
·10221 Slater Ave. Suite 103 Fountain VaUeY,Ca.92708

(C) 1989

H

So What Software

THE MENU MAKER

V 1.0

SOFTWARE

Fountain Valley, CA

OVERVIEW

So What Software's Menu Maker combines three powerful binary fUes with an illus­
trative editor routine to make It easy to design custom "pull down" menus that
respond to mouse action and key presses. Menus made with the Menu Yaker have the
look and feel ot commercial application programs' menus, but they show exactly
the options you want and run exactly the way you want them t01

Menu Maker menus can select and run any program that you can run from your Ilgs'
keyboard. Because the menus run under Applesott BASIC, they are easily under­
stood and modifIed by even beginning IIgs users. Just a little bit at Applesott
BASIC understanding is needed, but abs01utely NO knowledge at machine language
or Toolbox -oriented assemblers/compilers is reqwed.

There are three menu programs on the /MENU.MKR disk: the Menu Maker program that
you use in creating a custom menu, a demo program that shows some or the ways
you can set up a menu, and a 'shell' that you can use as a starting point. The
Menu Maker program Is the one that comes up when you boot the /MENU .MKR disk.
You can try It and the demo program out to see how they work, then LIST the
AfPlesort routines to see how they're written. Feel free to copy and use any
a the Applesoft programming techniques we've used--we don't claim them to be ei­
ther the best or the onlY way to go. Use whatever style you're comfortable with.

MENU SETUP

There are four steps in readying a menu:

1. Install the Menu Maker binary flIes <MENU.BIN.l.MENU.BIN.2, and MENU.BIN.3).
From 'scratch', the three files are run in order; if you've got some or them
already in memory. though. there are shortcuts. Look at the Menu Maker and Menu
Demo program listings to see how to check it MENU.BIN.l and/or MENU.BIN.3 are
already present. and what to do If they are.

2. Install the Menu Maker Icon Sheet (the file MENU.ICONS) in an available mem­
ory bank and tell' your menu where to find it. Look at the Startup program list­
1ng to see how this Is done.

3. Set up the dimensions and flll in a two-dimensional string array (16x 16 maxi­
mum size). Array entries are the text that will appear in the menu; each entry
Is identified for the array varlable

h
AS(X,Y). where X denotes each item in the

bar (the region across the top ot t e screen). and Y denotes each entry in a
block (the region below a bar entry).

4. Initialize the menu by issuing the CALL MI command (trom your menu program).

Of course. what ~our menu does when you the keys is all
up to you--that s taken care of by the routine.

Bar Text

Bar item text Is identified in the nrst dimension of the array. in numerical
order. without gaps.

Example: Ai~0.0~ = (See Note, below.)
A 1.0 = "File"
A 2,e = "Edit"
A 3,0 = "Quit"
--- etc.---

Note: The ·0" s~bol entered at AS{e.0) yields a color-strIped ap~le at the
left ot the menu bar. This Is true tor (e.e) only. The menu or tne Menu Maker
uses thIs feature.

The AS(X,Y) array should be dimensioned for the exact maximum number of entries
for each dlmension--dimensloning a larger one yields phantom entries that must
be calculated when the menu parameters are generated. At best, the resulting
menu has poor appearance; at worst, the menu may not be generated at all.

Block Text

Block entry text Is identified in the second dimension of the array, in numeri­
cal order, without gaps. Block text entries are preceded by a 0-5 code number
to select text appearance in the finished menu.

e = Normal text
1 = De-emJ)hasized text ('gray-ed' out)
2 = Normal text 91/ divider Dar
3 = De-emj)hasized text wi divider bar
4 = Normal text wi check mark
6 = Normal text wi check mark &. divider bar

Special Menu Characters

Three special characters are available tor block entries, the Open Apple, Closed
Apple, and the alternate Open Apple character (the Funny-Looking Character,
FLC). These characters are summoned by inserting a substitute character at the
location you would want the special character to appear. The substitute charac­
ters are:

• == Open Apple
" == Closed Apple
rv = Alternate Open Apple (the FLC)

-B"
'P"
01"

Example: AS(S,ll = "4Plain
AS(S,2 = "0Bold
AS(S,3 = "2ltalic

--- etc.---

This example shows the Special Menu Characters used as modifiers to the keypress
equivalents aligned at the right side of the menu block. Notice how every block
item is preceded by a code number, and the array sequence is continuous (S,1;
S,2; etc). Leaving out a code number will cause an error message to appear,
while having a gap in the array numbering will cause the menu block to end at
the point where the inconsistency starts.

