
GNO Kernel Reference
Manual

By Jawaid Bazyar
Edited by Andrew Roughan

Table of Contents

Chapter 1
Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

Appendix B

Glossary
Index

Introducing the GNO Kernel.. 3
GNO/ME Compliance .. 5
Detecting the GNO Environment. 5
Terminal 110 ... 5
Stack Usage ... 6
Disk 110 .. 6
Non-Compliant Applications .. 7
Modifications to GS/OS .. 9
Mutual Exclusion in GS/OS and ToolBox calls 9
Pathnames and Prefixes .. 9
Named prefixes ... 10
Open File Tracking ... 1 0
Refnums and file descriptors .. 11
GNO/ME Character Devices ... 11
Res tartabili ty ... 12
Miscellaneous ... 12
Modifications to the ToolBox 13
TextToo1s Replacement .. 13
SysFailMgr ($1503) .. 15
The Resource Manager ... 15
The Control Panel.. ... 16
QDStartup($0204) .. 16
Process Management ... ! 7
Process Table .. 18
Task Switching .. 19
Interprocess Communication 21
Semaphores .. 21
Signals ... 22
Pipes .. 24
Messages ... 25
Ports .. 25
Pseudo-Terminals (PTYs) ... 26
Deadlock ... 28
Making System Calls .. 2 9
System Call Interface ... 29
System Call Error Codes ... 30
System Panics ... 31
Miscellaneous Programming Issues 32
Option Arguments .. 32
Pathname Expansion ... 32
.. 33
.. 35

Chapter 1 Introducing the GNO Kernel

Chapter 1
Introducing the GNO Kernel

The GNO kernel is the heart of the GNO Multitasking Environment (GNO/ME). The GNO kernel
provides a layer of communication between the shell (and shell-based programs) and the operating system,
GS/OS. The kernel handles such things as multitasking, background processes, foreground processes and
many other features that were not previously available on the Apple IIGS. It is these features which make
GNO/ME very powerful.

This reference manual is highly technical in nature and is provided to help programmers develop utilities
for the GNO Multitasking Environment. The beginner has no need to read this manual and is certainly not
expected to understand its contents. However, Chapter 5 Process Management and Chapter 6
Interprocess Communication provide a good background discussion for anyone who is interested in
the internal workings of the kernel.

3

Introducing the GNO Kernel Chapter 1

(We're aorry. bat you did pay 1 cent extra for this blank page)

4

Chapter 2
GNO/ME Compliance

For a program to work effectively under GNO/ME, certain rules must be followed. Most of these rules
boil down to one underlying concept - never directly access features of the machine. Always use
GS/OS, the ToolBox, or GNO/ME to accomplish what you need. We have taken great care to provide the
sorts of services you might need, such as checking for input without having to wait for it. GNO/ME
compliance isn't just a matter of trying to make applications work well under the environment; it ensures
that those applications stay compatible, no matter what changes the system goes through. Below are
summarized the points you must consider when you're writing a GNO/ME compliant application.

Detecting the GNO Environment

If your application requires the GNO Kernel to be active (if it makes any kernel calls), you can make sure
of this by making a kernStatus call at the beginning of your program. The call will return no error if the
kernel is active, or it will return an error code of $0001 (Tool locator- tool not found), in which case the
value returned will be invalid. The call actually returns a 1 if no error occurs, but the value returned will be
indeterminate if the kernel is not active, so you should only check for an error (the function toolerror() or
the variable _tooiErr inC, the value in the A register in assembly).

You can also determine the current version of the GNO Kernel by making the kern Version call. The
format of the version number returned is the same as the standard ToolBox calls. For example a return
value of $0201 indicates a version of 2.1.

kernStatus and kern Version are defined in the <gno/ gno. h> header file.

Terminal 1/0

The Apple II has always been lacking in standardized methods for reading keyboard input and controlling
the text screen. This problem was compounded when Apple stopped supporting the TextTools in favor of
the GS/OS console driver. The console driver has a number of problems that prevent it from being a good
solution under GNO/ME. There is high overhead involved in using it. It is generally accessed like a
regular file, which means any 1/0 on it must filter through several layers before being handled. Even
though in System 6.0.1 there is a provision for patching the low-level routines the special high-level user
input features of the driver cannot be used over a modem or in a desktop program. And GS/OS must be
called to access it, which means that while a console driver access is occurring, no other processes can
execute. See Chapter 3 Mutual Exclusion in GS/OS and ToolBox calls.

GNO/ME ignores the GS/OS '.CONSOLE • driver and replaces the TextTools with a high-performance,
very flexible generic terminal control system. GNO/ME directly supports the console (keyboard and
screen), as well as the serial ports, as terminals. In order for a user program to take advantage of these
features and to be GNO/ME compliant, you must do terminal 110 only through the TextTools, or through
stdin, stdout, and stderr (refNums 1,2, and 3 initially) via GS/OS. By its very nature TextTools is slow,
so we recommend using them only for small and simple tasks. Calls to the GS/OS console driver will not
crash the system, but they will make other processes stop until the call is completed.

5

GNO/ME Compliance Chapter 2

You must not get input directly from the keyboard latch (memory location $EOCOOO), nor may you write
directly to the screen memory. GNO/ME's terminal 1/0 system has been designed so you don't have to do
either of these things. If you need to check for keyboard input without stopping your application, you can
make the appropriate ioctl(2) call to do what you need.

In the future, GNO/ME may provide a GNO/ME-friendly version of the GS/OS .CONSOLE driver.

Stack Usage

Stack space is at a premium on the Apple IIGS. Process stacks can only be located in Bank 0- a total of
64K. This theoretical limit doesn't apply, however, as GS/OS and other bits of system software reserve a
large chunk of this without any way to reclaim it. There is approximately 48K of usable stack space. This
space also has to be shared with direct page space for Tools and certain types of device drivers, however.
For a program to be GNO compliant, stack usage analysis must be done and acted upon. Use of the stack
should be minimized so that many processes can coexist peacefully. From experience we've found that lK
usually suffices for well-written C applications, and at a maximum 4K can be allocated.

Assembly language programs tend to be very efficient when it comes to use of the stack. The 4K provided
by default to applications is usually more than enough for assembly language programs. C programs can
use up tremendous amounts of stack space, especially if recursion is employed or string manipulation is
done without concern for stack usage; however, even assembly programs can be written poorly and use a
lot of stack space. Below are some hints to keep stack usage at a minimum.

•

•

•

A void use of large local arrays and character strings. Instead, dynamically allocate large
structures such as GS/OS strings with malloc() or the Memory Manager. Alternatively, you can
designate such items as 'static', which causes the C compiler to allocate the space for the
variable from main memory.

Try not to use recursion unless absolutely necessary. All recursive functions can be rewritten
using standard loops and creative programming. This is a good general programming rule
because your program will run faster because setting up stack frames is expensive in terms of
time and memory.

ORCNC 1.3 (and older) generates 8K of stack by default, in case the desktop is started up .
Since GNO/ME compliant programs generally will not be desktop-based, make sure you judge
how much stack your program will require and use the #pragma stacksize directive to limit
how much stack space ORCNC tries to allocate for your program. Also, since ORCNC
programs don't use the stack given them by GNO/ME and GS/OS, when you link your program
include a small (256 bytes) stack segment. See the utilities sources for examples of this.
ORCNC 2.0 allocates stack via the GS/OS supported method, so ORCNC 2.0 programs use
exactly the amount of stack specified by #pragma stacksize.

Disk 110

Since the Apple llgs doesn't have coprocessors to manage disk access and the serial ports, either of these
requires the complete attention of the main 65816 processor. This can wreak havoc in an environment
with slow disks or high-speed serial links, as accessing disks usually results in turning off interrupts for
the duration of the access. This situation is lessened considerably with a DMA disk controller, such as the
Apple High Speed SCSI or CV Technologies RamFAST. But this isn't as bad as it sounds; the IBM PC
and Apple Macintosh also suffer from this problem, and the solution is robust programming. Make sure

6

Chapter2 GNO/ME Compliance

your communications protocol can handle errors where expected data doesn't arrive quite on time, or in
full. The best solution would be an add-on card with serial ports and an on-board processor to make sure
all serial data was received whether or not the main processor was busy (this is a hint to some enterprising
hardware hacker, by the way).

Yet another concern for GNO/ME applications is file sharing. GS/OS provides support for file sharing,
but it is up to the application author to use it via the requestAccess field in the OpenGS call. GS/OS only
allows file sharing if all current references to a file (other instances of the file being opened) are read-only.
GNO/ME authors should use read-only access as much as possible. For example, an editor doesn't need
write permission when it's initially reading in a file. Note that the fopen() library routine in ORCNC 1.2
does NOT support read-only mode (even if you open the file with a 'r' specificier), but it does in ORCNC
1.3 and later.

Non-Compliant Applications

GNO/ME wasn't really designed with the intention of making EVERY program you currently run work
under GNO/ME; that task would have been impossible. Our main goal was to provide a UNIX-based
multitasking environment; that we have done. We made sure as many existing applications as we had time
to track and debug worked with GNO/ME. The current list of compatible and non-compatible applications
can be found in the file "RELEASE.NOTES" on the GNO/ME disk.

However, due to the sheer number of applications and authors, there are some programs that just plain
don't work; and some that mostly work, except for annoyances such as two cursors appearing, or
keyboard characters getting 'lost'. The problem here is that some programs use their own text drivers
(since TextTools output was very slow at one time); since GNO/ME doesn't know about these custom
drivers, it goes on buffering keyboard characters and displaying the cursor. There is a way, however, to
tell GNO/ME about these programs that break GNO/ME's rules.

We've defined an auxType for Sl6 and EXE files, to allow distinction between programs that are
GNO/ME compliant and those that are not. Setting the auxType of an application to $DCOO disables the
interrupt driven keyboard buffering and turns off the GNO/ME cursor. Desktop programs use the
GNO/ME keyboard I/0 via the Event Manager, and thus should not have their auxType changed.

You can change a program's auxType with the following shell command:

chtyp -a \$DC00 filename

where filename is the name of the application. As more programmers become aware of GNO/ME and
work to make their software compatible with it, this will become less of a problem, but for older
applications that are unlikely to ever change (like the America OnLine software) $DCOO is a reasonable
approach.

7

GNOJME Compliance Chapter 2

8

Chapter 3
Modifications to GS/OS

The GNO system modifies the behavior of a number of GS/OS calls in order to allow many programs to
execute concurrently, and to effect new features. The changes are done in such a way that old software can
take advantage of these new features without modification. Following is a complete description of all the
changes made. Each section has details in text, followed by a list of the specific GS/OS or ToolBox calls
affected.

Mutual Exclusion in GS/OS and ToolBox calls

The Apple IIGS was not designed as a multitasking machine, and GS/OS and the Toolbox reflect this in
their design. The most notable problem with making multitasking work on the Apple Ilgs is the use of
global (common to all processes) information, such as prefixes and direct page space for tool sets which
includes information like SANE results, QuickDraw drawing information, etc. In most cases we've
corrected these deficiencies by keeping track of such information on a per-process basis, that is, each
process has its own copy of the information and changes to it do not affect any other process' information.

However, there were many other situations where this could not be done. Therefore, there is a limit of one
process at a time inside either GS/OS or the ToolBox. GNO/ME automatically enforces this restriction
whenever a tool or GS/OS call is made.

The method and details of making GS/OS calls does not change! The calls listed below have been
expanded transparently. There are no new parameters and no new parameter values. In all cases, the
corresponding ProDOS-16 interface calls are also supported, except ExpandPath and other calls which do
not exist in ProDOS-16.

Pathnames and Prefixes

Normally under GS/OS there are 32 prefixes, and these are all under control of the current application.
GNO/ME extends this concept to provide each process with it's own copies of all prefixes. When a
process modifies one of these prefixes via the GS/OS SetPrefix call, it modifies only it's own copy of that
prefix- the same numbered prefixes of any other processes are not modified.

Pathname processing has been expanded in GNO/ME. There are now two new special pathname operators
that are accepted by any GS/OS call that takes a pathname parameter:

current working directory
parent directory

For example, presume that the current working directory (prefix 0) is I foo/bar /moe. II. I ls 11

refers to the file II I foo/bar /moe/ ls 11
, and since a pathname was specified, this overrides the shell's

hash table. 11
•• /ls 11 refers to 11 /foo/bar/ls 11

• The operators can be combined, also, as in
" .. 1 .. /ls" (11 /foo/18 11

), II. 1 .. 1. /ls" ("/foo/bar/ls"). As you can see, the'.' operator is
simply removed and has no effect other than to force a full expansion of the pathname.

9

Modifications to GS/OS Chapter 3

Shorthand device names (.d2, .d5, etc) as in ORCA are available only under System Software 6.0 and
later. The common pathname operator'-' (meaning the home directory) is handled by the shell; if the
character appears in a GS/OS call it is not treated specially.

$2004 ChangePath
$200B ClearBackupBit
$2001 Create
$2002 Destroy
$200E ExpandPath

Named prefixes

$2006 GetFileinfo
$200A GetPrefix
$2010 Open
$2005 SetFileinfo
$2009 SetPrefix

In order to allow easy installation and configuration of third-party software into all systems, GNO/ME
provides a feature called named prefixes. These prefixes are defmed in the /etc/namespace file. Basically,
since all UNIX systems have /bin, /usr, /etc, and other similar standard partitions, but Apple llgs systems
generally do not have these partitions, named prefixes provide a way to simulate the UNIX directories
without forcing GNO/ME users to rename their partitions (an arduous and problem-filled task).

Named prefixes are handled by the GNO kernel in the same GS/OS calls described in Chapter 3
Pathnames and Prefixes.

Open File Tracking

Previously, a major problem with the way GS/OS handled open files was that unrelated programs could
affect each other's open files. For example, a Desk Accessory (or a background program of any sort)
could open a fJ.le and have it closed without it's knowledge by the main application program. This
presented all kinds of problems for desk accessory authors. Apple presented a partial solution with System
Software 5.0.4, but it wasn't enough for a true multitasking environment. G~O/ME keeps track of exactly
which process opened which file. It also discontinues the concept of a global File Level, opting instead
for a per-process File Level. Any operations a process performs on a file (opening, closing, etc.) do not
affect any other process' files.

In addition to this behavior, when a process terminates in any manner all files that it currently has opened
will be closed automatically. This prevents problems of the sort where a program under development
terminates abnormally, often leaving files open and formerly necessitating a reboot.

The Flush GS/OS call is not modified in this manner as its effects are basically harmless.
The Close call accepts a refNum parameter of 0 (zero), to close all open files. This works the same way
under GNO/ME, except of course that only the files of the process calling Close are in fact closed.

1 0

$2010 Open
$2014 Close
$201B GetLevel
$201A SetLevel

Chapter3 Modifications to GS/OS

Quitting applications

The QUIT and QuitGS calls have been modified to support the GNO/ME process scheme. Quitting to
another application, whether by specifying a pathname or by popping the return stack, is accomplished
with execve(2). When there are no entries on the return stack, the process is simply killed. See the
GS/OS Reference Manual for more details on how the Quit stack works.

Refnums and file descriptors

GS/OS tells you about open files in the form of refNums (reference numbers). UNIX's term for the same
concept is 'file descriptor'. From a user's or programmer's view of GNO/ME, these terms are identical
and will be used as such; which one depends on what seems most appropriate in context.

For each process, GNO/ME keeps track of which files that particular process has opened. No other
process can directly access a file that another process opened (unless programmed explicitly), because it
doesn't have access to any file descriptors other than its own. This is different from GS/OS in that GS/OS
allows access to a file even if a program guessed the refNum, either deliberately or accidentally. This is
one of the aspects of process protection in GNO/ME.

All of the various 1/0 mechanisms that GNO/ME supports (files, pipes, and TTYs) are handled with the
same GS/OS calls you are familiar with. When you create a pipe, for example, you are returned file
descriptors which, because of synonymity with refNums, you can use in GS/OS calls. Not all GS/OS
calls that deal with files are applicable to a particular file descriptor; these are detailed in the sections on
pipes and TTY s.

GNO/ME sets no limit on the number of files a process may have open at one time. (Most UNIX's have a
set limit at 32).

GNO/ME Character Devices

GNO/ME supports a new range of character device drivers. These drivers are not installed like normal
GS/OS drivers, but they are accessed the same way. There are the following built-in drivers:

. TTYCO This is the GNO/ME console driver. The driver supports the TextTools Pascal control codes,
plus a few GNO/ME-specific ones. These are documented in Chapter 4 TextTools
Replacement. This driver is highly optimized both through the GS/OS and TextTools
interfaces .

. TTYA[0-9,A-F]

.PTYQ[0-9,A-F]
Pseudo-terminal devices; PTYs are used for interprocess communication and in network
activities .

. NULL This driver is a bit bucket. Any data written to it is ignored, and any attempt to read from it
results in an end-of-file error ($4C).

Just as with GS/OS devices, these GNO/ME drivers are accessed with the same Open, Read, Write, and
Close calls that are used on files. Unlike GS/OS character devices, the characteristics of GNO/ME drivers
are controlled through the ioctl() system call. The GS/OS Device calls (like Dlnfo, DStatus) are not
applicable to GNO/ME drivers. See the ioct1(2) and tty(4) manpage for details.

