,

Examples : Draw480nAt(xco, yco, pic);
TOOLBOX(48, 37 : xc0%, yco%, pic%)
Parameters : x¢o (word) - x-coordinate (0..319)

yeo (word) - y-coordinate (0...199)
pic (word) - picture in the current library (0..24)
Errors : none (if bad coordinates are used, the picture is drawn at the upper-left corner)

nMask {$2162
Generates a matting mask for the specified picture and stores it in the next picture position.
Exampfies : GenMask{ pic);
TOOLBOX(48, 33 : pic%)

¥

Parameters : pic (word) - picture in the current library to make a mask for (0..30)
Errors none
GetAllMasks ($2662)

Generates a matting mask for every even-mumbered picture in the current picture buffer, storing each mask in the
following odd-numbered picture position.

Examples : GenAllMasks;
TOOLBOX(48, 38)
Parameters : none

Errors : RONe

DrawTools 3.1 36

SetBackgroundt ($3962)
Draws a packed super hi-res screen (filetype PNT/$0000) on the current drawing screen. The handle is left unfocked.
Examples : SetBackground(Background };

TOOLBOX(98, 57 : BackgronndH %, Backgroundl.%)

Parameters : BackgroundHandle (long) - handle to packed picture
Errors : Memory manager errors

+ See SetBackround?2.

WipeO 2

Wipes a 24x24 block of pixels from the shadow screen to the main screen at the current drawing position.
Shadowing must be enabled,

Examples : WipeOn;
TOOLBOX(98, 85)

Parameters : none

Errors : none

1+ For use with pixies, see ErasePixie and EraseAllPixies,

SetBackground2 ($6F62)

Draws a packed super hi-res screen (filetype PNT/$0000) on the current drawing screen. You can create this kind of
picture by packing a super hi-res screen with PackBytes, or using one of several IIGS graphics conversion utilittes
that are available, or by saving an 8/16-Paint™ picture as a screen. The handle is left unlocked.

Examples: SetBackground2(Background, Flags);
TOOLBOX(98, 111 : BackgroundH %, BackgroundL%, Flags%)
Parameters: Background (long) - handle to the packed screen

Flags (word) - list of options:
0 - normat (like SetBackground)
1 - pixels and SCBs only (no palettes) for QuickWipe or VBWipe
2 - ready to fade in with QuickFadeln or IncrFadeln
Errors: Memory Mmanager errors

DrawTools 3.1 37

Library Management Tools

Tools used in loading and using picture libraries.

LoadLibrary ($2B62)
Retrieves a DrawTools picture library from the disk and returns its library ID number.

Examples ! LibID := LoadLibrary(path, SeqLibNum, packed);
TOOLBOX(48, 43 : 0, PathH%, PathL.%, SeqLibNum%, Packed% ; LibID%)
Parameters : path (long) - GS/OS path name pointer

SeqLibNum (word) - logical number for pixie sequence commands {else just 0)
Packed (word) - bit 15 - TRUE if the library is packed with PackBytes
- bit 14 - TRUE if GenAllMasks should be called before library is used
LibID {word) - the ID number for the library
Errors : $6201 - too many libraries loaded (current limit is 24)
$6202 - SeqLibNum is out of range
GS8/08 and Memory Manager errors

N

n ibrar -
Deallocates a library loaded with LoadLibrary, Normally, DrawShutDown automaticaily unloads all libraries,
However, this tool aflows you to manually discard a library you no longer need without shutting down DrawTools.
Examples : UnloadLibrary (LibID);

TOQOLBOX(48, 46 : LibID%)
Parameters ; LibID (word) - the ID of the library to unload
Errors : $6203 - invalid library ID number

$6204 - the library isn't loaded

Memory Manager errors

SetLibrary ($2C62) ;

Makes the specified Hbrary the current one use with the drawing or animation tools.
Examples : SetLibrary(LibID);
TOOLBOX(48, 44 : LibiD%)
Parameters ! LibID (word) - the ID of the library to make current
Errors: $6203 - invalid library ID number

$6204 - the library isn't loaded
Memory Manager errors

GetLibrary ($2D§2)
Returns the library id of the current library.

Examples : LibID := GetLibrary;
TOOLBOX(48,45 : 0; LibID%)
Parameters : LibID (word) - the ID of the current library (-1 if none)

Errors : none

DPrawTools 3.1 38

Animation Tools

Tools used in animating objects & handling animation sequences.

Fine Pixie Data Record: Coarse Pixie Data Record:
0,1 - X Vector Low (word) 0,1 - Vector (word)

2,3 - X Position Low (word) 2,3 - Position (word)

4,5 - X Vector Hi (word) 4 - Index (byte)

6,7 - X Position Hi (wotd) 5 - status (byte)

8,9 - Y Vector Low (word)

10,11 - Y Position Low (word) Simple Pixie Data Record:
12,13 - Y Vector Hi (word) 0 - Tndex (byte)

14,15 - Y Position Hi (word) 1 - Last Frame (byte)

16 - Index (byte)
17 - Status (byte)

P When you animate a pixie, the new pixie position is calculated by adding the vector value to the position
value, resulting in the new position. For example, a fine pixie with an x vector of 1 (hi I, low 0) and an
original x position of 10 (hi 10, fo 0) will move to x position 11 the next time it is animated.

Sequence Description Parameter Bytes Following Byte
Byte

0...31 picture fo use in current library -

32..247 reserved -

248 change status byte new status (byte)

249 change fine pixie dir relative X & Y vectors to add to current vectors (4 words)
250 change coarse pixie direction new direction {word)

251 change fine pixie direction new X & Y words (4 words)

252 change fine pixie y direction new Y words (2 words)

253 change fine pixie x direction new X words (2 words) !
254 change library LoadLibrary logical number (word)

255 end of sequence position to resume at (byte)

P For simple pixies, any negative byte (128 or bigger) is considered an end of sequence command.

NewPixie ($3A62)
Returns a number of a pixie that’s not in use. When allocating several pixies, remember to use SetPixie after each
NewPixie, or NewPixie will return the same number each time. -1 is returned if no pixie is free.
Examples : MyPixieNum ;= NewPixie;
TOOLBOX(98, 58 : 0; MyPixieNum%)
Parameters : MyPixieNum (word) - the pixie number (0...15)
Errors : none

DrawTools 3.1 39

ClearPixie ($3B62)
Deallocates the specified pixie table position.

Examples : ClearPixie(MyPixieNum });
TOOLBOX(98, 59 : MyPixieNum%)
Parameters : MyPixieNum {word) - the pixie number (0...15)
Errors : + $62FF - the pixie number is out of range, or the position is already free

SetPixie ($4E62)

Sets up a pixie for use. If that pixie already exists, the old pixie is overwritten.

Examples : SetPixie(pixnum, pixiedesc, pixieptr);
TOOLBOX(48, 78 : pixnum%, pixiedesc %, pixieptrh%, pixieptrl%)
Parameters : pixnum (word) - the pixie number (0..15)

pixiedesc (word) - description of the pixie:
bit 15 - pixie visible (TRUE) or invisible (FALSE)
bit 14 - pixie matted (FRUE) or not matted (FALSE)
bit 3-13 - reserved, set to O
bit 0-2 - pixie type (O=simple, 1=coarse, 2=fine)
pixieptr (long) - pointer to the pixie data record

Errors : $62FF - pixie number is out of range
GetPixie ($4162)
Returns a pointer to the specified pixie's data record,
Examples : PixiePtr := GetPixte(PixieNum)
TOOLBOX(98, 79 : 0, 0, PixieNum%; PixiePtrL.%, PixiePttH%)
Parameters : PixieNum (word) - the pixie number
PixiePir (long) - pointer to the pixie data record
Errors : $62FF - pixie number is out of range
SetPixieSeq (32A62)

Assigns the specified animation sequence to a pixie; any old sequence is overwritten. The sequence index (in the
pixie data record) is not changed.