OPERATION

Three Calls and four data locations yield compl.ete menu control:

1. HI - Initialize. r400 37888
2. HR - Reenter 9403 37891
3. Me - Clos~ 9406 37894

4. HD - Menu Data Byte r40F 37903
5. BC - Text/Border Color 940B 37899
6. KC - Menu Background Color 9409 37897
7. va - Array Va~able 940D 37901

Typical operation from within a program Is to test that the cursor is within
tne active bar region and either the mouse button or a desired key combination
has been pressed. Satisfaction of these two conditions when the mouse button
has been clIcked allows the Reentry Call (CALL MR). at which point the
MENU .BIN.3 routine takes over and keeps control until the mouse button is
released. Key presses can be noticed and acted on independently. Release of the
mouse button While the cursor is in an active menu region (ie. a bar area or a
block area) returns the Menu Data Byte. MD. identifying the menu item selected.
Your menu program then does whatever you want it to do.

Data bytes BC and KC let you set the colors or the text/borders and the menu
background, respectIvely. ~he color palette used by these values is the one used
by the Icon Sheet installed when the menu Is first installed. You can Poke
dIfferent color values in for KC and BC--for best results. use these IS values:
0,17,34, .. :./238,255. You can use any lIgs paint program to change the color
palette or the MENU.1CONS Icon Sheet. but don't change any of the sheet that
shows the text and special characters! t --

Data byte VR lets you change the 'active' array variable (egl the lAS' used in
the discussions above). ThIs means that you can have two \or more) separate
menus available, Just a mouse click or keypress away. The Menu Maker menu illus­
trates the technique. (There's more discussion of the VR variable in the Chang­
ing to Another Menu section.)

STORING VARIABLES

The Menu Maker program has an option that lets you store all the variables of a
program in a special Applesoft flletype, a 'VARS' fUe. This method of handling
varIables eliminates the need for your program to 'declare' all the variable
names at the beginning (which helps keep the program shorter), and it lets you
set up variables to their fonner values almost instantly. Use the Menu Maker's
'Store Vars' option while you're creating a custom menu, if you wish.

The command to store variables 1s STORE VARS.FILE (or any filename you like) from
the keyboard, or PRINT CHRS(4); "STORE VARS.FILE" from a program. Similarly, one
gets variables back by a RESTORE VARS.FILE or PRINT CHRS(4), "RESTORE VARS.FILE"
command. Check the lfenu.Maker program listing to see how it s done.

We recommend that you save a copy of your menu program in a 'normal' format (le,
with all the varlables--es~ecially the array variables--shown in the listing).
That's because the 'VARS I tile format doesn't allow you to see on the screen
what the variables are; 1f you want to change menu text, for instance, it'll be
much easier to do it in the· 'normal' way. Just use the 'VARS' file approach
when you've got your menu text entries all laid out exactly as you want them.

SAMPLE PROGRAM LINES (After the menu is set up and ready to run.)

Standard Mouse/Cursor/Keypress Loop

10 CALL MS: CALL CO
20 CALL MS: CALL CO: IF PEEK (MB) = 255 THEN 100
30 K = PEEK (49152) : MK = PEEK (49189) : IF K (128 THEN 20

K and MK are variables that designate what keyboard keys have been
pressed; K is for 'regular' keys, while MK is for the 'modifier' ke:;,s,
such as the Control, Shift, and Ap~le keys. The Menu Maker shows you
the K and MK values for any combInation; use the info when you're
designing your menu's logic. I

40 POKE 49168, 0
50 IF K = t a value between 128 and 255 I THEN 200
60 IF MK = t a value ~reater than") THEN 300
70 GOTO 20 t No chOIce made, so go to beginning. I
100 IF PEEK (MV) >13 THEN 20 I The mouse button was pressed--was the cursor i

the menu bar? If not, go back to the beginning.)

110 CALL MR : X = PEEK (MD) (Variable X tells which menu choice was made; it
is decoded as shown in Lines 110, 120, and 130.)

120 B = lNT (X/16) (Bar item number }
130 M = X - INT (X/16) II 16 (Block entry number)
140 IF X = 255 THEN ... (No selection was made, so ... J
150 IF B = 1 AND M = 1 THEN ... tA typical combO!' go do something
160 IF B = 1 AND M = 2 THEN... Another typica combo I
199 GOTO 20 I Gotta close this loop! I

200 I Do something because a certain key was pressed. J
300 Do something because a 'modifier key' was pressed.
399 GOTO 20 (End of the loop ...go back to the beginning.

The MENU.BIN.3 routine 1s shut down by the MC Call. at which time the menu disap­
pears. To reacquire the menu, the MI Call must be issued; using the MR Call by
mistake will cause unpredictable results.