1 1

Modifications to GS/OS Chapter 3

Some GS/OS calls will return an error when given a refNum referring to a GNO/ME character driver or
pipe because the concepts simply do not apply. The error returned will be $58 (Not a Block Device), and
the calls are as follows:

$2016 SetMark
$2018 SetEOF
$2015 Flush

$2017 GetMark
$2019 GetEOF
$201C GetDirEntry

GNO/ME loaded drivers (generally for serial communications, but other uses are possible) are configured
in the /etc/tty. config file. Each line in /etc/tty. config describes one driver. The format of
each line is:

filename slot devname

devname is the name of the device as it will be accessed (e.g .. ttya). slot is the slot in the device table
where the device will be accessed from; it may refer to one of the physical expansion slots, as TextTools
will use the specified driver when redirecting output to a slot. The modem and printer port drivers are
configured for slots 2 and 1, respectively.

Pseudo-terminals are pre-configured into the kernel. PTY s are discussed further in Chapter 6 Psuedo
terminals PTY s.

Since .ttyco and the pseudo-terminals are pre-configured in the GNO kernel, entries for these devices do
notappearin /etc/tty.config.

Restartability

GS/OS supports the concept of program 'restartability'. This allows programs which are written in a
certain way to remain in memory in a purgeable state so that if they are invoked again, and their memory
has not been purged, they can be restarted without any disk access. This greatly increases the speed with
which restartable programs can be executed.

The ORCA environment specifies whether or not a program is restartable via a flag character in the
SYSCMND file. The GS/OS standard method, however, is to set the appropriate flags bit in the GS/OS
Quit call. This is the method that GNO/ME supports. Provided with the GNO/ME standard library is a
routine rexit(3). rexit(3) only works with ORCNC 2.0.rexit(3) works just like the normal C exit() call
but it sets the restart flag when calling QuitGS.

The standard ORCNC 1.3 libraries are not restartable, but the ORCNC 2.0 libraries are.

Miscellaneous

The following miscellaneous GS/OS calls have also been modified for GNO/ME.

$2027 GetNarne

$2003 OSShutdown

12

Returns the name on disk of the process. This only returns valid
information after an execve(2).
This call has been modified to kill all processes before performing the actual
shutdown operation.

Chapter 4
Modifications to the ToolBox

Several changes have been made to the ToolBox, the most major of which is the replacement of the entire
TextTools tool set. The TextTools were replaced for a number of reasons- better control over text I/0,
increased speed, and emulation of ORCA's redirection system with as little overhead as possible. Other
changes were made to modify the behavior of some tool calls to be more consistent with the idea of a
multitasking environment.

TextTools Replacement

The changes to the TextTools have turned it into a much more powerful general 110 manager. The
TextTools now intrinsically handle pipes and redirection, and you can install custom drivers for TextTools
to use. Also, the TextTools have had their old slot-dependence removed; the parameter that used to refer
to 'slot' in the original texttools calls now refers to a driver number. A summary of driver numbers
(including those that come pre-installed into GNO) are as follows:

0 Null device driver
1 serial driver (for printer port compatibility)
2 serial driver (for modem port compatibility)
3 console driver (Pascal-compatible 80-column text screen)
4-5 User installed

See Chapter 3 GNO/ME Character Devices, for information on configuring these drivers.

There are also new device types in the TextTools; the complete list of supported device types and what
their slotNum's (from SetlnputDevice, SetOutputDevice, etc) mean is as follows:

0 Used to be BASIC text drivers. These are no longer supported under GNO/ME, and setting 110 to
a basic driver actually selects a Pascal driver.

1 Pascal text driver. This is one of the drivers specified in /etc/ttys or built-in to GNO/ME.
slotNum: driver number as listed above

2 RAM-based Driver (documented in ToolBox Reference Volume 2)
slotNum: pointer to the RAM-based driver's jump table

3 file redirection
slotNum: refNum (file descriptor) of the file to access through TextTools

The new console driver supports all the features of the old 80-column Pascal firmware, and adds a few
extensions, with one exception - the codes that switched between 40 and 80 columns modes are not
supported. It is not compatible with the GS/OS '.console' driver. The control codes supported are as
follows:

Hex
01
02
03
05
06

ASCII
CTRL-A
CTRL-B
CTRL-C
CTRL-E
CTRL-F

Action
set cursor to flashing block
set cursor to flashing underscore
Begin "Set Text Window" sequence
Cursor on
Cursor off

1 3

Modifications to the ToolBox

07
08
09
OA
OB
oc
OD
OE
OF
11
12
15
16
17
18
19
lA
lB
lC
lD
lE
IF

CTRL-G
CTRL-H
CTRL-1
CTRL-J
CTRL-K
CTRL-L
CTRL-M
CTRL-N
CTRL-0
CTRL-Q
CTRL-R
CTRL-U
CTRL-V
CTRL-W
CTRL-X
CTRL-Y
CTRL-Z
CTRL-[
CTRL-\
CTRL-]
CTRL-1\
CTRL-_

Perform FlexBeep
Move left one character
Tab
Move down a line
Clear to EOP (end of screen)
Clear screen, home cursor
Move cursor to left edge of line
Normal text
Inverse text
Insert a blank line at the current cursor position
Delete the line at the current cursor position.
Move cursor right one character
Scroll display down one line
Scroll display up one line
Normal text, mousetext off
Home cursor
Clear entire line
Mouse Text on
Move cursor one character to the right
Clear to end of line
GotoXY
Move up one line

Chapter 4

(Note: the Apple Ilgs Firmware Reference incorrectly has codes 05 and 06 reversed. The codes listed here
are correct for both GNO/ME and the Apple IIgs 80-column firmware)

FlexBeep is a custom beep routine that doesn't tum off interrupts for the duration of the noise as does the
default Apple IIgs beep. This means that the beep could sound funny from time to time, but it allows other
processes to keep running. We also added two control codes to control what kind of cursor is used. There
are two types available as in most text-based software; they are underscore for 'insert' mode, and block for
'overstrike'. You may, of course, use whichever cursor you like. For example, a communications
program won't have need of insert mode, so it can leave the choice up to the user.

The Set Text Window sequence (begun by a $03 code) works as follows:

CTRL-C '[' LEFT RIGHT TOP BOTTOM

CTRL-C is of course hex $03, and'[' is the open bracket character ($5B). TOP, BOTTOM, LEFT, and
RIGHT are single-byte ASCII values that represent the margin settings. Values for TOP and BOTTOM
range from 0 to 23; LEFT and RIGHT range from 0 to 79. TOP must be numerically less than BOTTOM;
LEFT must be less than RIGHT. Any impossible settings are ignored, and defaults are used instead. The
extra '[' in the sequence helps prevent the screen from becoming confused in the event that random data is
printed to the screen.

After a successful Set Text Window sequence, only the portion of the screen inside the 'window' will be
accessible, and only the window will scroll; any text outside the window is not affected.

The cursor blinks at a rate defined by the Control Panel/Options/Cursor Flash setting. Far left is no
blinking (solid), and far right is extremely fast blinking.

ReadLine ($240C) now sports a complete line editor unlike the old TextTools version. Following is a
list of the editor commands.

14

Chapter4

EOL
LEFT-ARROW
RIGHT-ARROW
DELETE
CTRL-D
OA-D
OA-E

Modifications to the ToolBox

Terminates input (EOL is a parameter to the _ReadLine call)
Move cursor to the left
Move cursor to right. Won't go past rightmost character.
Delete the character to the left of the cursor.
Delete character under the cursor.
Delete character under the cursor.
Toggles between overwrite and insert mode.

ReadChar ($220C) has also been changed. The character returned may now contain the key modification
flags ($C025) in the upper byte and the character typed in the lower byte. This is still compatible with the
old TextTools ReadChar. To get the key Mod flags, call SetinGlobals ($090C) and set the upper byte
of the AND mask to $FF. Typical parameters for SetinGlobals to get this information are: ANDmask
= $FF7F, ORmask = $0000.

The default 110 masks have also been changed. They are now ANDmask = $00FF, ORmask = $0000.
They are set this way to extend the range of data that can be sent through TextTools. GNO/ME Character
drivers do not, like the previous TextTools driver, require the hi-bit to be set.

The new TextTools are completely reentrant. This means that any number of processes may be executing
TextTools calls at the same time, increasing system performance somewhat. The TextTools are also the
only toolset which is not mutexed.

The GNO/ME console driver also supports flow-control in the form of Control-S and Control-Q. Control
S is used to stop screen output, and Control-Q is used to resume screen output.

SysFaiiMgr ($1503)

The MiscTool call SysFailMgr has been modified so that a process calling it is simply killed, instead of
causing system operation to stop. This was done because many programs use SysFailMgr when a simple
error message would have sufficed. There are, however, some tool and GS/OS errors which are truly
system failure messages, and these do cause system operation to stop. These errors are as follows:

$0305
$0308
$0681
$0682
$08FF

Damaged heartbeat queue detected
Damaged heartbeat queue detected
Event queue damaged
Queue handle damaged
Unclaimed sound interrupt

What the system does after displaying the message is the same as for a system panic.

The Resource Manager

The Resource Manager has been modified in some subtle ways. First, GNO/ME makes sure that the
CurResourceApp value is always correct before a process makes a Resource Manager call. Second, all
open resource files are the property of the Kernel. When a GetOpenFileRefnum call is made, a new
refnum is dup()'d to allow the process to access the file. Having the Kernel control resource files also
allows all processes to share SYS.RESOURCES without requiring each process to explicitly open it.

1 5

Modifications to the ToolBox Chapter 4

The Event Manager

GNO/ME starts up the Event Manager so it is always available to the kernel and shell utilities. Changes
were made so that the Event Manager obtains keystrokes from the GNO/ME console driver (.ttyco). This
allows UNIX-style utilities and desktop applications to share the keyboard in a cooperative manner. This
also makes it possible to suspend desktop applications; see Chapter 7, Suspend NDA.

EMStartUp sets the GNO console driver to RAW mode via an ioctl() call, to allow the Event Manager to
get single keystrokes at a time, and to prevent users from being able to kill the desktop application with "C
or other interrupt characters. The four "GetEvent" routines, GetNextEvent, GetOSEvent, EventA vail, and
OSEventA vail now poll the console for input characters instead of using an interrupt handler.

The Control Panel

In most cases, the CDA menu is executed as an interrupt handler. Since the Apple llgs interrupt handler
firmware isn't reentrant, task switching is not allowed to occur while the control panel is active. This
basically means that all processes grind to a halt. In many ways, however, this is not undesirable. It
definitely eases debugging, since a static system is much easier to deal with than a dynamic system. Also,
CD As assume they have full control of the text screen; multitasking CD As would confuse and be confused
in terms of output.

During the execution of the Control Panel, the original non-GNO/ME TextTools tool is reinstalled to
prevent compatibility problems. Another step, taken to maintain user sanity, makes CD As run under the
kernel's process ID.

All the changes were made to two tool calls: SaveAll($0B05) and RestAll($0C05).

QDStartup($0204)

The QDStartup call has been modified to signal an error and terminate any process that tries to make the
call when it's controlling terminal is not the Apple llgs console. This prevents a user on a remote terminal
from bringing up a desktop application on the console, an operation he could not escape from and one that
would greatly annoy the user at the console.

Another change ensures that an attempt to execute two graphics-based applications concurrently will fail;
the second process that tries to call QDStartUp is killed and a diagnostic message is displayed on the
screen.

1 6

Chapter 5
Process Management

Before discussing process management using Kernel calls, it would be wise to defme just exactly what we
refer to when we say process. A process is generally considered to be a program in execution. "A
program is a passive entity, while a process is an active entity." (Operating Systems Concepts p.73, 1

Silberschatz and Peterson, Addison-Wesley, 1989). The concept of process includes the information a 1

computer needs to execute a program (such as the program counter, register values, etc).

In order to execute multiple processes, the operating system (GNO/ME and GS/OS in this case) has to
make decisions about which process to run and when. GNO/ME supports what is termed preemptive
multitasking, which means that processes are interrupted after a certain amount of time (their time slice), at
which point another process is allowed to run. The changing of machine registers to make the processor
execute a different process is called a context switch, and the information the operating system needs to do
this is called its context. The GNO kernel maintains a list of all active processes, and assigns time slices to
each process according to their order in the list. When the kernel has run through all the processes, it
starts again at the beginning of the list. This is called round-robin scheduling. Under certain
circumstances, a process can actually execute longer than its allotted time slice because task switches are
not allowed during a GS/OS or ToolBox call. In these cases, as soon as the system call is finished the
process is interrupted.

Processes can give up the rest of their time slice voluntarily (but not necessarily explicitly) in a number of
ways, terminal input being the most common. In this case, the rest of the time slice is allocated to the next
process in line (to help smooth out scheduling). A process waiting on some event to happen is termed
blocked. There are many ways this can happen, and each will be mentioned in its place.

An important item to remember is the process !D. This is a number which uniquely identifies a process.
The ID is assigned when the process is created, and is made available for reassignment when the process
terminates. A great many system calls require process IDs as input. Do not confuse this with a useriD,
which is a system for keeping track of memory allocation by various parts of the system, and is handled
(pardon the pun) by the Memory Manager tool set. Also, do not confuse Memory Manager useriD's with
Unix user ID's- numbers which are assigned to the various human users of a multiuser machine.

There are two methods for creating new processes: the system call fork() and the library routine exec()
(specifics for calling these functions and others is in Appendix A Making System Calls). fork starts
up a process which begins execution at an address you specify. exec starts up a process by loading an
executable file (Sl6 or EXE). fork is used mainly for use inside a specific application, such as running
shell built-ins in the background, or setting up independent entities inside a program. Forked processes
have some limitations, due to the hardware design of the Apple Ilgs. The parent process (the process
which called fork) must still exist when the children die, either via kill() or by simply exiting. This is
because the forked children share the same memory space as the parent; the memory the children execute
from is tagged with the parent's useriD. If the parent terminated before the children, the children's code
would be deallocated and likely overwritten. A second caveat with fork is the difference between it's
UNIX counterpart. UNIX fork begins executing the child at a point directly after the call to fork. This
cannot be accomplished on the Apple Ilgs because virtual memory is required for such an operation; thus
the need to specify a fork child as a C function. Note that an appropriately written assembly language
program need not necessarily have these restrictions. When a process is forked, the child process is given
it's own direct page and stack space under a newly allocated useriD, so that when the child terminates this
memory is automatically freed.

1 7

Process Management Chapter 5

exec is used when the process you wish to start is a GS/OS load file (file type S16 and EXE). exec
follows the procedure outlined in the GS/OS Reference Manual for executing a program, and sets up the
new program's environment as it expects. After exec has loaded the program and set up it's environment,
the new process is started and exec returns immediately.

Both fork and exec return the process ID of the child. The parent may use this process ID to send
signals to the child, or simply wait for the child to exit with the wait system call; indeed, this is the most
common use. Whenever a child process terminates or is stopped (See Chapter 6 Signals), the kernel
creates a packet of information which is then made available to the process' parent. If the parent is
currently inside a wait call, the call returns with the information. If the parent is off doing something else,
the kernel sends the parent process a SIGCHLD signal. The default is to ignore SIGCHLD, but a common
technique is to install a handler for SIGCHLD, and to make a wait call inside the handler to retrieve the
relevant information.

exec is actually implemented as two other system calls: fork, and one called execve. execve loads a
program from an executable file, and begins executing it. The current process' memory is deallocated.
The shell uses a fork()/execve() pair explicitly, so it can set up redirection and handle job control.

Process Table

Information about processes is maintained in the process table, which contains one entry for each possible
process (NPROC, defined in the C header file <gno I conf . h>). There is other per-process information
spread about the kernel, but those are usually used for maintaining compatibility with older software, and
thus are not described here. Please note that the data in this section is informational only (e.g. for
programs like 'ps'). Do not attempt to modify kernel data structures or the GNO Kernel will likely
respond with a resounding crash. Only 'interesting' fields are documented.

Copies of process entries should be obtained by using the Kernel Virtual Memory (KVM) routines
(kvm_open, etc.) These are documented in the electronic manual pages.

processState - processes have a state associate with them. The state of the process is a description of
what the process is doing. The possible process states (as listed in <gno/proc. h> and described here)
are:

ttyiD

ticks

1 8

RUNNING the process is currently in execution.
READY the process is not currently executing, but is ready to be executed as soon as it is

assigned a time slice.
BLOCKED the process is waiting for a slow 110 operation to complete (for instance, a read

from a TIT).
NEW the process has been created, but has not executed yet.
SUSPENDED the process was stopped with SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU.
WAITING the process is waiting on a semaphore 'signal' operation. Programs waiting for

data from a pipe have this state.
WAITSIGCH the process is waiting to receive a SIGCHLD signal.
PAUSED the process is waiting for any signal.

the device number of the controlling TTY for this process. This is not a GS/OS refnum; rather,
it is an index into the kernel's internal character device table. See below for a mapping of
tty IDs to devices.
the number of full ticks this process has executed. If a process gives up it's time slice due to
an 110 operation, this value is not incremented. A tick is 1160 second.

