e

SO WHAT SOFTWARE

-10221 Slater Ave. Suite 103 Fountain Valley,Ca.82708

(C) 1989 So What Software Fountain Valley, CA

THE MENU MAKER

vVi1ig
OVERVIEW

So What Software's Menu Maker combines three powerful binary files with an illus-
trative editor routine to make it easy to design custom "pull down" menus that
resEond to mouse action and kef' presses. Menus made with the Menu Maker have the
look and feel of commercial application Rrograms‘ menus, but they show exactly

the options you want and run exactly the way you want them to!

Menu Maker menus can select and run any program that you can run from your ligs'
keyboard. Because the menus run under Applesoft BASIC, they are easily under-
stood and modified by even beginning Ilgs users. Just a little bit of Applesoft
BASIC understanding is needed, but absolutely NO knowledge of machine language
or Toolbox-oriented assemblers/compilers is required.

There are three menu programs on the /MENU.MKR disk: the Menu Maker grogram that
you use in creating a custom menu, a demo program that shows some of the ways
nou can set up a menu, and a ‘shell’ that you can use as a startin& Eolnt. The
enu Maker Yrogram is the one that comes up when you boot the /MENU.MKR disk.
You can try it and the demo program out to see how they work, then LIST the
Applesoft routines to see how they're written. Feel free to copy and use any .
of the Applesoft programming techniques we've used--we don't claim them to be ei-
ther the best or the only way to go. Use whatever style you're comfortable with.

MENU SETUP
There are four steps in readying a menu:

1. Install the Menu Maker binary files (MENU.BIN.1, ‘MENU.BIN.2, and MENU.BIN.3).
From 'scratch', the three files are run in order; if you've got some of them

already in memory, though, there are shortcuts. Look at the Menu Maker and Menu
Demo program listings to see how to check if MENU.BIN.1 and/or MENU.BIN.3 are
already present, and what to do if they are.

2. Install the Menu Maker Icon Sheet (the file MENU.ICONS) in an available mem-
ory bank and tell your menu where to find i{t. Look at the Startup program list-
ing to see how this is done.

3. Set up the dimensions and fill in a two-dimensional string array (16x16 maxi-
mum size). Array entries are the text that will appear in the menu; each entry
is identified for the array variable, A$(X,Y), where X denotes each item in the
bar (the region across the top of the screen), and Y denotes each entry in a
block (the region below a bar entry).

4. Initialize the menu by issuing the CALL MI command (from your menu program).
Of course, what your menu does when you click the mouse or gress the keys is all
up to you--that's taken care of by the menu's Applesoft BASIC routine.

Bar Text

Bar item text is identified in the first dimension of the array, in numerical
order, without gaps.

Example: A$(0,0) = "@" (See Note, below.)
A$(1,8) = "File"
A$(2,8) = "Edit"
A$(3,8) = "Quit"

Note: The "@" symbol entered at A$(@.#) ylelds a color-striped apple at the
left of the menu bar. This is true for (#,0) only. The menu of the Menu Maker
uses this feature.

%

The A$(X,Y) array should be dimensioned for the exact maximum number of entries
for each dimension--dimensioning a larger one yields phantom entries that must
be calculated when the menu parameters are generated. @At best, the resulting
menu has poor appearance; at worst, the menu may not be generated at all.

Block Text

Block entry text is ldentified in the second dimension of the array, in numeri-
cal order, without gaps. Block text entries are preceded by a @-5 code number
to select text appearance in the finished menu.

Normal text

De-emphasized text ('gray-ed' out)
Normal text w/ divider bar
De-emphasized text w/ divider bar
Normal text w/ check mark

Normal text w/ check mark & divider bar

-
wwwnnw

[, F N~1 N\

Special Menu Characters

Three special characters are avallable for block entries, the Og(gn Aggle. Closed
Afgle. and the alternate Open Apple character (the Funny-Looking aracter,
FLC). These characters are summoned by inserting & substitute character at the
{ocatlon you would want the special character to appear. The substitute charac-
ers are:

@ = Open Apple
N = Closed Apple
~ = Alternate Open Apple (the FLC)
Example: AS$(6,1) = "4Plain B"
A$(6,2) = "PBold P"
AS$(6,3) = "2ltalic el
-== etc.-=--

This example shows the Special Menu Characters used as modifiers to the keypress

equivalents aligned at the right side of the menu block. Notice how every block

item is preceded by a code number, and the array sequence is continuous (6,1;

6,2; etc). Leaving out a code number will cause an error message to appear,

while having a gap In the array numbering will cause the menu block to end at
ere

the point w the Inconsistency starts.