With only one exception, bar or block text entry changes during program execu­
tion must be followed by the Ml Call to recalculate and reformat the menu; other­
wise, text may be plotted in undefined menu areas. (Since the MI Call generates
the menu in a few hundredths ot a second, this poses no practical limitation on
speed.) The only exception is that the 0-9 code selecting block text status
(eg, normal, de-emphasized, wI or wlo check mark) may be changed "on the fly.ll

DISTRIBUTION TECHNIQUES

Here are three methods 'tilat you can use to deal with the returned data byte value
after a menu selection has been made. The following sample code assumes a menu
array of AS(2,2), while variable X eqUAls the raw value returned in the menu data
byte. M equals the menu bar item. and B equals the block entry.

TYPE 1: 2-PART DISTJUBUTO'R

Ie O~T M GOTO 200,.3M

100 ON 'B G(J!"D 120A130
110 GOTO ~routine ~,el
120 GOTO routine 0,1
130 GOTO routine 0,2
200 ON B GOTO 220,230
210 GOTO ~routine l,el
220 GOTO routine 1,1
230 GOTO routine 1,2
300 ON B GOTO 320,330
310 GOTO ~routine 2,0j
320 GOTO routine 2,1-
330 GOTO routine 2.2

TYPE 2: 2-FACTOR DISTRIBUTOR

J00 IF M = 0 AND B = o THEN GOTO (Toutine 0.0)
1 i {/ IF M = 0 AND B = 1 THEN GOTO ~routlne 0.1)
l~i IF M = 0 AND B = 2 THEN GOTO routine 0,2)
130 IF M = 1 AND B = o THEN GOTO (routine 1,0)
140 .IF M = 1 AND B = 1 THEN GOTO ~Toutine 1, 1 ~
150 E¥M = 1 AND B = 2 THEN GOTO Toutine 1.2
160 IF M = 2 AND B = o THEN GOTO (routine 2.0)
170 IF M = 2 AND B = 1 THEN G070 ~routine 2,1)
180 IF M = 2 AND B ': 2 THEN GOTO routine 2.2)

TYPE 3: j-FACTOR DfGi1UBUTUR

100 IF X = " THEN GOTO ~routine 0,0)
110 IF X = 1 THEN GOTO routine 0.1)
120 IF X = 2 THEN GOTO (routine 0,2)
130 IF X = 16 THEN GOTO ~routine 1,0)
140 IF X = 17 THEN GOTO routine 1.1)
150 IF X = 18 THEN GOTO (routine 1,2)
160 IF X = 32 THEN GOTO toutine 2.0l
1.7' IF X = 33 THEN GOTO routine 2,1
\8t IF X = 34 THEN GOTO routine 2,2)

We find Type 1 to be the fastest of the three, as well as being the most com­
pact. Type 2 is easier to trace through. but .1t takes up the most room. Type
3 is a more compact version of Type 2, using the raw data byte instead. You can
LIST the Menu Maker program to get an id-ea of how these look in operation.

READING & WRITING THE BLOCK ITEM CODE NUMBER

There are times when you want a menu to sho., special notation about the status
of a block item. This Is usually gray-lng out an item or putting a check mark by
it. The 'string sllce' technique is used in order to read or write these code
numbers; examples follo8/. (See the Block Text sectlon, too.)

X = Bar item number Y = Block -entry number Nl and N2 = Your numbers

Reading a Code Number

Nl = VAL (LEFTS (AS (X,Y), 1»

Writing a Code Number

LEFTS (AS (X.,Y)., l~ =: STU (N2\

The Menu MakeT program illustrates the te~hn1que. Select Item 4, Entry 4 sev­
eral times to Ii2te Ole check IlUlTk eoming and golng.

RUNNING PROGRAMS

The preceding discussion deals with how to get to a 'Now What' point in your
menu. Once you're there. It's up to you to tell your IIgs what to do next.
Almost everi'one uses a menu to run programs, so all you need to do is have the
appropria te line of your menu issue the correct command to run the program of
your choice. Here's an example:

600 IF B = 1 AND M = 3 THEN PRINT CHRS(4);"'PREFIX IAPPLEWORKS"
PRINT CHRS(4); "RUN APLWORKS.SYSTEM"

This Une sets the prefix to a disk having Appleworks on It and runs the system
fUe. Any application program you can run by typing in commands from your key­
board can be run from your custom menu. All it takes Is a little understanding
of the requirements of your particular application and the issuing of 'run'
commands via Applesoft.

ERROR MESSAGES

There are 6 error messages generated by the MENU.BIN.3 tHe. After the message
Is printed on the screen, the computer 1s put in Applesoft immediate mode so you
can re-edit your program to ellminate the error.