ChapterS Process Management

alarm Count
if an alarm(2) request was made, this is the number of seconds remaining until the process is
sent SIGALRM.

openFiles this is a structure which stores information about the files a process has open. See
struct ftable and struct fdentry in <gno/proc. h>.

irq_A, irq_X, irq_Y, irq_S, irq_D, irq_B, irq_P, irq_state, irq_PC, irq_K
Context information for the process. These fields are the values of the 65816 registers at the
last context switch. They only truly represent the machine state of the process if the process is
not RUNNING.

args a NUL-terminated (C-style) string that contains the command line the process was ivoked with.
This string begins with 'BYTEWRKS', the shell identifier.

For more details and an example of how to investigate process information, look at the source code for
'GNO Snooper CDA' (GNOSnooper.c).

The value in ttyiD can be interpreted as follows:
0- .null
1- .ttya
2- .ttyb
3- .ttyco
6- .ptyqO ptyO master side
7 - .ttyqO ptyO slave side

Other values may be appropriate depending on the tty.config file. Namely, 1 and 2 (by default the modem
and printer port drivers), and 4 and 5 (unassigned by default) may be assigned to different devices.

Task Switching

As mentioned earlier, user code can often unwittingly initiate a context switch by reading from the console
(and other miscellaneous things). There are a few situations where this can cause a problem, namely
inside interrupt handlers. While the kernel makes an attempt to prevent this, it cannot predict every
conceivable problem. The kernel attempts to detect and prevent context switches inside interrupt handlers
by checking for the following situations.

• Is the system busy flag non-zero? (the busy flag is located at address $E100FF).
• Is the "No-Compact" flag set? (Located at $E100CB)
• Does the stack pointer point to $0100-$01 FF?
• Is the interrupt bit in the processor status register set?

If any of these conditions are met, a context switch will not take place. This can cause problems in certain
circumstances. The basic rule is to avoid making Kernel calls that might cause a context switch or change
in process state from inside an interrupt handler. This includes the following:

reading from the console or acessing a pipe
wait(), pause(), sigpause(), kill(), fork(), execve(), receive()

Calls such as send(), however, are okay to use from an interrupt handler, and in fact are very useful in
such situations.

19

Process Management Chapter 5

Job Control

Job control is a feature of the kernel that helps processes orderly share a terminal. It prevents such
quandaries as "What happens when two processes try to read from the terminal at the same time?''.

Job control works by assigning related processes to a process group. For example, all of the processes in
a pipeline belong to one process group. Terminal device drivers also belong to process groups, and when
the process group of a job does not match that of its controlling terminal the job is said to be in the
background. Background jobs have access to their controlling terminal restricted in certain ways.

• If a background job attempts to read from the terminal, the kernel suspends the process by
sending the SIGTTIN signal.

• The interrupt signals SIGTSTP and SIGINT, generated by "Z and "C respectively, are
sent only to the foregound job. This allows backgrounded jobs to proceed without
interruption.

• Certain ioctl() calls cannot be made by a background job; the result is a s IGTTIN signal.

Job control is accessed by software through the tcnewpgrp, tctpgrp, and settpgrp system calls. See
the JOB CONTROL(2) and ioctl(2) manpages.

20

Chapter 6
Interprocess Communication

"Oh, give me a home where the semaphores roam, and the pipes are not deadlocked all day ... "
Unknown western hero

The term lnterprocess Communication (!PC) covers a large range of operating system features. Any time a
process needs to send information to another process some form of IPC is used. The GNO Kernel
provides several basic types: semaphores, signals, pipes, messages, ports, and pseudo-terminals. These
IPC mechanisms cover almost every conceivable communication task a program could possibly need to
do.

Semaphores

In the days before radio, when two ships wished to communicate with each other to decide who was going
first to traverse a channel wide enough only for one, they used multicolored flags called semaphores.
Computer scientists, being great lovers of anachronistic terms, adopted the term and meaning of the word
semaphore to create a way for processes to communicate when accessing shared information.

GNO/ME, like other multitasking systems, provides applications with semaphore routines. Semaphores
sequentialize access to data by concurrently executing processes. You should use semaphores whenever
two or more processes want to access shared information. For example, suppose there were three
processes, each of which accepted input from user terminals and stored this input into a buffer in memory.
Suppose also that there is another process which reads the information out of the buffer and stores it on
disk. If one of the processes putting information in the buffer (writer process) was in the middle of
storing information in the buffer when a context switch occurred, and one of the other processes then
accessed the buffer, things would get really confused. Code that accesses the buffer should not be
interrupted by another process that manipulates the buffer; this code is called a critical section; in order to
operate properly, this code must not be interrupted by any other attempts to access the buffer.

To prevent the buffer from becoming corrupted, a semaphore would be employed. As part of it's startup,
the application that started up the other processes would also create a semaphore using the screate(2)
system call with a parameter of 1. This number means (among other things) that only one process at a
time can enter the critical section, and is called the count.
When a process wishes to access the buffer, it makes a swait(2), giving as argument the semaphore
number returned by screate. When it's done with the buffer, it makes an ssignal(2) call to indicate this
fact.

This is what happens when swait is called: the kernel first decrements the count. If the count is then less
than zero, the kernel suspends the process, because a count of less than zero indicates that another process
is already inside a critical section. This suspended state is called 'waiting' (hence the name of swait).
Every process that tries to call swait with count < 0 will be suspended; a queue of all the processes
currently waiting on the semaphore is associated with the semaphore.

Now, when the process inside the critical section leaves and executes ssignal, the kernel increments the
count. If there are processes waiting for the semaphore, the kernel chooses one arbitrarily and restarts it.
When the process resumes execution at its next time slice, its swait call will finish executing and it will
have exclusive control of the critical section. This cycle continues until there are no processes waiting on
the semaphore, at which point its count will have returned to 1. ·

21

lnterprocess Communication Chapter 6

When the semaphore is no longer needed, you should dispose of it with the sdelete(2) call. This call
frees any processes that might be waiting on the semaphore and returns the semaphore to the semaphore
pool.

One must be careful in use of semaphores or deadlock can occur.

There are (believe it or not) many situations in everyday programming when you may need semaphores,
moreso than real UNIX systems due to the Apple Ilgs's lack of virtual memory. The most common of
these is your C or Pascal compiler's stdio library; these are routines like printf and writeln. In many
cases, these libraries use global variables and buffers. If you write a program which forks a child process
that shares program code with the parent process (i.e. doesn't execve to another executable), and that
child and the parent both use non-reentrant library calls, the library will become confused. In the case of
text output routines, this usually results in garbaged output

Other library routines can have more disastrous results. For example, if a parent's free() or dispose()
memory management call is interrupted, and the child makes a similar call during this time, the linked lists
that the library maintains to keep track of allocated memory could become corrupted, resulting most likely
in a program crash.

GNO/ME provides mutual exclusion (i.e., lets a maximum of one process at a time execute the code)
automatically around all Toolbox and GS/OS calls as described in Chapter 3, and also uses semaphores
internally in many other places. Any budding GNO/ME programmer is well advised to experiment with
semaphores to get a feel for when and where they should be used. Examples of semaphore use can be
found in the sample source code, notably dp. c (Dining Philosophers demo) and and pipe*. c (a sample
implementation of pipes written entirely in C).

Signals

Another method of IPC is software signals. Signals are similar to hardware interrupts in that they are
asynchronous; that is, a process receiving a signal does not have to be in a special mode, does not have to
wait for it. Also like hardware interrupts, a process can install signal handlers to take special action when
a signal arrives. Unlike hardware interrupts, signals are defined and handled entirely through software.

Signals are generally used to tell a process of some event that has occurred. Between the system-defined
and user-defined signals, there is a lot of things you can do. GNO/ME currently defines 32 different
signals. A list of signals and their codes can be found in signa1(2) and the header file
<gno/signal.h>.

There are three types of default actions that occur upon receipt of a signal. The process receiving the signal
might be terminated, or stopped; or, the signal might be ignored. The default action of any signal can be
changed by a process, with some exceptions. Not all of the defined signals are currently used by
GNO/ME, as some are not applicable to the Apple Ilgs, or represent UNIX features not yet implemented
in GNO/ME . Here is a list of the signals that are used by GNO/ME.

22

SIGINT

SIGKILL

SIGPIPE
SIGALRM

This signal is sent to the foreground job when a user types AC at the terminal
keyboard.
The default action of this signal (termination) cannot be changed. This provides a
sure-fire means of stopping an otherwise unstoppable process.
Whenever a process tries to write on a pipe with no readers, it is sent this signal.
SIGALRM is sent when an alarm timer expires (counts down to zero). An
application can start an alarm timer with the alarm(2) system call.

ChapterS

SIGTERM

SIGSTOP

SIGCONT
SIGTSTP

SIGCHLD

SIGTTIN

SIGTTOU

SIGUSRl
SIGUSR2

lnterprocess Communication

This is the default signal sent by kill(l). Use of this signal allows applications to
clean up (delete temporary files, free system resources like semaphores, etc) before
terminating at the user's bequest.
This signal is used to stop a process' execution temporarily. Like SIGKILL,
processes are not allowed to install a handler for this signal.
To restart a stopped process, send this signal.
This is similar to SIGSTOP, but is sent when the user types AZ at the keyboard.
Unlike SIGSTOP, this signal can be ignored, caught, or blocked.
A process receives this signal whenever a child process is stopped or terminates.
gsh uses this to keep track of jobs, and the wait system call waits for this signal to
arrive before exiting.
This signal also stops a process. It is sent to background jobs that try to get input
from the terminal.
Similar to SIGTTIN, but is sent when a background process tries to write to the
terminal. This behavior is optional and is by default turned off.

These two signals are reserved for application authors. Their meaning will change
from application to application.

As you can see, signals are used by many aspects of the system. For detailed information on what various
signals mean, consult the appropriate electronic manual page- see tty(4), wait(2), and signal(2).

For an example of signal usage, consider a print spooler. A print spooler takes files that are put in the
spool directory on a disk and sends the data in the files to a printer. There are generally two parts to a print
spooler: the daemon, a process that resides in memory and performs the transfer of data to the printer in
the background; and the spooler. There can be many different types of spoolers, say one for desktop
printing, one for printing source code, etc. To communicate to the daemon that they have just placed a
new file in the spool directory, the spoolers could send the daemon SIGUSR. The daemon will have a
handler for SIGUSR, and that handler will locate the file and set things up so the print will begin. Note
that the actual implementation of the print spooling system in GNO/ME, lpr(l) and lpd(8), is somewhat
more complex and uses messages and ports instead of signals. However, an earlier version of the spooler
software did use signals for communication.

Signals should not be sent from inside an interrupt handler, nor from inside a GS/OS or Toolbox call.
Window Manager update routines are a prime example of code that should not send signals; they are
executed as part of a tool call. The GS/OS aspect of this limitation is a little harder to come up against.
GS/OS does maintain a software signal facility of it's own, used to notify programs when certain low
level events have occurred. Do not confuse these GS/OS signals with GNO/ME signals, and above all,
don't send a GNO/ME signal from a GS/OS signal handler.

When a process receives a signal for which it has installed a handler, what occurs is similar to a context
switch. The process' context is saved on the stack, and the context is set so that the signal handler routine
will be executed. Since the old context is stored on the stack, the signal handler may if it wishes return to
some other part of the program. It accomplishes this by setting the stack pointer to a value saved earlier in
the program and jumping to the appropriate place. Jumps like this can be made with C's setjmp and
longjmp functions. The following bit of code demonstrates this ability.

void sighandler(int sig, int code)

printf("Got a signal!");
longjmp (jmp_buf);

23

lnterprocess Communication

void routine{void)
{

signal{SIGUSR,sighandler);
if {setjmp{jmp_buf)) {

printf(•Finally done! Sorry for all that ");

else { while (1) {
printf ("While I wait I will annoy you!");
}

Cnapier o

This program basically prints an annoying message over and over until SIGUSR is received. At that
point, the handler prints "Got a Signal!" and jumps back to the part of the if statement that prints an
apology. If the signal handler hadn't made the longjmp, when the handler exited control would have
returned to the exact place in the while(l) loop that was interrupted.

Similar techniques can be applied in assembly language.

Pipes

This third form of IPC implemented in GNO/ME is one of the most powerful features ever put into an
operating system. A pipe is a conduit for information from one process to another. Pipes are accessed
just like regular file$; the same GS/OS and ToolBox calls currently used to manipulate files are also used to
manipulate pipes. When combined with GNO/ME standard 110 features, pipes become very powerful
indeed. For examples on how to use gsh to connect applications with pipes, see the GNO Shell
Reference Manual.

Pipes are uni-directional channels between processes. Pipes are created with the pipe(2) system call,
which returns two GS/OS refNums; one for the write end, and one for the read end. An attempt to read
from the write end or vice-versa results in an error.

Pipes under GNO/ME are implemented as a circular buffer of 4096 bytes. Semaphores are employed to
prevent the buffer from overflowing, and to maintain synchronization between the processes accessing the
pipe. This is done by creating two semaphores; their counts indicate how many bytes are available to be
read and how many bytes may be written to the buffer (0 and 4096 initially). If an 110 operation on the
pipe would result in the buffer being emptied or filled, the calling process is blocked until the data (or
space) becomes available.

The usual method of setting up a pipeline between processes, used by gsh and utilities such as script, is to
make the pipe() call and then fork off the processes to be connected by the pipe.

int fd[2];
int testPipe{void)
{

pipe(fd); I* create the pipe *I
fork(procl); I* create the writer process *I
fork(proc2); I* create the reader process *I
close(fd[l]); I* we don't need the pipe anymore, because *I
close(fd[O]); I* the children inherited them *I
{wait for processes to terminate ... }

24

ChapterS

void procl(void)
{

dup2(STDOUT_FILENO,fd[l]);
close (fd [0]) ;
{exec writer process ... }

void proc2(void)

dup2(STDIN_FILENO,fd[O]);
close(fd[l]);
{exec reader process ...

lnterprocess Communication

I* reset standard output to the write pipe *I
I* we don't need the read end *I

I* reset standard input to the pipe *I
I* we don't need the write end *I

Recall that when a new process is forked, it inherits all of the open files of it's parent; thus, the two
children here inherit not only standard 1/0 but also the pipe. Mter the forks, the parent process closes the
pipe and each of the child processes closes the end of the pipe it doesn't use. This is actually a necessary
step because the kernel must know when the reader has terminated in order to also stop the writer (by
sending SIGPIPE). Since each open refNum to the read end of the pipe is counted as a reader, any
unnecessary copies must be closed.

For further examples of implementing and programming pipes, see the sample source code for pipe* . c .

Messages

GNO's Message IPC is borrowed from the XINU Operating System, designed by Douglas Comer. It is a
simple way to send a datum (a message) to another process. Messages are 32-bit (4-byte) longwords.

The Message IPC is centered around two calls, send() and receive(). send() sends a message to a
specified process ID. To access that message, a process must use receive(). If no message is waiting for
a process when it calls receive(), it is put to sleep until a message becomes available.

Since a process can only have one pending message, the Message IPC is useful mostly in applications
where two or more cooperating processes only occasionally need to signal each other; for example, the
init(8) program communicates with the Init daemon by sending messages. Various attributes are encoded
in the 32-bit value sent to init(8) to instruct it on how to change its state.

If a process doesn't want to indefinitely block waiting for a message, it can call recvtim(). recvtim()
accepts a timeout parameter which indicates the maximum amount of time to wait for a message.

Ports

GNO/ME Ports IPC can be thought of as an extended version of Messages. Whereas only one message
can be pending at once, a port can contain any number of pending messages (up to a limit defined when an
application creates a port).

Like Messages, Ports transmit 32-bit values between processes. The calls psend() and preceive() work
similarly to their Message counterparts.

A Port is created with the pcreate() call. The application specifies the size of the port in this call. When
the application is done with th~ port, it should call pdelete() to free up the resources used by the port.

25

lnterprocess Communication Chapter 6

One of the most important aspects of ports is the ability to bind a name to a port. Whereas many of
GNO/ME IPC mechanisms require the communicating processes to be related in some way (common
children of the same parent, for instance) being able to give a port a name means that totally unrelated
processes can communicate. For example, the GNO/ME print spooling system uses a named port for
communicating information about the addition of new jobs to the print queue. The printer daemon,
lpd(8), creates a port with a specific name; the name is defined by the author of the print daemon; any
application that wishes to have the daemon print a spool file also knows this name. (The standard print
daemon uses the name "LPDPrinter"). The name allows an application to find lpd's port regardless of the
actual numeric port ID (which might be different from system to system, or even from session to session
on the same machine).

Names are bound to ports with the pbind() call. The numeric port ID can be obtained by passing a name
to pgetport().

Pseudo-Terminals (PTYs)

Pseudo-terminals are a bi-directional communication channel that can be used to connect two processes (or
more correctly, a process group to another process). You may (correctly) ask why two pipes would not
do the same thing; the answer is that a lot of modem UNIX software relies on the way the terminal
interface works, and thus would malfunction when presented with a pipe as standard input. What PTY s
provide is a lot like two pipes, but with a TIY interface.

PTY s can be used in a number of important and exciting applications, such as windowing systems and
'script-driven' interfaces.