OPERATION

Three Calls and four data locations yield complete menu control:
1. MI - Initialize. 9400 37888
2. MR - Reenter 9403 37891
3. MC - Close 9406 37894
4. MD - Menu Data Byte 940F 37903
5. BC - Text/Border Color 940B 37899
6. KRC - Menu Background Color 9409 37897
7. VR - Array Variable 940D 37901

Typical operation from within a program is to test that the cursor is within

the active bar region and either the mouse button or a desired key combinstion
has been pressed. Satisfaction of these two conditions when the mouse button
has been clicked allows the Reentry Call (CALL MR), at which point the
MENU.BIN.3 routine takes over and keeps control until the mouse button lis
released. Key presses can be noticed and acted on independently. Release of the
mouse button while the cursor is in an active menu region (ie, a bar area or a
block area) returns the Menu Data Byte, MD, identifying the menu item selected.
Your menu program then does whatever you want it to do.

Data bytes BC and KC let you set the colors of the text/borders and the menu
backﬁround, respectively. he color palette used by these values is the one used
by the Icon Sheet installed when the menu is first installed. You can Poke
different color values in for KC and BC--for best results, use these 16 values:
9,17,34,...,238,255. You can use any ligs paint program to change the color
palette of the MENU.ICONS Icon Sheet, but don't change any of the sheet that
shows the text and speclal characters!!

Data byte VR lets you change the 'active' array variable (eg, the 'A$' used in

the discussions above). This means that you can have two (or more) separate
menus available, just a mouse click or keypress away. The Menu Maker menu illus-
trates the technique. (There's more discussion of the VR variable in the Chang-
ing to Another Menu section.)

STORING VARIABLES

The Menu Maker program has an option that lets you store all the variables of a
pro%ram in a special Applesoft flletype, a 'VARS' file. This method of handling
variables eliminates the need for ?'our program to 'declare' all the variable
names at the beginning (which helps keep the program shorter), and it lets you
set up variables to their former values almost instantly. Use the Menu Maker's
'Store Vars' option while you're creating a custom menu, if you wish.

The command to store variables is STORE VARS.FILE for any filename you like] from
the keyboard, or PRINT CHR$(4); "STORE VARS.FILE" from & program. imilarly, one
gets variables back by a RESTORE VARS.FILE or PRINT CHR$(4), "RESTORE VARS.FILE"
command. Check the Menu.Maker program listing to see how it's done.

We recommend that you save a copy of your menu Trogram in a 'normal' format (le,
with all the variables--especially the array variables—--shown in the listing).
That's because the 'VARS' file format doesn't allow you to see on the screen

what the variables are; if you want to change menu text, for instance, it'll be
much easier to do it in the 'normal' way. Just use the 'VARS' file approach

when you've got your menu text entries all laid out exactly as you want them.

SAMPLE PROGRAM LINES (After the menu is set up and ready to run.)
Standard Mouse/Cursor/Keypress Loop

10 CALL MS: CALL CO
20 CALL MS: CALL CO: IF PEEK (MB) = 255 THEN 1¢¢
390 K = PEEK (49152) : MK = PEEK (49189) : IF K < 128 THEN 2¢

f K and MK are variables that designate what keyboard keys have been
pressed; K is for 'regular' keys, while MK is for the 'modifier' keys,
such as the Control, Shift, and Apple keys. The Menu Maker shows you
the K and MK values for any combination; use the info when you're
designing your menu's logic. |

4@ POKE 49168, @

5¢ IF K = | a value between 128 and 255 | THEN 2@¢
gg IF MK = { a value greater than @ | THEN 3¢¢
19

GOTO 20 { No choice made, so go to beginning. |)
¢ IF PEEK (MV) >13 THEN 20 | The mouse button was pressed--was the cursor i
the menu bar? If not, go back to the beginning.}

116 CALL MR : X = PEEK (MD) { Variable X tells which menu choice was made; it
is decoded as shown in Lines 119, 120, and 130. |
Bar item number }

INT (X/162
- INT (X/16) ®* 16 | Block entry number |}
IF X 255 THEN... { No selection was made, s0... |}
IF 1 AND M 1 THEN...{A typical combo; go do something]
IFB=1AND M = 2 THEN...| Another typical combo }
GOTO 20 { Gotta close this loop! }

Do something because a certain key was pressed.)
Do something because a 'modifier key' was pressed. |
GOTO 2@ | End of the loop...go back to the beginning. }

zw
nn
S

o
nn gy
N}

1
1
1
1
1
1
2
3
3

The MENU.BIN.3 routine is shut down by the MC Call, at which time the menu disap-
pears, To reacquire the menu, the MI Call must be issued; using the MR Call by
mistake will cause unpredictable results.