Examples: SetPixieSeq(PixieNum, LibID%, SeqPtr);
TOOLBOX(98, 42 : PixieNum%, LibID%, SeqPtrH%, SeqPtrL.%)
Parameters : PixieNum {word) - the pixie number

LibID (word) - the default picture library
SeqPtr (long) - pointer to the animation sequence

Errors : $62FF - pixie number is out of range
Pixj 2
Returns the pointer to a pixie's animation sequence.
Examples SeqPtr := GetPixieSeq(PixieNum);
TOOLBOX(98, 80: 0, 0, PixieNum% ; SeqPtrL%, SeqPtrH%)
Parameters : PixieNum (word) - the pixie number

SeqPir (long) - pointer to the animation sequence
Errors ! $62FF - pixie number is out of range

DrawTools 3.1 40

HidePixie ($5262)
Stop drawing a pixie on subsequent animation calls, but continue animating it as if it were visible.
Examples : HidePixie(PixieNum);
TOQLBOX(98, 82 : PixieNum%)
Parameters : PixieNum (word) - the pixie number
Errors ; $62FF - the pixie number is out of range

ShowPixie ($5162}

Draw a pixie on subsequent animation calls.

Examples : ShowPixie{ PixieNum);

TOOLBOX(98, 81 : PixieNum®%)
Parameters : PixieNum (word) - the pixie number
Etrors : $62FF - the pixie number is out of range

DisablePixie ($2862)

Stop animating a pixie on subsequent animation calls.

Examples : DisablePixie(PixieNum);

TOOLBOX(98, 40 : PixieNum%)
Parameters : PixieNum (word) - the pixie number
Errors : $62FF - the pixie number is out of range
En Pixi 2
Animate a pixie on subsequent animation calls.
Examples : EnablePixie(PixieNum);

TOOLBOX(98, 41 : PixieNum%)
Parameters : PixieNum (word) - the pixie number
Errors ! $62FF - the pixie number is out of range

AnimatePixje ($5362) '
Animate a single pixie one picture along its sequence. Unlike Animate, you will have to use SetLibrary to select
the picture library for the pixie. The drawing position for the drawing tools is unaffected.

Examples : AnimatePixie(PixieNum);
TOOLBOX(98, 83 : PixieNum%)
Parameters PixieNum (word) - the pixie aumber
Errors : $620C - Command for a different kind of pixie (disables pixie)

$620D - Undefined command in sequence (disables pixie)
$620E - Pixie doesn't exist

$62FF - Pixie number is out of range

SetLibrary errors

Animat 2762
Animates all of the pixies one picture along their sequences., The drawing position for the drawing tools is
unaffected,
Examples : Animate;
TOOLBOX(48,39)
Parameters : noite

PrawTools 3.1

Errors : $620C - Command tor a different kind of pixie {disables pixie)
$620D - Undefined command in sequence (disables pixie)
SetLibrary errors

ErasePixi 6862

Erases the specified matted pixie with the corresponding contents of the shadow screen.

Examples: ErasePixie(Pixie);
TOOLBOX(98, 107: Pixie%)

Parameters: Pixie (word) - the pixie number

Errors; $620E - Pixie doesn't exist

$6211 - Not a matted pixie
$62FF - Pixie number is out of range

EraseAllPixi S62

Erases all enabled, matted pixies.

Examples: EraseAllPixies;
TOOLBOX(98, 108)

Parameters: none

Errors: none

41

DrawTools 3.1 42

Screen Tools

Tools involving the screen, including those involving shadowing and the SCBs,

CLSt ($3462)
This tool acts the same as QuickDraw II™'s ClearScreen.
Examples : CLS (ColourWord);

TOOLBOX(48, 52 : ColourWord%)
Parameters : ColourWord (word) - word to fill the screen with
Errors: none

1+ Before System 6.0, ClearScreen would not clear the shadow screen; CLS works fine on older systems.

QuickWipe ($1C62)
This tool copies the shadow screen to the main screen.
Examples : QuickWipe;
TOOLBOX(48,28)
Parameters : none
Errors: none
BWi 2
This tool copies the shadow screen to the main screen using a “Venetian blind” effect,
Examples : VBWipe;
TOOLBOX(48, 53)
Parameters ! none
Errors : none

Emlngmg i$4Q§2! ¥
Returns TRUE if a fade is finished fading, In the current version of DrawTools, all fading occurs during the In/Out
call; future versions will fade during the FadeDone calls to allow animation to continue during the fading process.

For compatibility, always have a REPEAT...UNTIL. FadeDone (or the equivalent in your language) immediately
after using a fade tool.

Examples : done := FadeDone;
TOOLBOX(98,76: 0; done%)
Parameters : done (word) - TRUE if the last fade has been completed
Errors none
QuickFadeOQut!In_($16/1762)

Fades the colours in the first eight palettes to black, or restores them to their original values. The upper eight
palettes are usext to store the original palettes,

Examples : QuickFadeln(rate);
TOOLBOX(48,22 : rate%)
Parameters : rate (word) - # 60th's of a second between INCs/DECs

Errors : none

DrawTools 3.1 43

IncrFadeQui/ln ($18/1962
Fades the colours in the first eight palettes to red, then to black, or restores them to their orlgmal values
("incremental fade"). The upper eight palettes are used to store the original palettes,

Examples : IncrBadeln(rate);
TOOLBOX(48,24)
Parameters : rate (word) - # 60th's of a second between INCs/DECs
Errors : none
ShadowOn ($1262)

This tool enables the hardware shadowing of the shadow screen. If you open a new grafport (using OpenPort) with
shadowing enabled, the port will be assigned to the shadow screen.

Examples : ShadowOn;
TOOLBOX(48, 18)

Parameters ; none

Errors : none

ShadowOff ($1162)

This tool disables the hardware shadowing of the shadow screen. If you open a new grafport (using OpenPort) with
shadowing disabled, the port will be assigned to the main screen,

Examples : ShadowOff;
TOOLBOX(48, 17)

Parameters : none

Errors: none

Wai 1362

This tool passes time until the beginning of the next vertical blanking period (1/60 to 1/30 of a second). If you erase
during a vertical planking period, you will have less flicker in your animation,

Examples : WaitVB;
TOOLBOX(48, 19))
Parameters : none
Errors : none
WaitLine ($5E62)

This tool waits until your monitor is drawing a particular line. Use this to reduce flicker when you are drawing by
waiting until an object is drawn on the monitor before erasing it.

Example : WhaitLine(line);
TOOLBOX(98, 94 : line%)
Parameters : line (word) - line number to wait for, 0..199

if line < 0, Hne is treated as 0
if line > 199, line is treated as 200 (same as WaitVB)
Errors: none

DrawTools 3.1 44

SetBorder ($1F62)

This tool sets the colour of the screen border.

Examples : SetBorder{ Colour);

TOOLBOX(48,31 : Colour%)
Parameters : Colour (word) - the new colour (0...15) as in the control panel
Errors : none.

GetBorder ($1E62)

This tool returns the current colour of the screen border.,

Examples : Colour := GetBorder;

TOOLBOX(48, 30 : 0; Colour%)
Parameters : Colour (word) - the colour (0...15) as in the control panel.
Errors : none

SetSCB 3662

This tool sets specific bits in the SCB's for a range of lines. This tool should not be used to change the interrupt bit
while the SCB interrupt handler is enabled.

Examples ! SetSCBs(linel, line2, BitsToSet);
TOOLBOX(98, 54 : linel %, line2%, Bits%)
Parameters : linel {word) - first bound line

line2 (word) - last bound line
BitsToSet (word) - mask of bits to set (1=set bit)
Errors : none

R yCBs 762

This tool resets specific bits in the SCB's for a range of lines. This tool should not be used to change the interrupt
bit while the SCB interrupt handler is enabled.