Windowing systems like the UNIX X-Windows use PTYs to give a process group an interface that looks
exactly like a real terminal; however, the 'terminal' in this case is actually a window in a graphics-based
system. The program that manages the window ('xterm' in X-Windows) is called the master. It is
responsible for setting up the PTY, and starting up the process with redirection (usually a shell) that is to
run in the window. The process running in the window is called the slave.

To allocate a PTY, the master opens in tum each PTY device starting with .ptyqO. If a PTY is already in
use, the open call will return an error (the kernel uses the EXCL flag internally). When an open succeeds,
the master then has exclusive access to that PTY. At this point, the master opens the corresponding TTY
file (.ttyqO - .ttyqf), or the slave device. It then forks off a process, which sets redirection up in the
normal fashion and then exec's the program to run on the PTY. The following is taken from the source
code for the Graphical Shell Interface (GSI) NDA.
ir.. ?ipe scans the PTY devices, looking for a free one as discussed above. Note that the master side of
a PTY does _not_ have (by default) a terminal interface; it is a very raw device, with only a few ioctl's to
be able to send signals and handle other such low-level tasks.

char buffer[1024];
int ptyno, master;

int initPipe(void)
{

int cl[2];
struct sgttyb sb;
char *ptyname = 11 • ptyqO 11 ;

unsigned i;

I* We have to open the master first */

for (i = 0; i < 2; i++) {

26

Chapter6 lnterprocess Communication

}

ptynarne[S] = intToHex(i); I* generate a PTY name from the index *I
master= open(ptynarne,O_RDWR);
if (master > 0) break; I* successful open *I

if (master < 1) { return -1; }
ptyno = i;
pidl = fork(producer);
return 0;

producer() sets up redirection for the shell, and also opens the slave side of the PTY. The slave
processes must not have any access whatsoever to the master side of the PTY, so close(O) is used to close
all open files (which includes, at this point, the master PTY flle descriptor from initPipe). Note that as in
many pipe applications, the flle descriptor that will be assigned to a newly opened flle is assumed, and that
can be safely done in this case because it is clear that with no files open the next file descriptor will be 1.

I* the shell is executed here *I
#pragma databank 1
void producer(void)
{

char *ptyname = ".ttyqO";

I* we must not have access to ANY other ttys *I
close(O); I* close ALL open files */
ptynarne[S] = intToHex(ptyno);
!* modify the tty slave name to correspond to the master */
slave = open(ptyname,O_RDWR); /* file descriptor 1 */
dup(slave); I* fd 2 *I
dup(slave); I* fd 3 *I
SetOutputDevice(3,21); I* Set up the TextTools redirection *I
SetErrorDevice (3, 31) ; \

1
_ L

SetinputDevice(3,11);
Wri teCString ("Welcome to GNO GSI \r\n") ; J) 0 c:._
execve(":bin:gsh","gsh -f"); --r =~~~ nc':' u rc
I* If we get here, we were unable to run the shell */
printf("Could not locate :bin:gsh : %d",errno);

#pragma databank 0

consume () is called as part of GSI's event loop. It simply checks to see if there is any data for the master
by using the FIONREAD ioctl, one of the few ioctl's supported by the master side. See PTY(4) for
details. Any data that is available is sent to the window via a routine toOut, which inserts the new data into
a TextEdit record.

void

char
int

consume(CtlRecHndl teH)

ch;
fio,fiol,i; ,_/ -:'JI

ioctl(master,FIONREAD,&fio);
if (fio) {

if (fio > 256) fio = 256;

f (

fiol = read(master,buffer,fio);
buffer(fio) = 0;
toOut(buffer,fio,teH);
updateWindl(fio,fiol);

II ((','

' r(
(' \j ~

27

lnterprocess Communication Chapter 6

}

When the user types a key, the keypress is sent to the slave by simply writing the data with a write call.

void writedata(char k)
{

write(master, &k, 1);

When the user is done with the window and closes it, GSI closes the master end of the PTY.

void closePipe(void)
{

int cl[2];

close (master);

When this is done, the slave process receives a SIGHUP signal, to indicate that the connection was lost.
Since the standard behavior of SIGHUP is to terminate the process, the slave dies and either the slave or
the kernel closes the slave end. At this point, the PTY is available for re-use by another application.

As you can see, PTY s are very simple to program and use. The simplicity can be misleading, for PTY s
are a very powerful method of IPC. As another example of the use of PTY s, we point out that PTY s can
be used to drive programs with 'scripts'. These scripts are a series of 'wait-for' and 'print' operations,
much like auto-logon macros in communications programs such as ProTERM. Script-driving a program
can be used to automate testing or use of an application.

PTYs can be used to test software that would normally work over a regular terminal (such as a modem).
Since PTYs are identical (to the slave) to terminals, the application being tested doesn't know the
difference. What this means to the programmer is incredible power and flexibility in testing the
application. For example, a communications program could be nearly completely tested without ever
dialing to another computer with a modem!

There are so many applications of PTY s that to attempt to discuss them all here would be impossible; as
PTY s are discovered by more GNO/ME programmers we expect that more useful PTY applications will
become available.

Deadlock

With interprocess communication comes the problem of deadlock. If a situation arises where two or more
processes are all waiting for an signal from one of the other waiting processes, the processes are said to be
deadlocked.

The best way to explain deadlock is to give an example. Suppose that two processes are connected with
two pipes so that they can communicate bidirectionally. Also suppose that each of the pipes are full, and
that when each process writes into one of the pipes they are blocked. Both processes are blocked waiting
for the other to unblock them.

There is no way for the operating system to detect every conceivable deadlock condition without
expending large amounts of CPU time. Thus, the only way to recover from a deadlock is to kill the
processes in question. Responsibility for preventing deadlock situations is placed on the programmer.
Fortunately, situations where deadlock can occur are infrequent; however, you should keep an eye out for
them and try to work around them when they do occur.

28

Appendix A
Making System Calls

The GNO Kernel is accessed through system calls. The actual procedure is very simple from C: simply
#include the appropriate header file as noted in the synopsis of the call's manual page, and call it as you
would any other C function. From assembly language the procedure is no more difficult, using the
advanced macros provided for the APW and ORCA assemblers. Make sure, however, that you have
defined a word variable errno. Lowercase is important, use the 'case on' and 'case off directives to
ensure that the definition of errno is case-sensitive. The system call interface libraries store any error
codes returned by the kernel in this variable.

If you are going to be accessing the kernel from a language other than those for which interfaces are
provided, then the following information is for you.

System Call Interface

The system calls are implemented as a user toolset, tool number 3. These tools are called the same way
regular system tools (such as QuickDraw) are called, except that you must JSL $ E1 0 00 8 instead of
JSL $E10000 (or $E1000C instead of $E10004 for the alternate entry point). The function numbers
for the currently defined tools are as follows:

getpid $0903 kill $0A03
fork $0B03 swait $0D03
ssignal $0E03 screate $0F03
sdelete $1003 kvm_open $1103
kvm_close $1203 kvm_getproc $1303
kvm_nextproc $1403 kvm_setproc $1503
signal $1603 wait $1703
tcnewpgrp $1803 settpgrp $1903
tctpgrp $1A03 sigsetmask $1B03
sigblock $1C03 execve $1D03
alarm $1E03 set debug $1F03
setsystemvector $2003 sigpause $2103
dup $2203 dup2 $2303
pipe $2403 getpgrp $2503
ioctl $2603 stat $2703
fstat $2803 lstat $2903
getuid $2A03 getgid $2B03
geteuid $2C03 getegid $2D03
setuid $2E03 setgid $2F03
send $3003 receive $3103
recvclr $3203 recvtim $3303
setpgrp $3403 times $3503
pcreate $3603 psend $3703
preceive $3803 pdelete $3903
preset $3A03 pbind $3B03
pgetport $3C03 pgetcount $3D03
scount $3E03 fork2 $3F03

29

Making System Calls

getppid
alarmlO

$4003
$4203

Appendix A

SetGNOQuitRec $4103

Parameters should be pushed onto the stack in the same order as defined by the C prototypes outlines in
the synopsis section of the manual pages; that is, left-to-right. In addition to those parameters, all of the
functions (except those denoted by a*) take an integer pointer parameter ERRNO. This is a pointer to a
word value which will contain the errno code returned by the function if an error occurs, and should be
pushed onto the stack after all the other parameters. The calls do not clear this code to 0 if no error occurs;
thus, you must check the return value of the function to see if an error occurred, and then check ermo to
get the actual error code.

Do not forget to also push space on the stack (before the parameters) for the call to store its return value.

These low-level system call interfaces are not to be used in general programming. It is assumed the
programmer will use the libraries provided, or use this information to create a new library. The system
call interface is subject to change without notice; any changes will, of course, be documented in future
versions of GNO/ME.

System Call Error Codes

The following codes are taken from <errno. h>. The codes up to EPERM are the same values as those
defined by ORCNC for compatibility reasons. Error conditions are usually reported by system calls by
returning a -1 (word) or NULL (long) value. Which error codes can be expected from a particular call are
detailed in the errors section in the appropriate manual page.

30

FDOM
ERANGE
ENOMEM

ENOENT
EIO

EINVAL
EBADF

EM FILE

EACCESS

EEXIST

ENOS PC

EPERM
ESRCH

EINTR

E2BIG
ENOEXEC

domain error. Basically an undefined error code.
Range error. A value passed to a system call was too large, too small, or illegal.
Not enough memory. The kernel could not allocate enough memory to complete
the requested operation.
No such file or directory. The file specified could not be found.
1/0 error. An error occurred trying to perform an 1/0 operation (could be bad
media). Also refers to a disk error not covered by the other errno codes.
Invalid argument An argument to a system call was invalid in some way.
bad file descriptor. The file descriptor passed to the kernel does not represent an
open file.
too many files are open. The kernel cannot open any more files for this process;
it's open file table is full. Close some other open files to retry the operation.
access bits prevent the operation. One of the access bit settings (delete, rename,
read, write) associated with the file does not allow the requested operation.
the file exists. An attempt to create a new file with the same name as an existing file
results in this error.
No space on device. There is not enough room on the requested device to complete
the operation. This is usually indicative of a full disk.
Not owner. Not yet used in GNO.
No such process. The process ID specified does not refer to an active process.
Possibly the process terminated earlier.
Interrupted system call. Certain system calls can be interrupted by signals. In
cases where the user has specified that those calls not be automatically restarted, the
call will return this error.
Arg list _too long. Too many arguments were specified in an execve calls.
Exec format error. The file specified is not in an executable format (OMF load flle).

Appendix A

ECHU.,D

EAGAIN
ENOIDIR

ENOTIY

EPIPE

ESPIPE
ENOTBLK

System Panics

Making System Calls

No children. This error is returned by wait(2) when there are no child processes
left running.
No more processes. The process table is full, the fork(2) cannot complete.
Not a directory. One of the elements in a pathname refers to a file which is not a
directory.
Not a terminal. The file descriptor passed to an ioctl(2) or job control call does not
refer to a terminal file.
Broken pipe. If a process attempts to write on a pipe with no readers, and has
blocked or ignored SIGPIPE, this error is returned by the write operation.
Illegal seek. Similar to ENOTBLK, but specific for pipes.
not a block device. An attempt to perform an operation on a character device that
only makes sense on a block device, e.g. creating a file.

In most cases, if the kernel detects an error in operation an appropriate error code is returned by the
function in question (GS/OS calls, ToolBox calls, or system calls as described above). However, there
are rare circumstances where the kernel detects what should be an impossible condition. This can happen
due to bugs in the kernel, because the kernel was overwritten by a buggy program, or for any number of
other reasons.

When the kernel does come across such an error, system operation cannot continue and what ensues is
called a system panic. Panics are very easily noticed- the kernel will print an error message on the screen
and ensure that the text screen is visible, turning off any graphics mode if necessary. The kernel then sets
the text and background colors to red on white - a very noticeable condition. At that point, the kernel turns
off context switching to prevent any background process or other interrupt driven code from further
confusing the system. This is done mainly to prevent damage to disk directory structures by a bad system.

When a system panic does occur, the only thing you can do is reboot your system. If you can reliably
reproduce a system panic, please record the panic message and the sequence of events necessary to evoke
the panic and report the information to Procyon, Inc.

3 1

Appendix B
Miscellaneous Programming Issues

Option Arguments

The Free Software Foundation (known as the FSF), invented user friendly long format option arguments,
and defined the"+" character for interpretation that a long format follows. This interpretation is generally
followed in the UNIX community. There are two files which will assist you in programming GNO/ME
utilities with both short and long format options, "getopt.h" for short options, and "getoptl.h" for long
options.

Pathname Expansion

Those of you familiar with programming in the ORCA environment should be familiar with the shell calls
Ini tWildcard and NextWildcard. These shell calls, while supported by gsh, are no longer necessary.
All shell utilities that work with multiple filenames do not need to provide support for ftle globbing, as this
is taken care of transparently to the command.

32

Glossary

The following terms usually have references in the main text, indicated by italics.

Asynchronous
BASIC.
Blocked

Console
Context

An event that may take place at any time. See synchronous.
Beginners All-purpose Symbolic Instruction Code. A simple computer language.
Refers to a process waiting for some event to occur. Processes can block on
terminal 1/0, signals, and other IPC and 1/0 functions.
The terminal which represents the TIGS's keyboard and monitor.
The attributes which define the state of a process. This includes the program
counter, stack pointer, and other machine registers (both CPU and other computer
hardware).

Controlling terminal The terminal which 'controls' a process or process group; processes can

Critical section

Daemon

Deadlock

Errno

receive keyboard signals (such as SIGTSTP, or AZ) only from their controlling
terminal.
A piece of code inside which only one process at a time may be allowed to
execute. Critical sections are usually protected by semaphores.
A process that runs in the background and waits to act on an asynchronous event.
These can be anything: waiting for a caller on a modem, waiting for spooled files
to print, etc. Daemons are usually started at boot time by the init(8) process.
A situation where two or more communicating processes are blocked, waiting on
each other. See Chapter 5, "Deadlock".
A variable which holds a descriptive numeric error code, returned from C libraries
and system calls.

Foobar ffoo, bar} foobar derives from an old military acronym FUBAR. In it's politest
interpretation it stands for Fouled Up Beyond All Recognition. Computer
scientists borrowed the term and created foobar. When a name for an object is
needed but the name itself is not important, foo and bar are first choice among

Executable

GNO/ME.

GNO Kernel.
GNO Shell.
gsh.
GS/OS.
IPC

Job

Manpage

Master

Message

computing science types.
A program as it resides on disk. Executables can be compiled or assembled
programs, or shell scripts. Executables are run by typing their name on the
shell's command line and frequently take paramters to determine what data they
operate on and particulars of how they do it.
GNO Multitasking Environment. The complete package including the GNO
kernel and the GNO Shell.
Heart of GNO/ME. Executes processes when asked by the GNO Shell
Provides an interface between the user and the GNO kernel.
GNO Implementation of a UNIX-like shell.
16 bit Operating System for the Apple llgs.
"Inter-Process Communication". Any method by which processes can pass
information to other processes.
A set of related processes. Jobs are generally composed of processes with a
common parent and the same controlling terminal.
Refers to the system call and utility documentation provided with GNO.
Manpages exist on disk in pre-formatted source form (AppleWorks GS
currently), and can be viewed by various utilites on a variety of output devices.
Refers to the .PTYxx side of a pseudo-terminal, and also the process controlling
that device. The master is usually responsible for setting up the PTY and running
a process on it.
A 32-bit value that is passed via the Messages IPC mechanism to another process.

33

Mutex
Panic

Parent

Pipe
Pipeline
Port
Process
Process group

Pseudo-terminal

PTY
Semaphore
Sequentializ:.ation

Signal
Slave

Suspended
Synchronous

Terminal

Tty

UNIX.

34

Glossary

Short for mutual exclusion, a term that refers to protecting a critical section.
An unrecoverable kernel error, usually indicating that an internal data structure
has become corrupted.
When talking about a process, the parent of a process is the one that spawned it;
i.e., made the fork() call.
A unidirectional IPC mechanism. Pipes transmit binary 8-bit data.
Two or more processes connected by pipes.
A flow-controlled IPC mechanism that can pass longwords of data.
A program in execution.
An identifying code for a job. Process groups are also assigned to TTY's, which
allows the TTY to differentiate background jobs from foreground jobs when
sending interrupt signals.
A bidirectional communications channel, normally used in windowing systems or
for advanced control and testing applications.
See 'pseudo-terminal'.
A data object used to synchronize concurrent processes.
The task of ensuring that critical sections are only executed by one concurrent
process at a time.
A software interrupt and IPC mechanism.
1. A good term to describe the relationship of Joe Citizen to the IRS.
2. The .TTYxx side of a pseudo-terminal; the slave is usually an application
program of some kind, like a shell.
Refers to a process whose execution has been stopped.
An event that takes place at a predetermined time or sequence of times. Also used
to indicate the act of waiting for an event to happen. See asynchronous.
Any device that looks like a terminal; this includes pseudo-ttys. By defmition, a
terminal supports all ofthe tty(4) ioctl calls.
Short for Teletype. TfY is an anachronistic term; in modem usage it is taken to
mean 'terminal'.
Popular operating system which has growing use in education and business. One
of the first operating systems to support multitasking.