With only one exception, bar or block text entrY changes during program execu-
tion must be followed by the MI Call to recalculate and reformat the menu; other-
wise, text may be plotted in undefined menu areas. (Since the MI Call generates
the menu in a8 few hundredths of a second, this poses no practical limitation on
speed.) The only exception is that the #-9 code selecting block text status

(eg, normal, de-emphasized, w/ or w/o check mark) may be changed "on the fly."

DISTRIBUTION TECHNIQUES

Here are three methods that you can unse to deal with the returned data byte value
after a menu selection has been made. The following sample code assumes a menu
array of A$(2,2), while variable X equals the raw value returned in the menu data
byte, M equals the menu bar item, and B equals the block entry.

TYPE 1: 2-PART DISTRIBUTOR
ON M GOTO 200.38%

ON B GOTO 120,138
GOTO §routSne 8.9

—
©

GOTO (routine @,1
GOTO (routine 8,2
ON B GOTO 220,230
GOTO (routine 1,0
GOTO (routine 1,1
GOTO (routine 1,2
ON B GOTO 328,330
GOTO iroutine 2.0;

GOTO (routine 2,1
GOTO (routine 2,2

€0 €O GO LI DI DD B D b s 4t 4t
W RWND =W~
ASTSLSTSTSTSTSLST SIS TS

TYPE 2: 2-FACTOR DISTRIBUTOR

190 IF M =@ AND B = ¢§ THEN GOTO (routine ,8)
ti# IF M =@ AND B = 1 THEN GOTO (routine @,1)
122 IF M =@ AND B = 2 THEN GOTO (routine ©,2)
130 IF M =1 AND B = @ THEN GOTO (routine 1,0)
1490 IF M =1 AND B = 1 THEN GOTO (routine 1.1;
15¢ IF M =1 AND B = 2 THEN GOTO (routine 1,2
160 IF M =2 AND B = ¢ THEN GOTO (routine 2,8)
1790 IF M = 2 AND B = 1 THEN GOTO §routine 2.1)
180 IF M =2 AND B = 2 THEN GOTO (routine 2,2)
TYPE 3: 1-FACTOR DASTRBUTOR
1690 IF X = @ THEN GOTO éroutine 2.8)
118 IF X = 1 THEN GOTO (routine 9,1)
1260 IF X = 2 THEN GOTO (routine 9,2)
130 IF X = 16 THEN GOTO (routine 1,0)
146 IF X = 17 THEN GOTO (routine l.l;
150 IF X = 18 THEN GOTO (routine 1,2
1690 IF X = 32 THEN GOTO (routine 2.0;
17¢ 1IF X = 33 THEN GOTO (routine 2,1
18¢ IF X = 34 THEN GOTO (routine 2,2)

We find Type 1 to be the fastest of the three, as well as being the most com-
ga_ct. Type 2 is easier to trace through, dut it takes ug the most room. sze

is a more compact version of Type 2, using the raw data byte instead. You can
LIST the Menu Maker program to get an idea of how these look in operation.

READING & WRITING THE BLOCK ITEM CODE NUMBER

There are times when you want a menu to show special notation about the status
of a block item. This Is usually gray-ing out an item or putting a check mark by
it. The 'string slice' technique is used in order to read or write these code
numbers; examples follow. (See the Block Text section, too.)

X = Bar item number Y = Block entry number N1 and N2 = Your numbers
Reading a Code Number

N1 = VAL (LEFT$ (A3 (X.Y), 1))
¥riting a8 Code Number

LEFT$ (A$ (X,Y). 1} = STRS (N2}

The Menu Maker program illustrates the techmigue. Select Item 4, Entry 4 sev-
eral times to see the check mark coming and going.

RUNNING PROGRAMS

The preceding discussion deals with how to get to a 'Now What' point in your
menu. Once you're there, it's up to you to tell your llgs what to do next.
Almost everyone uses 8 menu to run Rrograms. so all you need to do is have the
appropriate line of your menu issue the correct command to run the program of
your choice. Here's an example:

600 IF B = 1 AND M = 3 THEN PRINT CHR$(4);"'PREFIX /APPLEWORKS" :
PRINT CHR$(4); "RUN APLWORKS.SYSTEM"

This line sets the prefix to a disk having Appleworks on it and runs the system
file. Any application program you can run bf t{'pin in commands from your key-
board can be run from your custom menu. All it takes is a little understanding
of the requirements of your particular application and the issuing of 'run'
commands via Applesoft.

ERROR MESSAGES

There are 6 error messages generated b{ the MENU.BIN.3 file. After the message
is printed on the screen, the computer is put in Applesoft immediate mode so you
can re-edit your program to eliminate the error.