Examples : ResetSCBs(linel, line2, BitsToReset);
TOOLBOX(48, 55 : linel %, line2%, Bits%)
Parameters : linel (word) - first bound line

line2 (word) - last bound line
BitsToReset {word) - mask of bits to reset (1=reset bit)
Errors : none

DrawTools 3.1 45

Scrolling Tools

Tools to scroll portions of the screen.

The Format of a Scroll Record:

0,1 offset (word) byte offset into fill picture

2,3 width (word) width of the picture in bytes (eg. 160 for a screen image, 12 for DT pic)
4-7 fillpic (long) ptr to picture to fill with

3,9 first (word) first (top) screen line to scroll

10,11 numblocks (word) number of 8 line blocks to scroll

12-15 reserved must be 0

ScroliLinesl, ($3062)
This tool scrolls the indicated lines one block (2 words) to the left, and fills them from a specified picture. The offset
is incremented by the width.

Examples : ScrollLinesL{ ScroliRec);

TOOLBOX(48, 48 : ScrollRecH%, ScrollRecL%)
Parameters ScroltRec (long) - pointer to the scroll record
Errors ; $6206 - first line is out of range
SerollLinesR ($3162)

This tool scrolls the indicated lines one block (2 words) to the right, and fills them with a specified picture. The
offset is decremented by the width.

Examples : ScrollLinesR(ScrollRec);

TOOLBOX(48, 49 : ScrollRecH%, ScrollReclL%)
Parameters : ScrollRec (long) - pointer to the scroll record
Errors : $6206 - first line is out of range

P Note: The current version of ScrollLinesR will not work properly if the first line is'0.

Lin 262) (not available vet
Thls tool scrolls the indicated lines one block (2 words) to up, and fills them with a specified picture, The offset is
incremented by a row of blocks

rollLinesD ot available yel
This tool scrolls the indicated lines one block (2 words) to down, and fiils them with a specified picture, The offset
is decremented by a row of blocks,

DrawTools 3.1 46

Palette and Colour Tools

Tools that change colours and manipulate palettes.

SetPalette ($1A62)

This tool sets the palette for a range of screen lines,

Examples : SetPalette(linel, line2, palette);
TOOLBOX(48, 26 : line1%, line2%, palette%)
Parameters : linel (word) - first bound line

line2 (word) ~ last bound line
palette (word) - new palette number for lines (0..15)

Errors | none {no range checking)
GetPalette ($3862)
This tool returns the palette assigned to a particular screen line.
Examples : palette 1= GetPalette(line);

TOOLBOX(48, 56 : 0, line% ; palette%)
Parameters : line (word) - which line to check

palette (word) - palette number for that line (0...15)
Enors : none
FadePal ($1B62)
This tool dims the source palette colours and stores them in the target palette.
Examples : FadePal(sourcepal, targetpal);

TOOLBOX(48,27 : sourcepal %, targetpal %)
Parameters :s ourcepal (word) - palette to fade (0...15)

targetpal (word) - where to store the faded palette (0...15)
Errors : none i

UnfadePal ($1D62)
This tool brightens the source palette colours towards those in the target patette. The colours are stored in the sottrce
palette.

Examples : UnfadePal{ SourcePal, TargetPal);
TOOLBOX(48, 29 : sourcepal %, targetpal %)
Parameters : sourcepal (word) - palette to brighten (0...15)

targetpal (word) - palette to compare with (0..15)
Errors: none

DrawTools 3.1

SetColour ($4062
Combines the red, green and blue values inte a colour word.

Examples : word := SetColour(red, green, blue);
TOOLBOX(48, 64 : 0, red%, green%, blue%; word %)
Parameters : word (word) - palette colour word

red (word) - amount of red (0...15)
green (word) - arnount of green (0...15)
blue (word) - amount of blue (0...15)
Errors : none. Bad values result in a meaningless colour word,

SetCollercent ($4162)

Combines the red, green and blue percentage values into a colour word,

Examples : word := SetColPercent(red, green, blue);
TOOLBOX(48, 65 : 0, red %, green%, blue%; word %)
Parameters : word (word) - palette colowr word

red (word) - percentage of red (0...100)
green (word) - percentage of green (0...100)
blue (word) - percentage of blue (0...100)
Errors : none. Bad values resuit in a meaningless colour word,

Elaboration: A few example RGB percent values (extracted from ACM SIGGRAPH '89 course notes):

Gold 78, 61, 16 Old (dark) gold 78, 43, 10
Platinum 83, 79, 56 Silver 81, 82, 70
Antique (dark) silver 53, 52, 47 Steel 55, 62, 59
Copper 97, 60, 28 Brass 69, 63, 23
Iron 18,7, 6 Sunlight 100, 96, 92
Moonligh 75, 81, 100 Naples Yellow 100,66,7
Cadmium Red (Ruby) 89,9,5 Brown Madder 86, 16, 16
King's Blue 1,57,76 Indigo ©3,18,33
Emerald Green _ 0,79, 34 Terre-verte 22,37,6
Ivory Grey 16, 14, 13 Lamp Black 18, 28,23
Ii 1 4262
This tool search the specified palette for the closest colour to the one requested.
Example ; colour := FindColour{ numcol, palette, colourWord);
TOQOLBOX(48, 66 : 0, numcol %, palette%, colourWord %; colourWord %)
Parameters ; numeol (word) - 16 if 320 mode, 4 if 640

colour (word) - the colour number of the closest colour

palette (word) - the palette to search

colourWord (word) - the palette colour word to match
Errors ! none

47

DrawTools 3.1 I 48

BlendColour ($5162)

Blends two colours together to form a new colour,

Example : colour := BlendColour(weight, coll, col2);
TOOLBOX(98, 95: 0, weight%, col[%, col2%; colour%)
Parameters : colour (word) - the new colour word

weight (word) - 0..16, amount of second colour to mix in
coll (word) - the first colour word
col2 (word) - the second colour word

Errors : $62FF - weight is out of range

Elaboration: Some BlendColour Applications:

(1) Blending: colour := BlendColour{weight, coll, col2);

(2) Bleaching (eg. for distance): colour := BlendColour(distance, col, backgroundcol);

(3) Anti-aliasing: (a) colour := BlendColour(amount in pixel, colour, backgroundcol); (b) colourNum :=
FindColour(16, 0, colour); {for 320 mode}

(4) Saturating: colour ;= BlendColour(how much to saturate, colour, $0F00),

F lour 0
Fades or brightens a colour,

Example : colour := FadeColour{oldcolour, difference);
TOOLBOX(98, 96: 0, oldcolour%, difference%; colour%)
Parameters : colour {(word) - the new colour word

oldeolour (word) - the original colour word
difference (word) - {-15) to {(+15), amount to change the colour by
Errors : None

P Elaboration: Some FadeColour Applications:
{1) Darken colour: colour ;= FadeColour(oldcolour,-1);
(2) Brighten colour: colour := FadeColour(oldcolour, +1);

FindPal 2 ’

This is my “mini Palette Manager” tool. Returns the colour numbers for the entries in the current palette which
most closely resemble the colours that you expect in that palette. Especially useful for NDAs, where you don't know
what colours will be on the screen. FindPalette only recognises pure colours in 640 mode (not dithered colours).