Index

Index
AC 20, 22
+ 32
.9
AZ 20
1\z 23
.. 9
.CONSOLE 5, 6, 13
.d2 10
.d5 10
.NULL 11, 19
.ptyqO 19, 26
.PTYQ[0-9,A-F] 11
.ttya 12, 19
.TTY A[0-9,A-F] 11
.ttyb 19
.TTYCO 11, 12, 16, 19
.ttyqO 19, 26
.ttyqf 26
/bin 10
/etc 10
/etc/namespace 10
/etc/tty.config 12
/etc/ttys 13
/usr 10
65816 processor 6
65816 registers 19
_toolErr 5
alarm 19, 22, 29
alarmlO 30
alarmCount 19
ANDmask 15
APW29
args 19
Assembly 6
auxType 7
background 3, 20, 23
Bank06
BASIC 13
blocked 17, 18
BYTEWRKS 19
C compiler6
CDA16
ChangePath 10
character device 11, 18
character devices 11
Character drivers 15
character strings 6
child process 17, 22, 25
chtyp 7
ClearBackupBit 10

Close 10, 11, 27
conf.h 18
console 5, 16
console driver 5, 11, 13, 15, 16
consume 27
context 17
context switch 17, 19, 21, 23, 31
Control Panel16
controlling terminal 16, 20
count 21
Create10
creative programming 6
critical section 21
CTRL-D 15
CurResourceApp 15
custom drivers 13
daemon 23
deadlock 22, 28
DELETE15
desktop 5, 6, 7, 16
Destroy 10
device drivers 6, 20
Dlnfo 11
direct page 6, 9, 17
disk access 6
Disk 110 6
dispose 22
DMA6
dp.c 22
driver number 13
DStatus 11
dup 15, 29
dup2 29
E2BIG 30
EACCESS 30
EAGAIN31
EBADF30
ECHILD 31
EOOM30
EEXIST 30
EINTR 30
EINVAL30
EI030
EMFILE30
ENOENT30
ENOEXEC30
ENOMEM30
ENOSPC 30
ENOTBLK31
ENOTDIR31
ENOTTY31
EOL 15
EPERM30

35

EPIPE 31
ERANGE30
errno 29,30
errno.h 30
ESPIPE 31
ESRCH30
Event~anager7, 16
EXCL26
EXE 7, 17, 18
exec 17, 18, 26
execve 11, 12, 18, 19, 22, 29
exit 12
ExpandPath 9, 10
file 11
file descriptor 11, 13, 27
File Level 10
file sharing 7
FIONREAD27
FlexBeep 14
Flush 10, 12
fopen 7
foreground 3
fork 17, 18, 19, 24, 29, 31
fork2 29
free 22
fstat 29
GetDirEntry 12
getegid 29
GetEOF 12
geteuid 29
GetFilelnfo 10
getgid 29
GetLevel10
Ge~ark 12
GetName 12
GetOpenFileRefnum 15
getopt.h 32
getoptl.h 32
getpgrp 29
getpid 29
getppid 30
GetPrefix 10
getuid 29
GNO compliant 6
GNO kernel 3, 5, 10, 12, 17, 18, 21, 29
GNO Snooper CDA 19
gno.h 5
GNO/ME 3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 17,
21, 22, 23, 24
GNOIME compliance 5
GNO/ME compliant 5, 6
GNO/ME drivers 11
GNO/ME signal 23

36

Index

GNOSnooper.c 19
GS/OS 3, 5, 6, 7, 9, 10, 11, 12, 17, 23, 24
GS/OS call 9, 10, 11, 12, 22, 31
GS/OS device 11
GS/OS drivers 11
GS/OS errors 15
GS/OS refNum 24
GS/OS signal handler 23
GS/OS signals 23
gsh 23, 24, 32
GSI 28
hardware interrupt 22
1/0 5, 6, 7, 11, 13, 18, 24, 25
110 masks 15
init 25
initPipe 26, 27
InitWildcard 32
Interprocess Communication 21
interrupt 31
interrupt handler 16, 19, 23
ioct16, 11, 20, 27, 29, 31
IPC21, 22, 24, 25,26,28
irq_A 19
irq_B 19
irq_D 19
irq_K 19
irq_P 19
irq_PC 19
irq_S 19
irq_state 19
irq_X 19
irq_Y 19
Job control20
kernel 5, 21, 28, 31
kemStatus 5
kern Version 5
keyboard input 6
keyboard latch 6
kill17, 19, 23, 28,29
KV~18
kvm_close 29
kvm_getproc 29
kvm_nextproc 29
kvm_open 18, 29
kvm_setproc 29
LEFT-ARROW 15
local arrays 6
long options 32
longjmp 23, 24
lpd 23, 26
lpr 23
lstat 29
main memory 6

Index

malloc6
master 26, 27
master. 26
Memory Manager 6, 17
messages 21, 25
MiscTool15
modem 5, 12, 19
multitasking 3, 9, 10, 13, 16, 21
mutual exclusion 22
NEW18
NextWildcard 32
NPROC 18
Null device driver 13
OA-D 15
OA-E 15
Open 10, 11
openFiles 19
OpenGS 7
option arguments 32
ORCA 10, 12, 13, 29, 32
ORCNC6,30
ORCNC 1.2 7
ORCNC 1.3 6, 7, 12
ORCNC 2.0 6, 12
ORmask 15
OSShutdown 12
panic 15, 31
parent process 17, 22, 25
Pascal compiler 22
Pascal control codes 11
Pascal driver 13
Pascal firm ware 13
pause 19
PAUSED 18
pbind 26, 29
pcreate 25, 29
pdelete 25,29
pgetcount 29
pgetport 26, 29
pipe 11, 13, 18, 21, 22, 24, 29
pipe*.c 22, 25
pipeline 20, 24
port drivers 12, 19
port ID 26
ports 21, 25
preceive 25, 29
preemptive multitasking 17
prefixes 9
preset 29
print spooler 23
printer 12, 19, 23
printf22
proc.h 18, 19

process 17, 20, 21, 22, 28
process group. 20
process ID 17, 25
process table 18
processState 18
ProDOS-16 9
producer 27
ps 18
psend 25, 29
Pseudo-terminals 12, 21, 26
PTY 11, 26, 27, 28
QDStartup 16
QuickDraw 9, 29
QUIT 11, 12
QuitGS 11, 12
Read 11
ReadChar 15
ReadLine 14
READY 18
receive 19, 25, 29
recursion 6
recvclr29
recvtim 25, 29
redirection 13, 26
reentrant 22
refNum 10, 11, 12, 13, 18, 25
RELEASE.NOTES 7
requestAccess 7
resource 15
Resource Manager 15
RestA1116
restartability 12
rexit 12
RIGHT-ARROW 15
round-robin scheduling 17
RUNNING 18, 19
S16 7, 17, 18
SANE9
SaveA1116
scount 29
screate 21, 29
screen memory 6
script 24, 28
sdelete 22, 29
semaphore 21, 22, 24
semaphore pool 22
semaphores 22
send 19, 25, 29
serial driver 13
serial ports 5, 6, 7
setdebug 29
SetEOF 12
SetFi1elnfo 10

37

setgid 29
SetGNOQuitRec 30
SetlnGlobals 15
SetlnputDevice 13
setjmp 23
SetLevellO
SetMark 12
SetOutputDevice 13
setpgrp 29
SetPrefix 9, 10
setsystemvector 29
settpgrp 20, 29
setuid 29
shared information 21
short options 32
SIGALRM 19, 22
sigblock 29
SIGCHLD 18, 23
SIGCONT23
SIGHUP 28
SIGINT 20, 22
SIGK.ILL 22, 23
signal 18, 21, 22, 23, 28, 29
signal handler 22, 23, 24
signal.h 22
sigpause 19, 29
SIGPIPE 22, 25, 31
sigsetmask 29
SIGSTOP 18, 23
SIGTERM23
SIGTSTP 18, 20, 23
SIGTTIN 18, 20, 23
SIGTTOU 18,23
SIGUSR 23, 24
SIGUSR1 23
SIGUSR2 23
slave 26, 27, 28
slot -dependence 13
slotNum 13
spooler 23
ssigna1 21, 29
Stack 6, 30
stack frames 6
stack pointer 23
stack segment 6
stack space 17
standard loops 6
stat 29
static 6
stderr 5
stdin 5
stdio library 22
stdout 5

38

string manipulation 6
struct fdentry 19
struct ftable 19
SUSPENDED 18, 21
swait 21,29
SYS.RESOURCES 15
SYSCMND 12
SysFailMgr 15
System 6.0.1 5
system call17, 21, 23, 29, 31
system calls 29
system panic 15, 31
System Software 5.0.4 10
tcnewpgrp 20, 29
tctpgrp 20, 29
terminal 5, 6, 26
TextTools 5, 7, 11, 12, 13, 15, 16
ticks 18
time slice 17
times 29
Tool locator 5
ToolBox 5, 9, 13, 22
-10
ToolBox call 17, 23, 24, 31
toolerror 5
Tools 6
to0ut27
TTY 11, 18, 23, 26
tty.config 19
ttyiD 18
UNIX 7, 10, 11, 16, 17, 22, 26, 32
useriD 17
variable 6
virtual memory 22
wait 18, 19, 23, 29, 31
WAIDNG18
W AITSIGCH 18
while 24
Window Manager 23
Write 11
writeln 22

Index

INTRO(l) Commands and Applications INTRO(l)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands available for GNO. Certain distinctions of
purpose are made in the headings. For example, BUILT-IN UTILITIES are those commands
which are part of the GNO shell and not contained in stand-alone files.

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of a manual page accept
options and other arguments according to the following syntax and should be interpreted as
explained below:

name [- option ...] [cmdarg ...]

where:

[] Surround an option or cmdarg that is not required.

name

option

Indicates multiple occurrences of the option or cmdarg.

The name of an executable file.

(Almost always preceded by a"-".)
noargletter ... or,
argletter optarg [, ...]

noargletter
A single letter representing an option without an option-argument. Note that more than one
noargletter option can be grouped after one -u-".

argletter
A single letter representing an option requiring an option-argument.

optarg An option-argument (character string) satisfying a preceding argletter. Note that groups of
optargs following an argletter must be separated by white space and quoted.

cmdarg

SEE ALSO

Path name (or other command argument) not beginning with a"-", or"-" by itself
indicating the standard input.

GNO Shell User's Manual

1

BINPRINT(1) Commands and Applications BINPRINT(l)

NAME
binprint - dump binary files in ascii/hex format

SYNOPSIS
binprint [-c columns] [filename]

DESCRIPTION
binprint takes binary data and formats it as a sequence of ascii data and hex values that represent
the binary data. The format of the output is very similar to that produced by the IIGS Monitor and
the NiftyList utility.

Two columns of output are produced. The first column is the hex representation of the data. The
second column is the ascii representation of the data. If the particular byte being printed is a non
printable ASCII character, it is printed as a'.'.

If the -c option is specified, the number following it is used to determine the number of columns
(of bytes) per line. The default is 16.

If the filename is not specified, input is taken from standard input.

BUGS
binprint is slow.

AUTHOR
binprint was written by Derek Taubert for GNO/ME.

2

CAL(I) Commands and Applications CAL(l)

NAME
cal - display a calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal displays a calendar for the specified year. If a month is also specified, a calendar for that
month only is displayed. If neither is specified, a calendar for the present month is printed.

year can be between 1 and 9999. Be aware that 'cal 78' refers to the early Christian era, not the
20th century. Also, the year is always considered to start in January, even though this is
historically naive.

month is a number between 1 and 12.

The calendar produced is that for England and her colonies.

Try September 1752.

3

CAT(l) Commands and Applications CAT(l)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-benstuv] [file ...]

DESCRIPTION
The cat utility reads files sequentially, writing them to the standard output. The file operands are
processed in command line order. A single dash represents standard input.

The options are as follows:

-b Implies the -n option but doesn't number blank lines.
-e Implies the -v option, and displays a dollar sign($) at the end of each line as well.
-n Number the output lines, starting at 1.
-s Squeeze multiple adjacent empty lines, causing the output to be single spaced.
-t Implies the -v option, and displays tab characters as [AI] as well.
-u The -u option guarantees that the output is unbuffered.
-v Displays non-printing characters so they are visible. Control characters print line ["X] for

control-X; the delete character (octal 0177) prints as [A?] Non-ascii characters (with the
high bit set) are printed as [M-] (for meta) followed by the character for the low 7 bits.

The cat utility exits 0 on success, and >0 if an error occurs.

BUGS
Because of the shell language mechanism used to perform output redirection, the command "cat
filel file 2 > filel" will cause the original data in filel to be destroyed! Use "cat
file2 >> filel" instead.

SEE ALSO
head(l), more(l), tail(l), Rob Pike "UNIX Style, or cat -v Considered Harmful", "US EN/X
Summer Conference Proceedings" (1983)

HISTORY
A cat command appeared in Version 6 AT&T UNIX.

4

CENTER(I) Commands and Applications CENTER(l)

NAME
center - Center text on terminal

SYNOPSIS
center [columns] [file]

DESCRIPTION
Center is used to center lines of text either fed from stdin, or from the specified file.

One may pipe input in to it from the command line, or launch it by itself.

The commands are as follows:

columns How many columns should be considered when centering the text. Defaults
to 80 columns.

FILES
center

AUTHOR

file Specifies the file to open for centering. Defaults to stdin.

Written by Marek Pawlowski. Source code in Public Domain. Contact author for redistribution
rights, or inclusion in a software package. Munge at will. Credit to Marek Pawlowski must be
retained in modified source code. Preview of modifications appreciated. Contact Marek
Pawlowski at marekp@pnet91.cts.com, marekp@cerf.net.

5

CHMOD(l) Commands and Applications CHMOD(l)

NAME
chmod - Modify file permission flags.

SYNOPSIS
chmod [vVJ [octnum]l[+-=][rwdnbi] file ...

DESCRIPTION
chmod is a program which modifies the permission flags of a series of files. It will modify the
read, write, destroy, rename, backup, and invisible flags of the files selected.

OPTIONS
-v verbose. Provides debugging information.
-V version. Prints out the version number.

USAGE
remove a permission flag.

+ add a permission flag.
= add permission flag, and clear all other flags.

PERMISSIONS
r read permssion.
w write permission.
d destroy permission.
n rename permission.
b backup needed flag.
i invisible flag.

EXAMPLES
'Lock' a file: % chmod -wdn foo
'Unlock' a file: % chmod +wdn foo

BUGS
Currently octal mode is only guarenteed to work with the ProDOS filesystem, as the chmod() call
supplied with Orca/C doesn't seem to work well with other FSTs. Many of the standard Unix
permission flags are not implemented, as the ProDOS filesystem does not support these
permissions. Among unsupported permissions are seperate sets of flags for user, group, and
world. As well, the -x flag is not supported- if you wish to create an executable shell script, use
chtyp instead.

SEE ALSO
ls(l), chtyp(l)

AUTHOR

6

James Brookes
bb252 @cleveland.freenet.edu
jamesb@ cscihp .ecst.csuchico.edu

CHTYP(l) Commands and Applications

NAME
chtyp - change file and aux types

SYNOPSIS
chtyp { [-t filetype] [-a auxtype] } I { -liang } file ...

DESCRIPTION
chtyp is used to change the file types and aux types of the specified file(s).

type is one of:
a decimal number [66]
a hexidecimal number preceeded by a $ [$42]
an official Apple mnemonic [FTD]

and auxtype is either:
a decimal number [64222]
a hexidecimal number preceeded by a$ [$FADE]

lang is one of:
cc
ASM65816
ffiASIC
LINK
APWC
PASCAL
REZ
EXEC
TMLPASCAL

OR CAlC
ORCA/M or APW Assembler
ORCA/Integer Basic
Zap Link
APWC
ORCA/Pascal
Apple Resource Tool
Shell Script file
lMLPascal

If the -1 is used, the -t and -a options cannot be used.

ERRORS

CHTYP(l)

If chtyp is interrupted with a signal (SIGINT, SIGTERM, etc.) the program aborts with a
message telling what signal caused the termination.

If some other error occurs, chtyp aborts with an error message.

BUGS
Note that when giving hexadecimal arguments to chtyp, you must quote any '$' characters with a
\. For example,
chtyp -t \$50 -a \$8002 teach.file

Additional language stamps can only be added by modifying the source code.

AUTHOR
Original version by Greg Thompson.

GNO/ME Command Reference 8/2411993 7

CMP(l) Commands and Applications CMP(l)

NAME
cmp -perform a byte-by-byte comparison of two files

SYNOPSIS
cmp [-Is]filename] .filename2 [skipl] [skip2]

DESCRIPTION
cmp compares .filename] andjilename2 .lfjilenamel is'-', the standard input is used. With no
options, cmp makes no comment if the files are the same; if they differ, it reports the byte and line
number at which the difference occurred, or, that one file is an initial subsequence of the other.

skipl and skip2 are initial byte offsets into .filename] andjilename2 respectively, and may be either
octal or decimal; a leading 0 denotes octal.

OPTIONS
-1 Print the byte number (in decimal) and the differing bytes (in octal) for all differences

between the two files.
-s Silent. Print nothing for differing files; set exit codes only.