MBIN.1 Not Installed: The menu needs MENU.BIN.1 to draw on the graphic screen.
This message comes up at install time only.

Menu Array Not Dimensioned: A menu re%uires that a menu array (default A$) be
almensloneé with a DIM statement prior to CALL-ing MI.

Menu Fleld Too Large: There are more than 15 block items specified.

Too Many Bar Selections: There are more than 16 bar items specified.

Bar Selections Too Wide: There are more than 39 characters specified in the
menu bar (including auto-generated spaces between bar items

Block Item Missing Code Number: Just what it says! (See Block Text section.)

CHANGING TO ANOTHER MENU

You can have more than one menu available, but it requires the changing of the
array variable, VR, during your program. Here's how it's done:

An Applesoft variable name is stored in memory as a 2-byte (2-POKE) value. For a
string array variable, the first byte is 'positive', while the second byte is
'negative’. Positive and ne%auve in this case mean either greater than or less
than 128. (@-127 are 'positive'; 128-255 are 'negative'.)

If the variable name has only one character, the first byte is the positive
ASCII value for that character, and the second byte is 128 ($8¢ in hex).

Example: A$ = 65,128 (841,880)

If the variable name has two characters, the first value is positive, and the
second value is negative.

Example: AA$ = 65,193 (841,8C1)

{{There are dozens of reference manuals that lay out all 2565 ASCII values--
consult the one you like best.}}

To have two menus avallable, all you do is dimension and fill in the different

menu arrays, named as you see fit. POKE in your first array variable name at VR
and VR+1, CALL MI, and then go to the primary program loop. When you want to use
another menu, just CALL MC to shut down the current menu, POKE VR and VR+1 with
the new menu array name values and CALL MI. Presto! You're off and running

with the new menu. The Menu Maker program shows this in action; select the

'Other Menu' option to see it.

PITFALLS, GOTCHAs, AND OTHER STUFF

What follows is an assortment of things you ou%ht to know and think about as
{oq're creating and using custom menus. The llst by no means covers all possi-
flities, sc we urge you to examine the programs on the /MENU.MKR disk, read up a
little on Applesoft BASIC programming {remember, Apple included a brief Apple-
soft tutorial manual in the box with your Ilgs], and experiment.

1. The MENU.BIN files require some amount of free memory space to operate; for
instance, calculating the menu layout is no simple task. Try to keep your menu
program as short as you can--shoot for less than 50@¢ bytes. Use of the vari-
ables file technique helps cut down on program length.

2. Array variables are notorious memory hogs! If you're going to use the 'other
menu' technique, keep the two arrays pretty small. If you don't, you'll get
disappointing results, usually program crashes.

3. If you use a program on the /MENU.MKR disk as a starting point for a custom
menu, delete all the 'useless' program lines, such as the REM statements.

4. Remember that all three of the MENU.BIN files have to be loaded in the cor-
rect sequence for the graphics and menu tasks to be carried out. If your menu
program keeps crashing on startup, check this point. Also, if you use a segar—
ate Startup program (as we do with the Menu Maker), you need to restore the
variables from e GRAPH.VARS flle. The Menu Demo program has about the most
compact way of getting started, restoring both graphics and menu variables from
a single variables file. This method gives {ou the most room for your Applesoft
menu routine, and we recommend you emulate it.

5. Start small and work up. The Menu Maker helps you get the 'menu' part of
your program going, but it doesn't write the part that takes action when you've
made a menu choice. Start with one or two options and add to your program as
you become more confident.

6. The Menu Maker is one of several items in So What Software's 'Plain Brown
Wrapper' series; others include the Screen Thief (for capturing any Super Hi-Res
screen as a graphics file) and the ICONIX demo disk (which shows off much of the
graphics power of our program ICONIX for the Apple llgs). Ask for more info.

7. Speaking of ICONIX, if you'd like to add even more snap to your menus, you'll
want to add ICONIX to your llgs software library. The Menu Maker Rrograms use a
few of the many Applesoft BASIC commands that ICONIX provides--there's much,
much more. ICONIX, SONIX, and DISC COMMANDER are our formal Apple Ilgs programs
(le, with extensive features and full documentation...and vastly superior to

'plain brown wrapper' software such as the Menu Maker). " They give the llgs

owner full control of his/her machine's outstanding graphics, sound, and file

handling power. Take a look at the color info sheet enclosed for details on

these three programs.

8. We're always interested in'your comments and suggestions. Feel free to write
us at 1¢221 Slater Ave., Suite 103, Fountain Valley, CA 927¢8.