Example : changed := FindPalette(colours, palette);
TOOLBOX(98, 97: 0, coloursH%, coloursL%, paletteH %, paletieL%; changed %)
Parameters : changed (boolean) - True if the colours have changed since last FindPalette

colours (long) - address of a list of 16 colour numbers corresponding to the colours in the palette
palette (long) - address of palette (a QuickDraw II colorTable) of desired colours
Errors : none

DrawTools 3.1 49

Interrupt Tools

Tools Involving SCB (or Horizontal Retrace, or Scan Line) Interrupts

Format of a SCB interrupt task header:

03 longword TaskPir Use by the Interrupt Tools; do not modify
45 word Scan Line Line number of the task

6-7 word SigWord signature word; always $D44D

8-A 3 bytes EntryPt task entry pointer

Designing an Interrupt Task: The task must be a long subroutine (that is, end in an RTL instruction). B and D
registers must be preserved, but other registers (A, X,Y,P) need not be, A task may have two or more headers if it is
to be used on two different screen lines. Because DrawTools is non-reentrant, never call a DrawTools from a task
unless your are sure the main program is not using DrawTools at the same time,

IMPORTANT: (1) I have no idea why, but if you use the SCB interrupts, make sure you unload DrawTools before
your program quits or the next program that runs will crash; at least, it happens with Merlin 16+ and EXE files -> it
crashes during a Misc. Tools _GetVector call in DrawStartup. (2) When the interrupts are enabled with
EnableSCBInts, do not switch the processor into emulation mode {e=1) without suspending interrupts (with SEI),
The patch I placed on the interrupt manager is not designed to handle emulation mode IRQs,

EnableSCBInts ($4A62)

This tool must be used before all other SCB interrupt tools. Patches the system interrupt manager to use my SCB
interrupt handler,

QuickDraw SCB interrupt use is suspended. The task list is cleared.

Examples : EnableSCBInts(enable);
TOOLBOX(98,74 : enable%)
Parameters ; enable {boolean) - TRUE if interrupts are to be enabled
Errors : noie .
SetSCBInt ($3C62) ‘

Installs a SCB interrupt task for the given screen line, Automatically suspends all tasks until the next
ResumeSCBInts,

Examples ; SetSCBInt(TaskPir);

TOOLBOX(98, 58: MachineLgH %, MachineLgL.%)
Parameters : TaskPtr (longword) - pointer to the task header
Errors : $6205 - Task signature isn't $D44D

$6206 - The screen line is out of range
$6207 - A task already exists for that line

DelSCBInt ($3D62)
Deletes a SCB interrupt task. Automatically suspends all tasks.
Examples : DelSCBInt(TaskLine);

TOOLBOX(98, 59 : TaskLine%)
Parameters ; TaskLine (integer) - screen line of the task
Errors : $6206 - The screen line is out of range

DrawTools 3.1

$6207 - A task doesn't exist for fhat line

Ir X
Deletes all SCB interrupt tasks. Automatically suspends all tasks,
Example : ClrSCBlnts;
TOOQLBOX(48,62)
Parameters : none
Errors ; nons
Res: F
Waits for the next vertical blanking period and resumes executing ail SCB interrupt tasks.
Example : ResumeSCBInts;
TOOLBOX(48,63)
Parameters ! none
Errors : $6208 - SCB interrupts not enabled

$62FF - no tasks to execute

50

DrawTools 3.1 51

Printing Tools

Tools to help assembly language programs write on the screen.

R Pri 2
This must be the first printing call in a new window (or grafport). Gets a pointer to the current grafport, resets the
margins to 0, and "homes" the QuickDraw pen.

Examples : ~Ready2Print
Parameters : None

BErrors ¢ None
SetLTMargins (35D62)

Sets the left and top printing margins, Use Home to place the pen in the top-left corner of the new margin settings.
Examples : ~SetLTMargins #Left; #Top

Parameters : Left (word) ~ left margin, in pixels
Top (word) - top margin, in pixels
Errors : None
Home ($5762) .
Moves the QuickDraw pen to the left end of the first text line on the screen, like BASIC's HOME.,
Examples : ~Home
Parameters None
Errors : None
HTab ($5862)
Moves the pen the specified number of pixels to the right of the left margin.
Examples : ~HTab #Indent !
Parameters : Indent (word) - number of pixels to indent
Errors ; None
YTab ($5962)

Moves the pen down the specified number of screen lines from the top margin, based on the height of the current
font,

Examples ; ~VTab #NewLine

Parameters : NewLine (word) - new screen line; 1 is the top line,

Errors $62FF - NewLine was negative or zero

DrawTools 3.1

Print ($5A62)
Draws a Pascal string on the screen,
Examples : ~Print #str; #mode
Parameters ! str (long) - pointer to the Pascal string
mode (word) - printing mode;
bit 15 - TRUE if a carriage return is to follow printing
bit 7 - tab to next column of 64 pixels after printing
bit 6 - clear to end of the line
other bits - reserved; set to 0
Brrors : none
rintH B&2
Draws a hexadecimal value on the screen.
Examples : ~PrintHex #number; #mode
Parameters : number (word) - the number to print
mode (word) - same as with Print
Errors none
Printint ($5C62)
Draws a signed integer value on the screen,
Examples : ~PrintInt #number; #mode
Parameters: number {(word) - the number to print

mode {(word) - same as with Print
Brrors ; none

DrawTools 3.1 53

Driver Tools

For a general discussion on game and network drivers, including how to design them, see Appendix D.

LoadDriver ($6D62)
Loads a specified game or net driver into memory.

Example: DriverPir := LoadDriver{ DriverPath);
TOOLBOX(98, 109: 0, 0, DriverPathH%, DriverPathL%; DriverPtrL%, DriverPttH%)
Parameters: DriverPath (long) - the Pascal string pathname
DriverPir (fong) - pointer o the driver
Errors: GS/0S errors
nloadDriver 2
Unloads a specified game or net driver from memory.
Example: UnloadDriver(DriverPir);
TOOLBOX(98, 110: DriverPtrH %, DriverPtrL%)
Parameters: DriverPath (long) - pointer to the driver to unload
Errors: $62FF - unknown error while unloading
Dri
Installs a game driver for the specified player,
Example : SetGameDriver(playerNum, driverPir);
TOOLBOX(98, 99: playerNum%, driverH%, driverL.%)
Parameters ; playerNum (word) - 1..4, the player to use the game driver
driverPtr (long) - address of the game driver
Errors : $62FF - DrawTools version is too fow for this driver

$620F - device number is out of range
$6210 - The device this driver operates can't be found on the GS 1

SetNetDriver ($6262)

Installs a network driver so that remote game drivers can be supported.

Example : SetNetDriver{ driverPir);

TOOLBOX(98, 98: driverH %, driverL%)
Parameters : driverPtr (long) - address of the net driver
Errors $62FF - DrawTools version is too low for this driver

$6210 - The device this driver operates can't be found on the GS

SendNetwork ($6462)
Sends a message to the net driver and returns status information from the driver, The two parameters are used for
both.

Example SendNetwork(command, data };
TOOLBOX(98, 100: commandH %, commandL %, dataH %, datal.%)
Parameters : command (fong) - address of the command; holds result after call

data (long) - data for the command; data for the result
Brrors : $62FF - no net driver hes been installed

DrawTools 3.1 54

P SendNetwork commands;
Notes: (1) Commands marked with an asterisk (*) mark commands called automatically by DmwTools when

required. (2) "Post" is used in the sense of PostEvent in the Event Manager: transmits a message on the
network or to the driver.