SEE ALSO
diff(l)

DIAGNOSTICS

8

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing
argument, or a system error.

COMPRESS(!) Commands and Applications COMPRESS(I)

NAME
compress, uncompress, zcat - compress and expand data

SYNOPSIS
compress [-cCdDf?hkK v V][-b max bits][-lin path](-Ooutpath] [filenames ...]
uncompress [-fCcvVkK?h][-Iinpath][-Ooutpath][filenames ...]
zcat [-CvV?h][-lin path][-Ooutpath][filenames ...]

-V
-d
-v
-f
-n
-c
-C
-k
-K
-b maxbits
-Ipathname
-Opathname
-? -h

DESCRIPTION

print Version
decompress input (default is compress)
verbose
force overwrite of output file (default= off)
no header: useful to uncompress old files
write all output to stdout (default= off)
generate output compatible with compress 2.0
%s input file (default= keep)
%s output file on error (default = kill)
default= 16 bits
infile path = none
outfile path = none
help, print full usage message

Compress reduces the size of the named files using adaptive Lempel-Ziv coding. Whenever
possible, each file is replaced by one with the extension .Z, while keeping the same ownership
modes, access and modification times. If no files are specified, the standard input is compressed to
the standard output.Compressed files can be restored to their original form using uncompress or
zcat.

The -f option will force compression of name. This is useful for compressing an entire directory,
even if some of the files do not actually shrink. If-f is not given and compress is run in the
foreground, th~ user is prompted as to whether an existing file should be overwritten.

The -c option makes compress/uncompress write to the standard output; no files are changed.
The nondestructive behavior of zcat is identical to that of uncompress -c.

Compress uses the modified Lempel-Ziv algorithm popularized in "A Technique for High
Performance Data Compression", Terry A. Welch, "IEEE Computer," vol. 17, no. 6 (June 1984),
pp. 8-19. Common substrings in the file are first replaced by 9-bit codes 257 and up. When code.
512 is reached, the algorithm switches to 10-bit codes and continues to use more bits until the limit
specified by the -b flag is reached (default 16). Bits must be between 9 and 16. The default can be
changed in the source to allow compress to be run on a smaller machine.

After the bits limit is attained, compress periodically checks the compression ratio. If it is
increasing, compress continues to use the existing code dictionary. However, if the compression
ratio decreases, compress discards the table of substrings and rebuilds it from scratch. This
allows the algorithm to adapt to the next "block" of the file.

Note that the -b flag is omitted for uncompress, since the bits parameter specified during
compression is encoded within the output, along with a magic number to ensure that neither
decompression of random data nor recompression of compressed data is attempted.

The amount of compression obtained depends on the size of the input, the number of bits per code,
and the distribution of common substrings. Typically, text such as source code or English is
reduced by 50-60%. Compression is generally much faster compressing, but the output is not as
small as freeze.

GNO/ME Command Reference 8/2411993 9

COMPRESS(l) Commands and Applications COMPRESS(!)

Under the -v option, a message is printed yielding the percentage of reduction for each file
compressed.

If the -V option is specified, the current version and compile options are printed on stderr.

RETURN VALUE
Exit status is normally 0; if the last file is larger after (attempted) compression, the status is 2; if an
error occurs, exit status is 1.

SEE ALSO
freeze(l)

DIAGNOSTICS
Usage: compress [\-dfvcV] [\-b maxbits] [me ...]

Invalid options were specified on the command line.
Missing max bits

Maxbits must follow -b.
me : not in compressed format

The file specified to uncompress has not been compressed.
file : compressed with bits, can only handle yy bits

File was compressed by a program that could deal with more
bits than the compress code on this machine. Recompress the
flle with smaller bits.

file : already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file
and try again.

file : filename too long to tack on .Z
The file cannot be compressed because its name is longer than
12 characters. Rename and try again. This message does not
occur on BSD systems.

file already exists;-.do you wish to overwrite (y or n)?
Respond "y" if you want the output file to be replaced; "n" if
not.

Compression: "xx.xx%"
Percentage of the input saved by compression. (Relevant only
for -v.)

-- not a regular flle: unchanged
When the input file is not a regular file,(e.g. a directory), it is
left unaltered.

-- me unchanged
No savings is achieved by compression. The input remains
virgin.

BUGS

10

Although compressed files are compatible between machines with large memory, -b 12 should be
used for file transfer to architectures with a small process data space (64KB or less, as exhibited by
the DEC PDP series, the Intel 80286, etc.)

8/24/1993 GNO/ME Command Reference

CONV(l) Commands and Applications CONY (I)

NAME
conv - convert me formats

SYNOPSIS
conv -convspec file I ...

DESCRIPTION
conv converts files between various formats. convspec is a specification detailing the type of me 1
and the type to convert it to.

-crlf convert line terminators from CR (Apple) to LF (Unix).

-lfcr convert line terminators from LF (Unix) to CR (Apple).

-detab spacing translate tabs to spaces, using tabs every spacing characters. A smart
algorithm is used which only inserts enough spaces to move to the next tab stop. spacing is an
integer less than 20.

-0001 converts all OxOO bytes to OxO 1 for using Macintosh sound files on the IIgs.

NOTES
conv is very quick on all the conversions except -detab (speed approaches 30K/sec). conv works
under the Orca shell also, and supports the Orca method of wildcards. Look at the code to see how
nasty this makes programs.

SEE ALSO
cat(l), more(l), tr(l)

AUTHOR
conv was written by Greg Thompson for GNO/ME.

11

DU(l) Commands and Applications DU(l)

NAME
du - Display disk usage statistics

SYNOPSIS
du [-aksx] pathname ...

DESCRIPTION
The du utility displays the block usage of files in the current directory or for the entire tree of a
given pathname.

The options are as follows:

-a Generate an entry for each file.
-k By default, du displays the number of blocks as returned by the stat(2) system call, i.e.

512-byte blocks. If the -k flag is specified, the number displayed is the number of 1024-
byte blocks with partial blocks rounded up.

-s Generate only the grand total. If neither -a or -s are specified, an entry is generated for
each directory only.

-x Don't traverse any mount points.

Files having multiple hard links are counted (and displayed) a single time per du execution.

SEE ALSO
df(l)

BUGS
The Apple IIGS does not have the concept of mount points, and thus the -x option is useless.

HISTORY
A du command appeared in Version 6 AT&T Unix.

12

EPS(l) Commands and Applications EPS(l)

NAME
eps - display extended process status information.

SYNOPSIS
eps [-anlw] [-t tty] [-u user]

DESCRIPTION
eps is an extended ps command which displays more information than the gsh builtin ps.

USAGE
-a Show all processes; normally eps limits the processes displayed to those that are owned

by the current user.

-n
-l

Show usemame instead of useriD, which is default.
Long list. This includes PPID (parent's PID), MMID (Memory Manager ID) and a
longer time field.

-w Wider list. A single w results in a 132 column wide listing, and two results in the whole
command line being displayed. Normally the command line will be truncated to either 80
(default) or 132 (-w) columns.

-t tty
-u user

SEE ALSO

Display only those processes that are owned by tty.
Display only those processes that are owned by user.

GNO Shell Reference Manual, parent(I)

AUTHOR
James Brookes
bb252 @cleveland.freenet.edu
jamesb@ cscihp.ecst.csuchico.edu

1 3

FOLD(I) Commands and Applications FOLD(l)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-w width]

DESCRIPTION
Fold is a filter which folds the contents of the specified files, or the standard input if no files are
specified, breaking the lines to have maximum of 80 characters.

The options are as follows:

-w width
Specifies a line width to use instead of the default 80 characters. Width should be a multiple
of 8 if tabs are present, or the tabs should be expanded using conv(l) before using fold.

SEE ALSO
conv(l)

BUGS
If underlining is present it may be messed up by folding.

14

GETVERS(l) Commands and Applications GETVERS(l)

NAME
getvers,setvers - manipulate rVersion resources in executable files

SYNOPSIS
getvers filename
setversfile 'stringl - string2 ' [country] vmajrev.minrev.bugrev

DESCRIPTION
getvers accepts as input the name of an executable file, and prints the version information stored
in the rVersion resource of the file. If no rVersion resource is present it will abort with the error
'This file has no rVersion resource'.

To add information to the rVersion resource, setvers is used. The rVersion format allows for two
stirngs of up to 255 characters, although it is suggested that for this use you keep each field shorter
than 80 characters.

stringl is separated from string2 by a- (tilde) character, and both strings should be enclosed in
single quotes. string I is required to be the name of the program. Any'_' character in string2 will
be interpreted as a carriage return. When using GNO, make sure to quote the single quotes and the
tilde with backslashes.

The optional field country (no spaces allowed) allows you to set the country field of the rVersion
resource. The last parameter is the current revision number of the program in the format majrev .
minrev . bugrev, where
majrev is a single or double digit number from 00 to 99, and minrev and bugrev are single digit
numbers from zero to nine.

COUNTRIES
Valid Countries/Regions (case IS sensitive)

Arabia Iceland
Australia Israel
Belgium/Luxembourg Italy
Bosnia!Herze go vena Japan
Britian Korea
China Malta
Cyprus Netherlands
Denmark Norway
Finland Portugal
France Spain
FrenchCanadian Sweden
FrenchSwiss Taiwan
GermanSwiss Thailand
Germany Turkey
Greece UnitedStates

EXAMPLES
Set the version of program 'chmod' to read:

chmod vOl.O.O
James Brookes
jamesb@cscihp.ecst.csuchico.edu
Country: United S_tates

in Orca:

15

GETVERS(l) Commands and Applications GETVERS(l)

setvers chmod 'chmod-James Brookes_jamesb@cscihp.ecst.csuchico.edu' vOl.O.O

inGNO:

% setvers chmod \'chmod\\-Jarnes Brookes_jarnesb@cscihp.ecst.csuchico.edu\'
vOl. 0. 0

CAVEATS
If an rVersion resource already exists, it will be overwritten and replaced with the new one. Other
resources will be unaffected.

BUGS
Little crawly things, also known as insects.

AUTHOR
Ian Schmidt- Two Meg Software (irsman@iastate.edu)

16

GREP(l) Commands and Applications GREP(l)

NAME
grep, egrep, fgrep - search a file for a string or regular expression

SYNOPSIS
grep [-bchilnsvw] [-e expression] [filename ...]
egrep [-bchilnsv] [-e expression] [-f filename] [expression] [filename ...]
fgrep [-bchilnsvx] [-e string] [-f filename] [string] [filename ...]

DESCRIPTION
Commands of the grep family search the input filenames (the standard input default) for lines
matching a pattern. Normally, each line found is copied to the standard output. grep patterns are
limited regular expresions in the style of ed(l). egrep patterns are full regular expressions
including alternation. fgrep patterns are fixed strings - no regular expression metacharacters are
supported, and as a result fgrep is generally an order of magnitude faster than the other versions
of grep.

Take care when using the characters'$', '*', [, 'A', 'I', '(', ')', and '\'in the expression, as these
characters are also meaningful to the shell. It is safest to enclose the entire expression argument in
single quotes ' .. .'

When any of the grep utilities is applied to more than one input file, the name of the file is
displayed preceding each line which matches the pattern. The filename is not displayed when
processing a single file, so if you actually want the filename to appear, use .null as a second file
in the list.

OPTIONS
-b

-c

-h

-i

-I

-n

-s

-v

-w

-X

Precede each line by the block number on which it was found. This is sometimes useful
in locating disk block numbers by context.

Display a count of matching lines rather than displaying the lines which match.

Do not ~isplay fllenames.

Ignore the case of letters in making comparisons - that is, upper and lower case are
considered identical.

List only the names of flies with matching lines (once) separated by NEWLINE characters.

Precede each line by its relative line number in the flle.

Work silently, that is, display nothing except error messages. This is useful for checking
the error status.

Invert the search to only display lines that do not match.

Search for the expression as a word as if surrounded by \< and \>. This applies to grep
only.

Display only those lines which match exactly - that is, only lines which match in their
entirety. This applies to fgrep only.

-e expression
Same as a simple expression argument, but useful when the expression begins with a'-'.

17

GREP(l) Commands and Applications GREP(l)

-e string
For fgrep the argument is a literal character string .

-f filename
Take the regular expression (egrep) or a list of strings separated by NEWLINE (fgrep)
from filename .

REGULAR EXPRESSIONS

18

The following one-character regular expressions match a single character:

c An ordinary character (not one of the special characters discussed below) is a one
character regular expression that matches that character.

\ c A backslash (\) followed by any special character is a one-character regular expression that
matches the special character itself. The special characters are:

• '.', '*', '[', and '\' (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear within square
brackets([]).

• '"'(caret or circumflex), which is special at the beginning of an entire regular
expression, or when it immediately follows the left of a pair of square brackets ([]).

• $(currency symbol), which is special at the end of an entire regular expression.

A backslash followed by one of'<','>','(',')', '{', or'}', represents a special operator in the
regular expression; see below.

A '.' (period) is a one-character regular expression that matches any character except
NEWLINE.

[string]
A non-empty string of characters enclosed in square brackets is a one-character regular
expression that matches any one character in that string. If, however, the first character of
the string is a'"' (a circumflex or caret), the one-character regular expression-matches any
character except NEWLINE and the remaining characters in the string. The 'A' has this
special meaning only if it occurs first in the string. The'-' (minus) may be used to indicate
a range of consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The'-' loses this special meaning if it occurs first (after an initial'"', if
any) or last in the string. The']' (right square bracket) does not terminate such a string
when it is the first character within it (after an initial '"', if any); that is, []a-f] matches
either ']' (a right square bracket) or one of the letters a through f inclusive. The four
characters'.','*','[', and'\' stand for themselves within such a string of characters.

The following rules may be used to construct regular expressions:

* A one-character regular expression followed by'*' (an asterisk) is a regular expression that
matches zero or more occurrences of the one-character regular expression. If there is any
choice, the longest leftmost string that permits a match is chosen.

\(and\)
A regular expression enclosed between the character sequences\(and\) matches whatever
the unadorned regular expression matches. This applies only to grep.

GREP(l) Commands and Applications GREP(l)

\ n The expression \ n matches the same string of characters as was matched by an expression
enclosed between\(and \) earlier in the same regular expression. Here n is a digit; the
sub-expression specifie4 is that beginning with the n th occurrence of\(counting from the
left. For example, the expression A\(. *\)\1$ matches a line consisting of two repeated
appearances of the same string.

Concatenation
The concatenation of regular expressions is a regular expression that matches the concatenation of
the strings matched by each component of the regular expression.

\ < The sequence \< in a regular expression constrains the one-character regular expression
immediately following it only to match something at the beginning of a word; that is, either
at the beginning of a line, or just before a letter, digit, or underline and after a character not
one of these.

\ > The sequence \> in a regular expression constrains the one-character regular expression
immediately following it only to match something at the end of a word; that is, either at the
end of a line, or just before a character which is neither a letter, digit, nor underline.

\{ m \}
\{ m ,\}
\{ m , n \}

A

$

A regular expression followed by \{ m \}, \{ m , \ }, or\{ m, n \} matches a range
of occurrences of the regular expression. The values of m and n must be non-negative
integers less than 256; \{ m \} matches exactly m occurrences;\{ m ,\} matches at least
m occurrences;\{ m, n \} matches any number of occurrences between m and n
inclusive. Whenever a choice exists, the regular expression matches as many occurrences
as possible.

A circumflex or caret (A) at the beginning of an entire regular expression constrains that
regular expression to match an initial segment of a line.

A currency symbol ($) at the end of an entire regular expression constrains that regular
expression to match a fmal segment of a line.

The construction

example% A entire regular expression $

constrains the entire regular expression to match the entire line.

egrep accepts regular expressions of the same sort grep does, except for\(,\),\ n, \<, \>, \{, and
\}, with the addition of:

* A regular expression (not just a one-character regular expression) followed by '*' (an
asterisk) is a regular expression that matches zero or more occurrences of the one-character
regular expression. If there is any choice, the longest leftmost string that permits a match
is chosen.

+ A regular expression followed by '+' (a plus sign) is a regular expression that matches one
or more occurrences of the one-character regular expression. If there is any choice, the
longest leftmost string that permits a match is chosen.

19

GREP(l) Commands and Applications GREP(l)

? A regular expression followed by '?' (a question mark) is a regular expression that
matches zero or one occurrences of the one-character regular expression. If there is any
choice, the longest leftmost string that permits a match is chosen.

Alternation: two regular expressions separated by 'I' or NEWLINE match either a match
for the first or a match for the second.

() A regular expression enclosed in parentheses matches a match for the regular expression.

The order of precedence of operators at the same parenthesis level is'[]' (character classes), then
'*' '+' '?' (closures),then concatenation, then 'I' (alternation) and NEWLINE.

EXAMPLES
Search a file for a fixed string using fgrep:

example% fgrep intro /usr/share/man/man3/*.3*

Look for character classes using grep:

example% grep '[l-8]([CJMSNX])' /usr/share/man/manl/*.1

Look for alternative patterns using egrep:

example% egrep '(SallyiFred) (SmithiJonesiParker)' telephone.list

To get the filename displayed when only processing a single file, use .null as the second file in the
list:

example% grep 'Sally Parker' telephone.list /dev/null

FILES
.null

SEE ALSO
awk(l), gsh(l), vi(l), sed(l)

BUGS
Lines are limited to 1024 characters by grep; longer lines are truncated.