MBIN.l Not Installed: The menu needs MENU.BIN.l to draw on the graphic screen.
ThIs message comes up at install time only.

Menu Arra~ Not Dimensioned: A menu requires that a menu array (default AS) be
dimenslone wIth a DIM statement prior to CALL-ing MI.

Menu Field Too Large: There are more than 15 block items specified.

Too Many Bar Selections: There are more than 16 bar items specified.

Bar Selections Too Wide: There are more than 39 characters specified in the
menu bar (includIng auto-generated spaces between bar items)

Block Item Missing Code Number: Just what It says! (See Block Text section.)

CHANGING TO ANOTHER MENU

You can have more than one menu available, but it reg.uires the changing of the
array variable, VR, during your program. Here's how It s done:

An Applesoft variable name is stored in memory as a 2-byte (2-POKE) value. For a
string array variable, the first byte is 'positive', while the second byte Is
'negative'. Positive and negative In this case mean either greater than or less
than 128. (0-127 are 'positl·ve'; 128-255 are 'negative'.)

If the variable name has only one character, the first byte is the positive
ASCII value tor that character, and the second byte is 128 (180 in hex).

Example: AI = 65,128 (141,180)

It the variable name has two characters, the first value Is positive, and the
second value is negative.

Example: AAI = 65,193 <141.SC1)

{{There are dozens of reference manuals that layout all 265 ASCII values--
consult the one you like best.1I

To have two menus available, all you do 1s dImensIon and fill In the different
menu arrays, named as you see fit. POKE in your first array variable name at VR
and VR+ I, CALL MI, and then go to the primary program loop. When you want to use
another menu, Just CALL IIC to shut down the current menu, POKE VR and VR+l with
the new menu array name values and CALL MI. Presto! You're off and running
with the new menu. The Menu Maker program shows this in action; select the
'Other Menu' option to see It.

PITFALLS. GOTCHAs. AND OTHER STUFF

What tollows Is an assortment of things you ought to know and think about as
you're creating and using custom menus. The list by no means covers all possl­
bili ties, so we urEe you to examine the programs on the IMENU .MKR disk. read up a
little on Ap.plesofi BASIC programming {remember, Apple included a brief Apple-
soft tutorial manual in the box with your IIgsL and experiment.

1. The MENU.BIN fUes requIre some amount or tree memory space to operate; tor
instance, calculating the menu layout Is no simple task. Try to keep your menu
program as short as you can--shoot for less than 5000 bytes. Use of the vari­
ables fUe technique helps cut down on program length.

2. Array variables are notorious memory hogs! If you're going to use the 'other
menu' technIque. keep the two arrays pretty small. If you don't, you'll get
disappointing results. usually program crasnes.

3. If you use a program on the IMENU.MKR disk as a starting point for a custom
menu, delete all the 'useless' program lines, such as the REM statements.

4. Remember that all three of the MENU.BIN fUes have to be loaded in the cor­
rect sequence for the graphics and menu tasks to be carried out. If your menu
program keeps crashing on startuPh

check this point. Also. ifloU use a separ­
ate Startup program (as we do wit the Menu Maker). you nee to restore the
variables from the GRAPH. VARS tUe. The Menu Demo program has about the most
compact way of getting started. restoring both graphics and menu variables from
a sIngle variables fUe. This method gives you the most room tor your Applesoft
menu routine, and we recommend you emulate it.

5. Start small and work up. The Menu Maker helps you get the 'menu' part of
your program going. but it doesn't write the part that takes action when you 've
made a menu choice. Start with one or two options and add to your program as
you become more confident.

6. The Menu Maker is one of several items in So What Software's 'Plain Brown
Wrapper' series; others include the Screen Thief (for capturing ~ Super Hi-Res
screen as a graphics file) and the ICONIX demo dIsk (which shows off much of the
graphics power of our program ICONIX for the Apple Ilgs). Ask for more info.

7. Speaking of ICONIX, if you'd like to add even more snap to your menus. you'll
want to aad ICON IX to your IIgs software library. The Menu Maker programs use a
few of the many Applesoft BASIC commands that ICONIX provides--there's mUCh.
much more. ICONIX. SONIX, and DISC COMMANDER are our formal Apple IIgs programs
(Ie. with extensIve features and full documentation ... and V~iFIY superior to
'plain brown wraJ:?per' software such as the Menu Maker). ey give the IIgs
owner full control of his/her machine's outstanding graphics, sound. and file
handling power. Take a look at the color info sheet enclosed for details on
these three programs.

8. We're always interested in your comments and suggestions. Feel free to write
us at 10221 Slater Ave., Suite 103. Fountain Valley. CA 92708.