¢ - no command (use to poll the network)
1 - request the aumber of remote players
*), - request the pseudo game driver address (returned in data) (used by SetNetDriver)
*3 - post a new local player (data=player#) (used by SetGameDriver)
4 - post a local player quitting (data=player#)
*5 - post local GetJoy result (data=device(byte!),axis(byte2),value(bytes3&4) (used by Getloy)
*§ - post local GetFire result (data=result) (used by GetFire)
*7 - post local $tillFiring result (data=result) (used by StillFiring)
8 - post abort game message (you can vse it for whatever you want)
*g - init the net driver (used by SetNetDriver)
*10 - shut down the net driver (used by DrawShutDown)
11-15 - reserved for future use
16-123 - application defined
124 - set address of where to receive incoming data (data=address) (for 125...127)
125 - prepare to transmit (data=player(low), number of blocks to be sent(high))
126 - block transmit(data=pointer to 256 bytes (a "block"))
127 - done transmit(data=player who should have received blacks)
128 - driver will begin displaying status information on the screen (use DrawTools' Print tools)
129 - driver will stop displaying status information
130-255 - net driver defined. With the Null Network Driver:
130 - fake a new remote player (#2) beginning to play
131 - fade a remote player (#2) quitting
>255 -reserved for future use

Results returned by SendNetwork:
Note: only O (null event) or errors should be returned during a block transmit or an infgrmation request, to avoid
having to handle two things at once!
0 - null event (nothing interesting happened)
1 - abort game was received from a remote GS
2 - a new remote player has started to play (data=player#)
3 - an old player has quit playing (ttata=player#)
4 - bad connection (can't find the network)
5 - bad network error
6 - network full (already 4 players playing)
7-15 - reserved for future use
16-124 - you received an application defined event of same number (data=other information)
125 - prepare to receive transmission (data=player(low), number of 256 byte blocks (hi))
126 - received 256 bytes of data (data=handle to data)
127 - end of data (data=player who should have received data)
>126 - reserved for future use

DrawTools 3.1 55

Getloy ($4362)
Returns the position of the joystick along one axis. Horizontally, left (-2) through right (+2); vertically, top (-2)
through bottom {+2). There nmust be a 3 microsecond delay between GetJoy calls.

Examples : Position := Getloy(Device, Axis);

TOOLBOX(98, 67 : 0, Device%, Axis% ; Position%)
Parameters ; Position (word) - the joystick position, -2 ... 2

Device (word)

- 0 for internal joystick, or 1.4 for a game driver
Axis (word) - 0 = horizontal axis ; 1 = vertical axis.
- 2,3 - same, but for joystick #2 (device 0 only)
Errors . Axis value ANDed with 3.
$620F - device aumber out of range

GetFire ($4862)
Determines which joystick fire buttons have been pressed (but not held down) since last GetFire/StillFiring). The
button addresses were taken from the November %) issue of "8/16",

Examples : Buttons ;= GetFire(Device);
TOOLBOX(98, 72 : 0, Device%; Buttons%)
Parameters : Buttons (word) ~ mask of fire buttons

bit 0 = | => button #0 is depressed
bit I = | => button #1 is depressed
bit 2 = 1 => button #2 is depressed
bit 3 = 1 => button #3 is depressed
bits 4 - 15 are zero
Device (word) - 0 for internal joystick, or 1..4 for a game driver
Errors : $620F - device number out of range

StillFiring (84162} ,
Determines which fire buttons are being held down, whether or not they were during the last GetFire/StillFiring call.
GetFire does not need to proceed a StillFiring call.

Examples : Buttons := StillFiring(Device };
TOOLBOX(98,77 : 0; Buttons%)
Parameters : Buttons (word) - mask of fire buttons

bit 0 = 1 => button #0 is depressed
bit I = 1 => button #1 is depressed
bit 2 = 1 => button #2 is depressed
bit 3 = | => button #3 is depressed
bits 4 - 15 are zero
Device (word) - 0 for internal joystick, or [..4 for a game driver
Errors ; $620F - device number out of range

DrawTools 3.1 56

Miscellaneous Tools

GetQDT ($2062)

Returns the Quick Dispatch Table (QDT), a set of 16 JML instructions (64 bytes) to commonly used DrawTools
routines. These are provided for assembly fanguage programs that wish to avoid the overhead associated with tool
calls. You must be in 16-bit native mode to execute the QDT routines. Jumping to a non-existed JML will cause
unpredictable results, so check the toolset version before using GetQDT to ensure the JML's are available.

Preparing a quick dispatch table:
DPraw adrl 0 ; the quick dispatch table of 16, 4-byte JML entries
Draw4$g adrl 0 ; in ORCA/M use i4

veckorle adrl ©

PushPtr Draw
_GetQDT

Using the quick dispatch table:
LDA #ThePic
JSL Draw

Register results after call:
A - the result, if any
X, Y, B, D - unchanged
P - reflects the result, if any, else scrambled

The vectors are defined as:

Vector #1 - DrawTools 3.0 - Draw

Vector #2 - DrawTools 3.0 - Drawd48

Vector #3 - DrawTools 3.0 - DrawQOn ;
Vector #4 - DrawTools 3.0 - Draw480n

Vector #5 - DrawTools 3.0 - AnimatePixie (errors returned in A)
Vector #6 - DrawTools 3.0 - Rnd

Vector #7 - DrawTools 3.0 - Odds

Vector #8 - DrawTools 3.1 - WaitLine

Vector #9 - DrawTools 3.1 - ErasePixie (errors returned in A)
Vector #10 - DrawTools 3.1 - save intermupt space

Vector #11 - DrawTools 3.1 - restore interrupt space

Vector #12-#16 - reserved for future use

Vectors 10 and 11 backup DrawTools’ direct page space. This allows you to call most DrawTools® functions from a
RunQ task or another interrupt task. Alternately, you can use the scheduler. You will have to use these if an
interrupt may occur during a DrawTools call: failure to do so may crash your program.

Examples : For Merlin 16 : ~GetQDT #MyQuickDispatchTable
Parameters : MyQDT (long) - location to save the copy of the quick dispatch table
Errors . none

DrawTools 3.1 57

WorkCursor 4662
Replaces the mouse cursor with the work cursor . Currently, the cursor is a pair of gears.

Examples : WorkCursor (NumCalls)

TOOLBOX(98, 70 : NumCalis%)
Parameters : NumCalls (word) - O = animate on every StillWorking, n = every ath
Errors : none

T See WorkCursor2.

WorkCursor? 2
Same as WorkCusor, but works properly with accelerator cards.
Examples : WorkCursor2 (NumTicks)
TOOLBOX(98, 70 : NumTicks%)
Parameters : NumTicksls (word) - 0 = animate every StillWorking, n = every n/60ths secs.
Errors : none

StillWorking ($4762)

WorkCursor/WorkCursor2 must be called first. Checks to see if the work cursor needs animating. Use InitCursor if
you want to restore the cursor to an arrow.

Examples : StillWorking;
TOOLBOX(98, 71)
Parameters : none
Errors : none
Qdds ($4462) !

Returns TRUE the given percentage of the time. Percentages of zero or less are always FALSE; percentages of 100
or greater are always TRUE. This tool is accurate to about 2%,

Examples ; Boolean := Odds(Percent);

TOOLBOX(98, 68 : 0, Percent%; Boolean%)
Parameters : Boolean (word) - the truth value

Percent (word) - the percentage of the time to be true.
Errors : none
RND (%4

Returns a pseudorandom number between | and the specified limit. Limits of zero or less always result in zero.
Examples : number := RND(limit);
TOOLBOX(98,69 : 0, limit% ; number%) .

Parameters : number (word) - the random number, I..limit
limit (word} - the maximum random number (1...32767)
Errors : none

DrawTools 3.1 58

Retums a normally-distributed, or “bell-curved”, pseudorandom number between | and the specified limit. The
numbers are more likely to come from the center of the range than from the low or high ends of it.
Examples : number := NormalRND{ limit);
TOOLBOX(98, 101: 0, limit; number)
Parameters : number - the random mumber, 1...limit
limit - the maximwmn random number (1...32767)
Errors : nome

HLoad {$2F62)
Handle LOAD. Loads a specified file into memory and refurns a handle to it. (For those who like avoiding ail those
GS8/0S details, like me.) The handle is left locked.