The combination of -I and -v options does not produce a list of files in which a regular expression
is not found. To get such a list, use the C shell construct (Note: this is NOT the same as gsh,
which does not support such programming).

foreach filename (*)
if ('grep" re" $filename I we -1' -- 0) echo$ filename

end

Ideally there should be only one grep.

DIAGNOSTICS
Exit status is 0 if any matches are found, I if none, 2 for syntax errors or inaccessible files.

20

HEAD(I) Commands and Applications HEAD(I)

NAME
head - give first few lines

SYNOPSIS
head [-count] ffile ...]

DESCRIPTION
This filter gives the first count lines of each of the specified files, or of the standard input. If count
is omitted it defaults to 10.

SEE ALSO
tail(1)

HISTORY
head appeared in 3 BSD.

21

LS(l) Commands and Applications LS(l)

NAME
ls - list contents of directory

SYNOPSIS
Is [-acdfilqrstulACLFR] name ...

DESCRIPTION

22

For each directory argument, Is lists the contents of the directory; for each file argument, Is
repeats its name and any other information requested. By default, the output is sorted
alphabetically. When no argument is given, the current directory is listed. When several
arguments are given, the arguments are first sorted appropriately, but file arguments are processed
before directories and their contents.

There are a large number of options:

-1 List in long format, giving mode, number of links,owner, size in bytes, and time of last
modification for each file. If the file is a special file the size field will instead contain the·
major and minor device numbers. If the file is a symbolic link the pathname of the linked
to file is printed preceded by"->".

-t Sort by time modified (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names begin with a period (.) or
whose GS/OS 'invisible' flag is set are not listed.

-A List all entries except for the current directory(.) and the parent directory(..).

-s Give size in kilobytes of each file.

-d If argument is a directory, list only its name; often used with -1 to get the status of a
directory.

-L If argument is a symbolic link, list the file or directory the link references rather than the
link itself. Note that if the link references a directory the link is always followed, unless
the -1 option is used.

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

-u Use time of last access instead of last modification for sorting (with the -t option) and/or
printing (with the -1 option).

-c Use time of me creation for sorting or printing.

-i For each file, print the i-number in the first column of the report.

-f Force each argument to be interpreted as a directory and list the name found in each slot.
This option turns off -1, -t, -s, and -r, and turns on -a; the order is the order in which
entries appear in the directory.

-F Cause directories to be marked with a trailing '/', sockets with a trailing '=', executable
files with a trailing'*', and symbolic links to files with a trailing'@'. Symbolic links to
directories are marked with a trailing'/', unless the -1 option is also used.

-R recursively list subdirectories encountered.

LS(l) Commands and Applications LS(l)

-1 force one entry per line output format; this is the default when output is not to a terminal.

-C force multi-column output; this is the default when output is to a terminal.

-q force printing of non-graphic characters in file names as the character'?'; this is the default
when output is to a terminal.

-n Causes Is to not sort files; this is useful when organizing libraries in alphabetical order for
ORCA languages.

The mode printed under the -1 option contains 11 characters which are interpreted as follows: the
first character is

e if the entry has a resource fork,
d if the entry is a directory;
b if the entry is a block-type special flle;
c if the entry is a character-type special me;
I if the entry is a symbolic link;
s if the entry is a socket, or

if the entry is a plain me.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions; the next refers to permissions to others in the same user-group; and the last to all
others. Within each set the three characters indicate permission respectively to read, to write, or to
execute the file as a program. For a directory, 'execute' permission is interpreted to mean
permission to search the directory. The permissions are indicated as follows:

i if the flle is invisible
d if the flle can be deleted
r if the me is readable;
w if the me is writable;
x if the me is executable;

if the indicated permission is not granted.

The group-execute permission character is given ass if the file has the set-group-id bit set; likewise
the user-execute permission character is given as s if the file has the set-user-id bit set.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks
is printed.

BUGS
The output device is assumed to be 80 columns wide.
GNO and GS/OS do not currently support links, user/group permissions, the concept of 'i
numbers', or 'special' mes; thus, Is options that deal with these are ignored.

23

LSEG(l) Commands and Applications LSEG(l)

NAME
lseg - list segments in an OMF flle

SYNOPSIS
lseg file

DESCRIPTION
lseg lists the segments of an OMF executable file. While it can list the segments in an intermediate
object file, the information isn't as useful.

lseg is intended for discovering the location of stack segments in existing applications (for editing
to smaller sizes), as an aid in determining how to segment large C files whose segments exceed the
bank size, and for deciding which segments to recombine after excessive segmentation.

AUTHOR
Jawaid Bazyar for GNO/ME.

BUGS

24

Doesn't detect non-OMF files, and thus can get very confused if you do "1 seg *" and one of the
files chosen isn't an OMF file. Usually the only way to terminate is to interrupt the program with
"C.

8/24/1993 GNO/ME Command Reference

MAKE(I) Commands and Applications MAKE(l)

NAME
make - build a program according to a program definition flle

SYNOPSIS
make [-d] [-p] [-s] inputFile

DESCRIPTION
make is a program maintenance utility that aids in creating programs from multiple source files.

inputFile is the name of the Program Description File. If absent, make defaults to using 'makefile'
as the PDF. make's options are as follows:

-d Display the modification date and time as each file is checked.
-p Operate in programmer/debug mode.
-s Operate in silent mode.

The logical definition of each of the PDF parameters follows:

#Comments begin with a pound sign"#".

TargetFile: DependentFilel DependentFile2 \ # Continuation line

DependentFilen
ShellCommandl
Shel1Command2

ShellCommandn

MAKE PARAMETERS
Comments can be placed anywhere in the PDF file. If a pound sign is in column one, the entire
line is treated as a comment. Anything following the pound is ignored by make. Comments may
also be placed on parameter lines containing Target/Dependent flle parameters.

-
The TargetFile parameter must start in column one and ends with a colon":". It can be a full path
name, partial path name or file in the current directory. This file is usually an object type file
created by a compiler. Dependent file parameter(s) follow the semicolon and are separated by a

·space, a comma or both. Dependent file parameters are usually CC, PAS, ASM or some type of
included SRC flle. Essentially, TargetFile is the result of compiling the dependent source files.

make obtains the modfication date and time of the Target file and then compares it to each of the
dependent file(s) moving left to right. If one of the dependent files has a date and time later than
the Target file, the subsequent ShellCommands are executed. Target/Dependent parameters may be
continued by placing a reverse slash "\" on the line following a dependent file parameter. make
will interpret the next line as dependent file parameters which may also be continued and so on.
There should not be any blank lines between the continued line and next line.

ShellCommands must contain a space in column one to differentiate them from Target/Dependent
file parameters. If make determines that a Target file needs to be recreated, the ShellCommands
following the Target/Dependent file parameters are passed, as is, to the shell interpreter. The
commands must be valid shell commands. ShellCommands are executed until a blank line is
encountered or an error occurs during the execution of the last command. If an error occurs, make
terminates without reading the remaining PDF parameters. If a blank line is read, make returns to
Target/Dependent.search mode.

MAKE Example

GNO/ME Command Reference 8/24/1993 25

MAKE(l) Commands and Applications MAKE(l)

File: Exarnple.Make - A MAKE example PDF #

Menu.Root: Menu.CC # Contains menu related routines
compile menu.cc keep=menu

Window.Root: Window.CC # Contains window handling routines
compile window.cc keep=window

Misc.Root: Misc.CC Misc.h # Contains miscellaneous program routines
compile misc.cc keep=misc

Main.Root: Main.CC Include/Main.h Include/Misc.h # Main program
compile rnain.cc keep=main

MyProg: Menu.Root Window.Root Misc.Root \ # re-link required?
Main.Root # check all dependent files

link main mise menu window keep=rnyprog # Shell comment
chtyp -t s16 myprog # change type to Sl6

End of PDF

The example PDF shows a program that is made up of 4 source files. The Main and Mise routines
are also dependent on include files containing information that if changed would force a re-compile
of that module.

One thing to keep in mind is the order of Target/Dependent parameters can be important. make
examines the PDF from the top down. If a file is modified due to a command later in the PDF,
make will not return to a previous Target/Dependent parameter in which that file was a dependent
file.

AUTHOR

26

Original make util· written by Larry Agle for ORCA; modifications made to make it look more like
UNIX make, and misc. bug fixes by Jawaid Bazyar.

8/24/1993 GNO/ME Command Reference

MAKEMAKE(l) Commands and Applications MAKEMAKE(l)

NAME
makemake - scan C source files for dependencies and create a makefile

SYNOPSIS
makemake source.c

DESCRIPTION
makemake takes the C source file(s) as input, and scans them for dependencies (#includes). It
does not count standard headers (#includes with the filename surrounded by < >).

The dependency information for all the source files specified is then written to a file 'makefile' in
the current directory.

makemake does not create link scripts nor does it put an executable dependendcy into the file, as
these require link information not available from the makemake command line.

AUTHOR
Jawaid Bazyar for GNO/ME's 'make' utility. He got tired of writing them by hand.

BUGS
makemake does not properly handle recursive or multiple includes of the same file. If the same
file is included more than once, makemake will list it that many times in the output makefile.
While multiple includes don't hurt anything, it can take more time to process the makefile.
Recursive includes will, of course, hang makemake.

27

MAN(l) Commands and Applications MAN(l)

NAME
man- online manual system (Version 1.6)

SYNOPSIS
man [section] manpagename

DESCRIPTION
man is the access point to the online manual system. man works as a shell that calls an
appropriate text formatter to format a manual page. There are currently three text formatters
available for the GNO/ME system.

nroff Unix standard typesetting package
aroff formats Apple Works GS(tm) documents
cat used to display preformatted documents

If the option section argument is specified, man looks specifically in that section of the manual for
the manpage. This is needed in situations where there are manpages with the same name in
different sections (for example, sleep(l) and sleep(3).

ENVIRONMENT
man recognizes the following variables from the shell.

USRMAN
This variable is required. It points to the manual system root directory.

PAGER
man uses more as the default pager. If you wish to use a different pager, less perhaps,
'then you must set this variable to point to that pager.

Compressed Manual Pages and Links
If man finds a file in the manual that ends in a '.1' suffix, it takes the contents of that file as a
'link' to the actual manpage. This is useful for manpages that describe multiple commands, and
prevents having multiple copies of the man page.

Manual pages may be compressed with compress or freeze, in which case the appropriate
program is called to uncompress the manual file.

SEE ALSO
more(l), less(l), compress(!), freeze(!).

28

MKDIR(l) Commands and Applications MKDIR(l)

NAME
mkdir - Makes directories

SYNOPSIS
mkdir dirname ...

DESCRIPTION
The mkdir command creates subdirectories with the dimames specified. If a me with that dimame
exists, an error is returned. dimame may be a full pathname, or a partial pathname, in which case
the directory is created as a subdirectory of the current directory.

mkdir only creates the fllename portion of the specified path. If, for instance, you do
mkdir /usr/local/bbs/foo

directory foo will only be created if all of /usr, local, and bbs exist.

AUTHOR
mkdir was written by James Brookes for GNO/ME.

29

MORE(l) Commands and Applications MORE(l)

NAME
more - text pager

SYNOPSIS
more [file ...]

DESCRIPTION
more allows the user to view the specified file(s) screen by screen or line by line. If no files are
specified, standard input is used.

Every time more has displayed a screen of text, it displays a prompt
- filename (xx%) -

indicating the percentage of the file that has been viewed and its filename. If standard input is
used,

I - more - I

is used as the prompt instead.

A number of key commands are available at the prompt

q quit viewing the current file, and move to the next file (if any)

[RETURN]
display the next line of the file

[ESC] abort more, including any more files that may have been specified

[SPACE]
display the next page of the file

AUTHOR
This version of more was written by Jawaid Bazyar and Derek Taubert.

30

PASSWD(l) Commands and Applications PASSWD(l)

NAME
passwd - set a user's login password

SYNOPSIS
passwd [-? I -v] [username]

DESCRIPTION
passwd changes the specified user's password. Only root is allowed to alter passwords other
than his own. If theusername is not given, the user's own login name is assumed. Users other
than root must then enter the old password to verify permission to change the password. Finally,
the user must type the desired new password twice to insure that no mistakes are made.

To cancel passwd, type CTRL-@ when asked to enter the new password.

The -? flag causes passwd to display a brief usage message, and the -v flag causes passwd to
display version information.

SEE ALSO
login(l)

FILES
/etdpasswd - contains the password information

AUTHOR
Eric Shepherd
Internet uerics@mcl.mcl.ucsb
AOL Sheppy

31

PURGE(l) Commands and Applications PURGE(l)

NAME
purge - deallocate purgeable memory handles

SYNOPSIS
purge [-v]

DESCRIPTION
This program purges all memory blocks marked purgable. This is very important when using the Orca
compilers and shells since certain blocks get left lying around and can (and have!) caused compiler
errors. By purging memory before compiles a large percentage of strange compiler errors can be
eliminated. After purging, all memory possible is then freed for usage.

-v gives a verbose listing of each handle being purged and before and after free memory
statistics.

The problems mentioned above usually occur when a program has over-written one of the ORCA
FastFile system's memory handles. Purging clears these handles and forces a reload from disk.

BUGS
Purging memory when non-shell applications are running could be dangerous.

32

RZ(l) Commands and Applications RZ(l)

NAME
rx, rc, rb, rz- Receive Files and Commands with XIY/ZMODEM

SYNOPSIS
rz -tv
rb -tv
rc -tv file
rx -tv file
gz file ... [-v]
rzCOMMAND

DESCRIPTION

33

This program uses error correcting protocols to receive files over a dial-in serial port from a variety
of programs running under many operating systems. It is invoked from a shell prompt manually,
or automatically as a result of an "sz file ... " command given to the calling program.

This is a shareware program copyrighted by Omen Technology INC.

Rz (Receive ZMODEM) receives one or more files with the ZMODEM protocol. Pathnames are
supplied by the sending program, and directories are made if necessary (and possible). Normally,
the "rz" command is automatically issued by the calling ZMODEM program, but defective
ZMODEM implementations may require starting rz manually.

Rb receives file(s) with YMODEM, accepting either standardl28 byte sectors or 1024 byte sectors
(sb -k option). The user should determine when the 1024 byte block length actually improves
throughput.

If True YMODEMTM (Omen Technology trademark) file information (file length, etc.) is received,
the file length controls the number of bytes written to the output dataset, and the modify time and
file mode (iff non zero) are set accordingly.

If True YMODEM file information is not received, slashes in the pathname are changed to
underscore, and any trailing period in the pathname is eliminated. This conversion is useful for
files received from CP/M and other historical systems.

Rc receives a single file with XMODEM-CRC or XMODEM-lk-CRC protocol. The user should
determine when the 1024 byte block length actually improves throughput without causing
problems. The user must supply the flle name to both sending and receiving programs. Up to 1023
garbage characters may be added to the received file.

Rx receives a single file with XMODEM or XMODEM-lk protocol. The user should determine
when the 1024 byte block length actually improves throughput without causing problems. The
user must supply the file name to both sending and receiving programs. Up to 1023 garbage
characters may be added to the received file.

Rz may be invoked as rzCOMMAND (with an optional leading- as generated by login(l)). For
each received file, rz will pipe the file to "COMMAND filename" where filename is the name of
the transmitted file with the file contents as standard input.

Each file transfer is acknowledged when COMMAND exits with 0 status. A non zero exit status
terminates transfers.

RZ(l) Commands and Applications RZ(l)

A typical use for this form is rzmail which calls rmail(l) to post mail to the user specified by the
transmitted file name. For example, sending the file "caf' from a PC-DOS system to rzmail on a
Unix system would result in the contents of the DOS file "caf' being mailed to user "caf'.

The meanings of the available options are:

tim Change timeout to tim tenths of seconds.
v Verbose causes a list of file names to be appended to /tmp/rzlog . More v's generate more

detailed debugging output.

DIAGNOSTICS
Exit status is as follows: 0 for successful transfers. 1 if unrecoverable errors are detected. 2 if
syntax errors or file access problems are detected. 3 if the program was terminated by a caught
interrupt.

SEE ALSO
sz(l).

NOTES
ZMODEM's support of X OFF/X ON flow control allows proper operation in many environments
that do not support XMODEM uploads. Unfortunately, not all Unix versions support input flow
control. The 1TY input buffering on some systems may not adequately buffer long blocks or
streaming input at high speed. You should suspect this problem when you can't send data to the
Unix system at high speeds using ZMODEM, YMODEM-1k or XMODEM-1k, but YMODEM
with 128 byte blocks works properly.

If a program that does not properly implement the specified file transfer protocol causes rz to
"hang" the port after a failed transfer, either wait for rz to time out or keyboard a dozen Ctrl-X
characters.

Many programs claiming to support YMODEM only support XMODEM with 1k blocks, and they
often don't get ~at quite right

BUGS
This version of rz does not support some ZMODEM features.
The ASCIT option's CRILF to NL translation merely deletes CR's.