Examples : DataHandle := HLoad{ Path, FileType);
TOOLBOX(98, 47 : 0, 0, PathH%, PathL %, FileType%; Datal.%, DataH%)
Parameters : Path (longword) - pointer to the GS/OS pathname

FileType (word) - file type expected (or 0 for any type)
DataHandle (long) - handle to the file data

Errors : GS$/08 and memory manager errors (file busy errors handled internally)
$620B - FileType mismatch

HSav 4
Handle SAVE. Saves the contents of & handle in a file. If a new file is created, the file type is the same as the
FileType parameter, and the AuxType is 0, The handle is left locked.

Examples : HSave(Path, FileType, DataHandle };
TOOLBOX(98, 84 : PathH%, PathL%, FileType%, DataH%, Datal.%)
Parameters : Path (longword) - pointer to the pathname

FileType (word) - file type expected (or 0 for any type)
* type -1 is a special type: PNT/$0001, packed screen (used with SetBackground)
DataHandle (long) - handle o the data to be saved
Errors : GS/0S and memory manager errors (file busy errors handled internally)
$620B - FileType mismatch ;

BarGraph B62
Draws a bar graph in a specified rectangle. The graph shows the percentage relationship between the "value”
parameter and the max value in the graph record; values < 0% are treated as 0%; values >100% are treated as 100%.

If the rectangle is larger vertically, the graph is drawn upward; if the rectangle is larger horizontally, it is drawn
rightward.

Examples : BarGraph(GraphRec, value);

TOOLBOX(98, 75 : GraphRecH%, GraphRecL%, value%)
Parameters : GraphRec (long) - pointer to a graph record

Graph record:

0-7 Graph rectangle containing the graph
8,9 ForeCol SolidPenPat value (-1 for current pen pat)
AB BackCol SolidBackPat value (-1 for current back pat)
C,D Max maximum value for the graph
E-11 reserved reserved; setto O

Errors : none

DrawTools 3.1 59

GetMHz ($6267)

Returns the current GS speed to the nearest MHz. (Also adjusts GetJoy so that it will operate properly at the current
speed.)

Examples: Speed := GetMHz;

TOOLBOX(98, 103 : 0; Speed %)
Parameters: + Speed (integer) - speed of the GS to the nearest MHz.
Errors: none

PrintWindow ($6A62)

Sends a window, grafport or the screen to the printer. The Print Manager is automatically started, if necessary. No
clipping is performed on overlapping windows, Also, you will need at feast 32K free: PrintWindow saves the
contents of the screen before showing the dialogs.

Examples: PrintWindow(WindowPtr, Options);
TOOLBOX(98, 106: WindowPtrH%, WindowPtrl.%, Options %)

Parameters: WindowPtr (long) - pointer to the window or grafport; if nil, prints whole screen
Options (integer)

bit 0 - if 1, shows the “Page Setup” dialog box
bit 1 - if 1, shows the “Print” dialog box
bit 2-15 - reserved; set to 0
Errors: Print Manager errors
Memory Manager errors

Hex
$0000
$6201
$6202
$6203
$6204
$6205
$6206
$6207
$6208
$6209
$620A
$620B
$620C
$620D
$620E
$620F
$6210
$6211
$62FF

Dec

25089
25090
25091
25092
25093
25094
25005
25096
25097
25008
25099
25100
25101
25102
25103
25104
25105
25343

[If. Appendices
Appendix A: DrawTools' Error Summary

Meaning

No error

Too many libraries

Sequence number out of range

Invatid library ID

The library is loaded

Task signature missing/invalid

Screen line out of range

‘Task exists (or doesn't exist, depending on tool)

SCB tasks are not enabled

Library buffer tables full (currently, maxinmum 5§ buffers, for 45K)
Not enongh memory in bank 0 for more buffers

FileType Mismatch during & HLoad/HSave

Sequence command mismatch (wrong command for this kind of pixie)
Undefined sequence command in this version of DrawTools

Pixie exists (or doesn't exist, depending on tool)

Player/Device number out of range

Game or Network Device not found

Not a matted pixie

General error (consult tool description)

- not implemented (ie. for Apple's two reserved tool numbers, #7 and #8)

DrawTools 3.1

DP Addr

$0-3
4-5
6-9
AD
E-F
10-23
24-27
28-35
36-41
42-43
44-45
46-55
56-65
66-75
76-78
7C-7D
7E-81
82-83
84-85
§6-87
88-89
8A-8B
8C-FF

Label
SCRNPTR
BASE_DP
PortPir
GrafPir
MylD
Temp
LineTable

StiliFire
FireMask
PixAlloc
PixType
PixVsMat

FontCode
GrafPort*
FontHeight
LeftMargin
RightMargin
UtiiTemp
CurrentLib

Appendix B: Direct Page Usage
Description

Current drawing position, minus $2000
Picture location in bank 0

Used by DrawMain & DrawShadow, the current grafport
Ptr to QuickDraw H's pointer to the current grafport
Application's Memory ID, aux. type 15
Scratchpad space for DrawTools

Ptr to QuickDraw II's line table

Used by fading and colour tools (don't modlify)
Used by SCB Interrupt handler (don't modify)
Bits set if fire buttons are held, %0..004321
Bits true if fire button exists, $0,.004321

bit 7 - pixie allocated, bit 6 - pixie disabled
pixie types

bit 7 - pixie visible, bit 6 - pixie matted
Scratchpad space for Animation tools

XOR of current font handle words

Ptr to pnloc field in current grafport

Current font height

Left margin

Right margin

Used for dereferencing

Library ID for the current library

Misc. or future use (don't modify)

You may use any of the scratchpad space between DrawTools calls,

61

DrawTools 3.1 62

Appendix C: DrawTools and Other Toolsets

DrawTools should be compatible with all of the standard Apple toolsets. However, the following are a few things to
notice.

wTools ES A's SoundTog) 9
You cannot use the SCB Interrupt tools with the Soundtrack Tools.

2, Bit- raphics i¢ W

a) Coordinates - DrawTools' coordinate system is identical to Quick Draw's 320 mode (0..319, 0...199). However,
the coordinates are always global. Use the QuickDraw function LocalToGlobal when you are using
windows/grafports to determine the proper coordinates.

b) 640 mode - DrawTools drawing functions will work as you'd expect, creating 48x24 pictures instead of 24x24
pictures. The coordinates are always 0..319, 0...199, even if you are using QuickDraw in 640 mode. To determine
the proper coordinates in a window/grafport, use the following (in Pascal): Local ToGlobal(WindowPoint %
WindowPoint.h := WindowPoint.h div 2;

DrawwhateverAt(WindowPoint.h, WindowPoint.v, picture_number);

c) Mouse Cursor - The drawing functions and screen scrolling functions operate directly on the screen, ignoring
the mouse cursor. If you need a cursor on the screen, use HideCursor/ShowCursor.

d) Clipping - For speed, the drawing functions don’t clip pictures to fit in the clipping regions of the current
grafport (if you draw a picture, the entire picture is always drawn, even if it won't fit in & window).

3. Me

DrawTools uses auxID #15, When you shut down DrawTools, all memory allocated with aux ID #15 is disposed of
{(including any HlLoaded handles).

DrawTools 3.1 63

Appendix D: Network and Game Drivers

What are Network and Game Drivers?

DrawTools lets you assign devices for up to four players. You can specify a device number when you call
GetFire, StillFiring or GetJoy. Device 0 is always the GS joystick, but device 1 to 4 can be assigned to any device.
By following the standards set in this addendum, your game (or other application) will be able to play with any
device, allowing for even players on other GS's. All this is possible by what I call a game driver.

A driver in GS/OS is a piece of software that runs an input/output device, like a printer or a disk drive. A gane
driver is a piece of software that DrawTools uses to run an input device, typically for a game (hence the name).
Game drivers are kept in a folder called DT.Drivers, located in the Tools folder on a boot disk. All your
application has to do is use SFGetFile (the standard Open... dialog) to let the players select their drivers from that
directory, You load them with the System Loader and tell DrawTools which game driver to use for which player, and
the rest is done automatically.

If you want to go all the way and let players play on separate GS's, you'll need a net driver as well. This isa
piece of software that DrawTools uses to communicate between separate computers, such as over a modem or an
AppleTalk network. Using a net driver is a little more complicated than using game drivers alone, although
DrawTools does a lot coordinating behind the scenes for you. You have to use a special tool called SendNetwork
to send messages between the different GS's your program is running on, SendNetwork also returns to you status
information about the other GS's, such as when a new player has started his computer and wants to join in, or when
one of the existing players loses or wants to quit. Reading a player's device on another GS is done the same way as
you would normally do, with GetJoy or the other joystick routines. If the player is not on your GS, DrawTools asks
the Net Driver to find out the information for you.

Your Application Your Application
| i
DrawTools DrawTools
— a—
Game Driver Net Driver Net Driver Game Driver
}—+4——-Network———f——]
1
Apple [IGS #1 Apple [IGS #2

Figure I - How the Game and Net Drivers work together

I hope that by explaining the details here, that all the people that have more time than I do will get to work and
start making game and net drivers. I set up the rules; somebody else makes the drivers. If you come up with a net or
game driver, please send me a copy and a letter, and I'll try to market them with future disks. If you just want to use
the net and game drivers, read on to find how how to set up your programs to support them. Located on the latest
DrawTools' Disks is a folder called DT.Drivers, which you can copy into the Tools folder of your boot disk
containing DrawTools. First, there is a sample game driver called Joystick that runs the GS Joystick. Second,
there is a sample net driver called Null.NetDriver which mimics the some functions of a real net driver. (130 &
131 are special commands to mimic activities on a network for testing purposes - see SendNetwork in the reference.)
Source files for the Merlin assembler are included in the folder. You can use these to test your program if you want
to support game drivers, or net drivers and game drivers. As I mentioned previously, there is no reason "game”
drivers have to be used in games. You might find it easier to write a game driver to operate a device like a flying
mouse (the headset mouse used for the handicapped) than to write some kind of GS/OS driver (or whatever), and once
written, such a driver can be used in any program supporting game drivers, The possibilities are enormous,

A Tew Definitions:

DrawTools 3.1 64

A device is something used by a person to offer input to an application, such as a keyboard, joystick, Koala pad, or
a microphone,

Alocal deviceis a device connected directly to a IIGS.

A remote device is a device connected indirectly to a TIGS, by an AppleTalk network, or a modem, or a SCSI port to
another [1GS.

A Game Driver is a piece of software which operates or monitors a local device.
A Net Driver is a piece of sofiware which is used by DrawTools to communicate over a network with remote
devices.

What Does My Application Have To Do To Support Game Drivers?

What the Application dogs ...

1. You will have to load the game drivers desired by the players (using LoadDriver) into memory. The drivers
should be located in the DT.Drivers folder in the Tools directory of the boot disk.

2. Use SetGameDriver (playerNum, DriverPir) to install a driver for a particular person. One driver may be shared by
more than one person (unless, of course, it’s strictly a one person device, like a joystick — it’s up to the players to
chose devices that make sense),

3. When you use GetJoy, GetFire, or StillFiring, use the playerNum to specify a particular device.

4. Unload the driver when you are done.

What DrgwTools does .., .
DrawTools will invoke the appropriate game driver instead of reading the GS joystick. If no driver exists, garbage is
returned by the call.

What the Game Driver does ...
The game driver reads the local devics and returns the information requested to DrawTools, which hands it to your
application,

What Does My Application Have To Do To Use Net Drivers?

What the Application does ..,

1. Load the appropriate net driver into memory.

2, Use SetNetDriver(driverPtr) to install the net driver, ‘The current version of DrawTools only supports one net
driver; you can't play over two different networks at the same time.

3. When a player on a local device wants to start playing, use SendNetwork to inform the other GS (or G8's) that
there is a new player. A message is returned if the GS's are full (DrawTools only supports 4 players at a time, even
over a network).

4. Periodically invoke SendNetwork (eg. by placing it in your main loop) to let the net driver check on the network
and keep up-to-date with the other GS (or GS's), This is called polling the network. If there are new players jumping
into the game, or old players dropping out, SendNetwork will return the appropriate message. More details on the
uses of SendNetwork are listed in the reference.

What DrawTools Does ...
If you use GetFire, GetJoy or StillFiring for a player on a remote device, DrawTools invokes the Net Driver and
asks it to find the information, which it returns to your application.

What the Net Driver Dogs ..,
The driver must handle the transmission and reception of data over the network. It takes care of identifying which
player number on the local GS corresponds to which device on which remote GS. When a new player enters the

DrawTools 3.1 65

network, the net driver finds a free player number and reports it to your application for use with Getloy, etc,
How to Create a Game Driver
1. File description: your driver must be stored in DT.Drivers folder in Tools folder of the boot disk. FileType:

Generic Load File (type $BC) AuxType 1.
2., Header for you driver:

Offset Name Size Description

0 EntryPt (3 bytes) BRL instruction to your driver

3 Name (17 bytes) Pascal string for the driver name

20 Creator (17 bytes) Your name or the name of your company

37 Version {(word) Driver version (eg. $101 = 1.1)

39 DTVersion {word) Minimum version of DrawTools (eg. $301 =3.1)
41 <reserved> (8 bytes) Zeroes

49 o <your driver goes here>

DrawTools will call your driver with a JSL to the entry point. A = command, X = player #, Y = result of the
command,

B & D registers must (naturally) be preserved. Place the result in A, Exit with a SEC and RTL.

The commands for game drivers are: 0 - init driver (called by SetGameDriver, return error code ($6210 or other) or
else 0) 1- GetJoy (Y=axis, called by GetJoy) 2 - GetFire (called by GetFire) 3 - StillFiring (called by StillFiring)

How to Create a Net Driver
1. File description: must be stored in DT.Drivers folder in Tools folder of the boot disk. FileType: Generic Load File

(type $BC) AuxType 2.
2. Header for you driver:

0 EntryPt (3 bytes) BRL instruction to your driver

3 Name (17 bytes) Pascal string for the driver name !
20 Creator (17 bytes) Your name or the name of your company

37 Version (word) Driver version (eg. $100 = 1.00)

39 DTVersion (word) Minimum version of DrawTools (eg $301 =3.1)
41 <reserved> (8 byies) Setto 0

49 v <your driver goes here>

DrawTools will call your driver with a JSL to the entry point. A is the command, X = data (low), Y = data (high).

B & D registers must be preserved. Return with the result in A, and any data in X, Y, Exit with an RTL.

For the commands, see the reference under SendNetwork. You will need a psesdo game driver for DrawTools fo call
when it wants information for a local device. For your game driver, design it to be called like a regular game driver,
except refurn with a CLC (not SEC) and RTL. This will make sure DrawTools won't send the results of the
GetJoy/etc. back to you {posting local events).

DrawTools 3.1 66

Appendix E : Using PicEd 3.0

Besides the library converter utility, there is a utility called PicEd that helps you to create libraries of the
bit-mapped pictures that DrawTools' works with. PicEd was written in TML Pascal II, v1.1.

When PicEd is started, there is a large grid of 24x24 black blocks to the right of the screen. This is a zoom
(fat pixels) view of the current picture, Using the mouse, you can change the blocks to different colours, While you
are editing a picture, the changes you make are TEMPORARY until you select the EDIT button. This way, if you
make a mistake, you can always revert to the original copy of the picture and start again.

When blocks in the zoom view are changed, these changes are reflected on a series of pictures in the top-left
comner of the screen. The large picture is a view of how the picture would look if it were drawn with the Draw48
call, To the left of this picture are three smaller ones. The one on the far left is drawn with Draw. The one in the
middle is drawn with DrawOn (that is, matted) on a red background. The one on the right is used when animating.

There is a palette of colours to the left of the zoom view. You can change the colour you are sketching
with by clicking on a new colour. The new colour is outlined in black.

Below the palette is a series of buttons:

QUIT - this stops PicEd. It gives no warnings, so make sure your work is saved.

CLR - clears the zoom view to black.

EDIT - saves the current picture in the library, and selects another for editing

When EDIT is first clicked, PicEd gives you three options: (S)ame - save the current picture to library position it
was edited from; (D)ont - don't save the cusrent picture in the tibrary; (N)ew - save the current picture to anew
position, If you pick new, you will be asked for a new position (0..31).

LOAD - loads a library of pictures from disk.

SAVE - saves a library of pictures to disk. Pressing Return will use the LOAD name as the default.

MASK - calls GenMask to create a simple matting mask, Normally, this mask is stored immediately after the
picture it was created for.

The PAL and AN1 buttons are special buttons which cause a new set of buttons to appear on the screen.
The PAL (palette) buttons are:

PAL - lef's you select one of 16 palettes to use, palette 0 being the default patette of colours used by QuickDraw. If
you change any of the palettes (besides palette 0), the information is saved in the file PicEd.dat, and the palettes will
be reloaded the next time you run PicEd. Some of the palettes are predefined as the 640 colours, the standard IBM
VGA colours, metallic and rainbow colours.

COL - change a colour in the current palette.

FADE - brightens or dims & colour by using the FadeColour tool.

BLND - blends two colours together to produce a third by calling the BlendColour tool.

The ANI (Animation} buttons as as follows:

DONE - you are finished animation. Gets you out of animation mode and restores the other buttons.

SEQ - define an animation sequence. If you want to animate a set of pictures in the current library, select this
button, then type in each pictire you want to animate, in order. Then type 255 and type in the position in the
seqience you want to loop back fo (ie. 0 = first position, 1 = second, etc). To animate the first 3 pictures over and
over, you'd type: O then 1 then 2 then 255 then 0.

GO! - animates the sequence you typed in. Hold down the mouse to stop. From left to right, the pictures are drawn:
1) as a matted pixie on a red background, 2) as & pixie that is not matted, 3) as a 48x48 picture (by Draw48).

DrawTools 3.1 67

Appendix F : Using Library Converter 1.2

Lib.Converter, the library converter, is a utility that lets you translate a picture library template into a DrawTools
picture library. A template is simply a super hi-resolution screen with the 32 pictures of a picture library laid out
for you to edit with any paint program. Keep in mind that the template must be saved as a super hi-resolution
screen and not as one of the other picture formats, such as Apple Preferred.

Convert Template tg Library ... (Command-Oo): Select this to convert a tempiate to a picture library.
Lib.Converter will ask you which template you would like to convert. During the conversion, the template pictures
are displayed on the desktop. Once the template is converted, Lib.Converter will ask you what name you would like
to save the picture library as.

Display a Template ... (Command-Dd): Select this to display the pictures in a template on the screen. The colours
may differ from the original template,

Print a Template ... (Command-Pp): Select this to print & template fo the printer. Lib.Converter uses PrintWindow
to print the entire screen (including the pictures).

Convert SHR Screen to SetBack ... (Command-Bb): Select this to convert a super hi-resolution screen to a packed
super hi-resolution screen, the format used by SetBackground and SetBackground2.

Pack (Command-Pp): When Pack is checkmarked, the template you convert with “Convert Template to Library” will
be packed.

DrawTools 3.1 68

Appendix G : Changes Since DrawTools 3.0

1. New ORCA/M macros.
2. CLS now works with a visible cursor,
3. NormalRND no longer returns a uniform distribution,
4. NEW WorkCursor2: WorkCursor that works with accelerator cards,
5. New QDT Vectors:
#8 -> WaitLine #9 -> ErasePixie
#10 -> Save interrupt space #11 -> Restore interrupt space
6. HLoad waits until a file is not busy.
7. HLoad now works with files larger than 64K.
8. Change status command for fine pixies now works.
9. The library limit has been increased to 24 from 16.
10. Library Converter has been updated to version 1.1. Requires System 6.0.
11, SetGameDriver no longer crashes and it returns error $62FF properly.
12. NEW FrasePixie: A more convenient form of WipeOn.
13. NEW EraseAllPixies,
14, NEW LoadDriver: Loads a game or net driver.
15. NEW UnloadDriver.
16. BarGraph supports 16 colours for the forecolour, if you are using System 6.0.
17. SetNetDriver returns error $62FF properly.
18. NEW SetBackground2: SetBackground with more options.
19. NEW Keypad.Drvr & Keybrd.Drvr: game drivers for the Apple TIGS keyboard.
20. NEW ResetBuffers: Clears the bank O drawing buffers.
21, NEW PrintWindow: Print the contents of a window or the screen.
22. New self-running Micol Advanced BASIC demo.
23. WaitLine is now more accurate: interrupts are suspended to ensure prompt response. (This was the
problem that made Quest for the Hoard™ sluggish when many inits were installed.)

Tool Index

Animate
AnimatePixie

BarGraph
BleadColour

ClearPixie
ClrSCBInts
Cls

DelSCBInt
DisablePixie
Draw
Drawd8
DrawAt
Draw480n
Drawd8At
Drawd80nAt
DrawBootInit
DrawNormal
DrawOn
DrawOnAt
DrawPage
DrawPos
DrawReset
DrawShadow
DrawStartUp
DrawStatus
DrawShutDown
DrawVersion

EnablePixie
EnableSCBInts.
ErasePixie
EraseAllPixies
ExtendBuffers

FadeColour
FadeDone
FadePal
FindColour
FindPalette

GetBorder
GenMask
GenAllMasks
GetFire
Getloy
GetMHz
GetLibrary

in alphabetical order

40
40

58
48

39
50
42

49
40
34
34
34
34
34
35
30
33
34
35
32
32
31
33
30
31
30
30

40
49
41
41
32

48
49
46
47
48

44
35
35
55
35
58
37

GelPalette
GetPixie
GetPixieSeq
GetQDT

HidePixie
HLoad
Home
HSave
HTab

IncrFadeQut/In

LoadDriver
FoadLibrary

NewPixie
NormalRND

Odds

Print
Prin{Hex
PrintInt
PrintWindow

QuickFadeOut/In
QuickWipe

Ready2Print
ResetBuffers
ResetSCBs

.ResumeSCBInts

RND

ScrollLinesL.
ScrolllinesR
ScrollLinesU
ScrollLinesD
SendNetwork
SetBackground
SetBackground?2
SetBorder
SetColour
SetColPercent
SetDrawPage
SetDrawPos
SetGameDriver
SetLibrary
SetLTMargins
SetNetDriver

46
39
39
56

40
58
51
58
51

43

53
37

33
37

57

52
52
52
59

42
42

51
32
44
50
57

45
45
45
45
53
36
36
44
47
47
33

32

53
37
51
53

DrawTools 3.1

SetPalette
SetPixie
SetPixieSeq
SetSCBInt
SetSCBs
ShowPixie
ShadowOff
ShadowOn
StillFiring
StillWorking

UnfadePal
UnloadDriver
UnloadLibrary

VBWipe
VTab

WaitVB
WaitLine
WipeOn
WorkCursor
WorkCursor2

46
39
39
49

40
43
43
35
57

46
53
37

42
51

43
43
36
57
57

70