ZMODEM CAPABILITIES
Rz supports ZMODEM command execution (zcommand), incoming ZMODEM binary (-b), ASCIT
(-a), newer(-n), newer+longer(-N), protect (-p), Crash Recovery(-r), clobber (-y), match+clobber
(-Y), compression(-Z), and append (-+) requests. Other options sent by the sender are ignored.
The default is protect (-p) and binary (-b).

FILES
/tmp/rzlog stores debugging output generated with -vv option

34

SCRIPT (I) Commands and Applications SCRIPT(l)

NAME
script - make typescript of a terminal session

SYNOPSIS
script [-a] [filename]

DESCRIPTION
script makes a typescript of everything printed on your terminal. The typescript is written to
filename , or appended to filename if the -a option is given. It can be sent to the line printer later
with lpr(l). If no file name is given, the typescript is saved in the file typescript .

The script ends when the forked shell exits.

OPTIONS
-a Append the script to the specified file instead of writing over it

SEE ALSO
Ipr (1), pty (4)

BUGS
script placeseverything in the log file. This is not what the naive user expects.

35

SLEEP(l) Commands and Applications

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(I)

Sleep suspends execution for time seconds. It is used to execute a command after a certain
amount of time as in a script:

SEE ALSO

sleep 105
command

alarm(3C), sleep(3)

BUGS
Time must be less than 2,147,483,647 seconds.

36

SPLIT(l) Commands and Applications SPLIT(l)

NAME
split - split a ftle into pieces

SYNOPSIS
split [- number] [infile [outfile]]

DESCRIPTION
split reads injile and writes it in number -line pieces (default 1000) onto a set of output files (as
many files as necessary). The name of the first output file is outfile with aa appended, the second
file is outfileab , and so on lexicographically.

If no outfile is given, xis used as default (output files will be called xaa, xab , etc.).

If no in file is given, or if '-' is given in its stead, then the standard input file is used.

OPTIONS
-number Number of lines in each piece.

37

STTY(l) Commands and Applications STTY(l)

NAME
stty - set and view terminal options and parameters

SYNOPSIS
stty [option ...] [charoption c ...]

DESCRIPTION
If no options are specified, stty prints out all the current terminal option settings. options
represent boolean flags in the terminal parameters, and are as follows:

raw
-raw
ehco
-echo
cbreak
-cbreak

turns on RAW mode (no character or line processing)
turns off RAW mode
if in CBREAK or COOKED mode, echoes input characters
echo mode off
turns on CBREAK mode (single character processing)
turns off CBREAK mode (line-at-a-time processing)

Charoptions represent variables in the terminal interface, and are as follows:

intr c
start c
stop c
eof c
susp c

sets the interrupt character (normally "C)
sets the start character (normally "Q)
sets the stop character (normally "S)
sets the eof character (normally "D)
sets the suspend character (normally "Z)

c may be defined either as an octal number such as 003, or in control character format ("C).

SEE ALSO
tty(4)

38

SUM(I) Commands and Applications SUM(l)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [file]

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of
blocks in the file. Stdin is used if no file names are given. Sum is typically used to look for
corrupted flles, or to validate a file communicated over some transmission line.

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the block count.

SEE ALSO
wc(l).

NOTE
Sum is pretty slow on large files when running on the GS. If anyone has a faster algorithm for
computing the 16-bit checksum, I'd really appreciate seeing it.

AUTHOR
Marek Pawlowski- marekp@pnet9l.cts.com

39

SZ(l) Commands and Applications SZ(l)

NAME
sx, sb, sz- Send Files with ZMODEM, YMODEM, or XMODEM
zcommand, zcommandi- Send COmmands with ZMODEM

SYNOPSIS
sz [-+abdefkLlNnopTtuvyYZ] file ...
sb [-dfktuv] file ...
sx [-ktuv] file
zcommand [-otv] COMMAND
zcommandi [-otv] COMMAND
sz -TT

DESCRIPTION

40

Sz (send ZMODEM) uses the ZMODEM, YMODEM or XMODEM error correcting protocol to
send one or more files over a dial-in serial port to a variety of programs running under PC-DOS,
CP/M, Unix, VMS, and other operating systems.

This is a shareware program copyrighted by Omen Technology INC.

Sz sends one or more files with ZMODEM protocol.

ZMODEM greatly simplifies file transfers compared to XMODEM. In addition to a friendly user
interface, ZMODEM provides Personal Computer and other users an efficient, accurate, and robust
file transfer method.

ZMODEM provides complete END-TO-END data integrity between application programs.
ZMODEM's 32 bit CRC catches errors that sneak into even the most advanced networks.

Advanced file management features include AutoDownload (Automatic file Download initiated
without user intervention), Display of individual and total file lengths and transmission time
estimates, Crash Recovery, selective flle transfers, and preservation of exact file date and length.

The -y option instructs the receiver to open the file for writing unconditionally. The -a option
causes the receiver to convert Unix newlines to PC-DOS carriage returns and linefeeds.

Sb sends one or more files with YMODEM or ZMODEM protocol. The initial ZMODEM
initialization is not sent. When requested by the receiver, sb supports YMODEM-g with "cbreak"
tty mode, XON/XOFF flow control, and interrupt character set to CAN (AX). YMODEM-g
increases YMODEM throughput over error free channels (direct connection, X.PC, etc.) by
disabling error recovery.

On Unix systems, additional information about the file is transmitted. If the receiving program uses
this information, the transmitted flle length controls the exact number of bytes written to the output
dataset, and the modify time and file mode are set accordingly.

Sx sends a single file with XMODEM or XMODEM-lk protocol (sometimes incorrectly called
"ymodem"). The user must supply the file name to both sending and receiving programs.

If sz is invoked with $SHELL set and if that variable contains the string rsh or rksh (restricted
shell), sz operates in restricted mode. Restricted mode restricts pathnames to the current directory
and PUBDIR (usually /usr/spool/uucppublic) and/or subdirectories thereof.

8/24/1993 GNO/ME Command Reference

SZ(l) Commands and Applications SZ(l)

The fourth form sends a single COMMAND to a ZMODEM receiver for execution. Zcommand
exits with the COMMAND return value. If COMMAND includes spaces or characters special to
the shell, it must be quoted.

The fifth form sends a single COMMAND to a ZMODEM receiver for execution. Zcommandi
exits as soon as the receiver has correctly received the command, before it is executed.

The sixth form (sz -TI) attempts to output all 256 code combinations to the terminal. If you are
having difficulty sending files, this command lets you see which character codes are being eaten by
the operating system.

The meanings of the available options are:

+ Instruct the receiver to append transmitted data to an existing file (ZMODEM only).
a Instruct the ZMODEM receiver to convert text file format as appropriate for the

receiving system. Valid only for ZMODEM.
b (Zmodem) Binary override: transfer file without any translation.
c Instruct the receiver to change the pathname if the destination file exists.
d Change all instances of 11

•
11 to II/" in the transmitted pathname. Thus, C.omenBOOOO

(which is unacceptable to MSDOS or CP/M) is transmitted as C/omenBOOOO. If the
resultant filename has more than 8 characters in the stem, a II. II is inserted to allow a
total of eleven.

e Escape all control characters; normally only XON, XOFF, DLE, CR-@-CR, and
Ctrl-X are escaped.

f Send Full pathname. Normally directory prefixes are stripped from the transmitted
filename.

k (XNmodem) Send files using 1024 byte blocks rather than the default 128 byte blocks.
1024 byte packets speed file transfers at high bit rates. (ZMODEM streams the data
for the best possible throughput.)

L N Use ZMODEM sub-packets of length N. A larger N (32 <= N <= 1024) gives
slightly higher hroughput, a smaller N speeds error recovery. The default is 128
below 300 baud, 256 above 300 baud, or 1024 above 2400 baud.

l N Wait for the receiver to acknowledge correct data every N (32 <= N <= 1024)
characters. This may be used to avoid network overrun when XOFF flow control is
lacking.

n (Zmodem) Send each file if destination file does not exist. Overwrite destination file if source
file is newer than the destination file.

N (Zmodem) Send each file if destination file does not exist. Overwrite destination file if source
file is newer or longer than the destination file.

o (Zmodem) Disable automatic selection of 32 bit CRC.
p (Zmodem) Protect existing destination files by skipping transfer if the destination file exists.
r (Zmodem) Resume interrupted file transfer. If the source file is longer than the destination file,

the transfer commences at the offset in the source file that equals the length of the
destination file.

IT As above, but compares the files (the portion common to sender and reciever) before
resuming the transfer.

t tim Change timeout to tim tenths of seconds.
u Unlink the file after successful transmission.
w N Limit the transmit window size to N bytes (ZMODEM).
v Verbose causes a list of file names to be appended to /tmp/szlog. More v's generate

more output.
y Instruct a ZMODEM receiving program to overwrite any existing file with the same

name.
GNO/ME Command Reference 8/24/1993 41

SZ(l)

y

z

Commands and Applications SZ(l)

Instruct a ZMODEM receiving program to overwrite any existing file with the same
name, and to skip any source files that do have a file with the same pathname on the
destination system.
Use ZMODEM file compression to speed file transfer.

DIAGNOSTICS
Exit status is as follows: 0 for successful transfers. 1 if unrecoverable errors are detected. 2 if
syntax errors or file access problems are detected. 3 if the program was terminated by a caught
interrupt.

EXAMPLE
ZMODEM File Transfer CGNO to remote system)
% sz -a *.c
This single command transfers all .c files in the current directory with conversion (-a) to end of line
conventions appropriate to the receiving environment. With ZMODEM AutoDownload enabled,
will automatically recieve the files after performing a security check.

% sz -Yan *.c *.h
Send only the .c and .h files that exist on both systems, and are newer on the sending system than
the corresponding version on the receiving system, converting Apple to UNIX text format.

SEE ALSO
rz(l).

Compile time options required for various operating systems are described in the source file.

FILES
32 bit CRC code courtesy Gary S. Brown.

sz.c, crctab.c, rbsb.c, zm.c, zmr.c, zmodem.h Unix source files

/tmp/szlog stores depugging output (sz -vv)

TESTING FEATURE
The command "sz -T file" exercises the Attn sequence error recovery by commanding errors

with unterminated packets. The receiving program should complain five times about binary
data packets being too long. Each time sz is interrupted, it should send a ZDAT A header followed
by another defective packet. If the receiver does not detect five long data packets, the Attn
sequence is not interrupting the sender, and the Myattn string in sz.c must be modified.

After 5 packets, sz stops the "transfer" and prints the total number of characters "sent" (Tcount).
The difference between Tcount and 5120 represents the number of characters stored in various
buffers when the Attn sequence is generated.

NOTES

42

When using buffered modems at high speed, particular attention must be paid to flow control. The
modem and Unix must agree on the flow control method. Sz on USG (SYS IIIJV) systems uses
XON/XOFF flow control. If flow control cannot be properly set up, Try a "-w 2048" option to
enforce protocol level flow control. Experiment with different window sizes for best results.

If a program that does not properly implement the specified file transfer protocol causes sb to
"hang" the port after a failed transfer, either wait for sb to time out or type a dozen Ctrl-X
characters.

8/24/1993 GNO/ME Command Reference

SZ(l) Commands and Applications SZ(l)

Many programs claiming to support YMODEM only support XMODEM with 1k blocks, and they
often don't get that quite right. XMODEM transfers add up to 127 garbage bytes per file.
XMODEM-lk and YMODEM-1k transfers use 128 byte blocks to avoid extra padding.

YMODEM programs use the file length transmitted at the beginning of the transfer to prune the file
to the correct length; this may cause problems with source files that grow during the course of the
transfer. This problem does not pertain to ZMODEM transfers, which preserve the exact file length
unconditionally.

Most ZMODEM options are merely passed to the receiving program; some programs do not
implement all of these options.

Circular buffering and a ZMODEM sliding window should be used when input is from pipes
instead of acknowledging frames each 1024 bytes. If no files can be opened, sz sends a ZMODEM
command to echo a suitable complaint; perhaps it should check for the presence of at least one
accessible ftle before getting hot and bothered.

BUGS
On at least one BSD system, sz would abnormally end if it got within a few kilobytes of the end of
file. Using the "-w 8192" flag fixed the problem. The real cause is unknown, perhaps a bug in
the kernel TTY output routines.

The test mode leaves a zero length file on the receiving system.

GNO/ME
The usual manner of invoking sz to send files from a Ilgs is as follows:

Connect to the other computer with a term program such as TelCom GS

Start the X/Y/Zmodem receive on the other side

Get/Quit back to the GNO Shell

Type:
sz -v -v -b filename! filename2 .. <.ttya >.ttyb

You may put this operation in the background of course. Tests have shown no data loss up to 9600
baud in background operation.

The -b option ensures binary mode. You must use this if you're sending a Shrinklt archive or
other binary file. For plain text files you can leave off the -b.

GNO/ME Command Reference 8/24/1993 43

TAR(l) Commands and Applications TAR(l)

NAME
tar - extract and view tape archives

SYNOPSIS
tar [-]{xlt}f[v] archive

DESCRIPTION
tar lists the contents of and extracts flies from UNIX tape archives (*.tar files).

Traditionally, tar does not require the normal'-' character to denote its arguments. The option
flags are as follows:

-x Extract files from the archive
-v Verbose mode (tell what tar is doing)
-t Tell mode (list files in archive)
-! Use a file on disk instead of a tape

Since the standard IIGS filesystem is not as flexible, filename-wise, as UNIX filesystems, some
pre-processing is performed on filenames created when an archive is extracted.

• If a tar filename contains a double-/ (possible under UNIX if an archive was created by
specifying a directory with a trailing slash), tar converts it to a single/.

• If a filename contains non-alpha numeric characters, they are converted to
periods ('. ').

tar does not maintain the file protection bits from UNIX, nor does it maintain the creation and
modification dates.

BUGS

44

Does not create .tar archives
Does not work with raw devices, only files
Does not allow user to specify which files to extract from archive
tar should use the GS/OS JudgeName call.
The -x and -t options should be exclusive, but are not.

1EE(l) Commands and Applications 1EE(l)

NAME
tee - Pipe fitting.

SYNOPSIS
tee [-ai] [file ...]

DESCRIPTION
The tee utility copies standard input to standard output, making a copy in zero or more files. The
output is unbuffered.

The following options are available:

-a Append the output to the flies rather than overwriting them.

-i Ignore the SIGINT signal.

The following operands are available:

file A pathname of an output file .

The tee utility takes the default action for all signals, except in the event of the -i option.

The tee utility exits 0 on success, and >() if an error occurs.

STANDARDS
The tee function is expected to be POSIX p1003.2 compatible.

SEE ALSO
GNO/Shell User's Manual , signal(2)

45

TIME(l) Commands and Applications TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The time command lets the specified command execute and then outputs the amount of elapsed
real time, the time spent in the operating system, and the time spent in execution of the command.
Times are reported in seconds and are written to standard error.

The time command can be used to cause a command to be timed no matter how much
CPU time it takes. For example:

% /bin/time cp /etc/rc /usr/biWrc
0.1 real 0.0 user 0.0 sys

%/bin/time nroff sample!> samplel.nroff
3.6 real 2.4 user 1.2 sys

This example indicates that the cp command used negligible amounts of user (user) and system
time (sys), and had an elapsed time (real) of 1/10 second (0.1). The nroffcommand used 2.4
seconds of user time and 1.2 seconds of system time, and required 3.6 seconds of elapsed time.

RESTRICTIONS

46

Times are measured to an accuracy of 1/60 second. Thus, the sum of the user and system times
can be larger than the elapsed time, but this isn't likely.

TR(l) Commands and Applications TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [stringl [string2]]

DESCRIPTION
tr copies the standard input to the standard output with substitution or deletion of selected
characters. The arguments string 1 and string2 are considered sets of characters. Any input
character found in string] is mapped into the character in the corresponding position within
string2. When string2 is short, it is padded to the length of string] by duplicating its last character.

In either string the notation 'a- b' denotes a range of characters from a tobin increasing ASCII
order. The character \, followed by 1, 2 or 3 octal digits stands for the character whose ASCII
code is given by those digits. As with the shell, the escape character\, followed by any other
character, escapes any special meaning for that character.

When string2 is short, characters in string] with no corresponding character in string2 are not
translated.

In either string the following abbreviation conventions introduce ranges of characters or repeated
characters into the strings.

[a- z]
Stands for the string of characters whose ASCII codes run from character a to character z,
inclusive.

(a* n]
Stands for n repetitions of a. If the first digit of n is 0, n is considered octal; otherwise, n
is taken to be decimal. A zero or missing n is taken to be huge; this facility is useful for
padding string2.

OPTIONS
Any combination of the options -c, -d, or -s may be used:

-c Complement the set of characters in string I with respect to the universe of characters
whose ASCII codes are 01 through 0377 octal;

-d Delete all input characters in string I.

-s Squeeze all strings of repeated output characters that are in string2 to single characters.

EXAMPLE
The following example creates a list of all the words in filename one per line in filename2, where a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect '\' from
the shell. 012 is the ASCII code for NEWLINE.

tr -cs A-Za-z '\012' < filename! > filename2

SEE ALSO
conv(l), more(l)

BUGS
Will not handle ASCII NUL in string] or string2. tr always deletes NUL from input.

47

TR(l) Commands and Applications TR(l)

48

UNSHAR(l) Commands and Applications UNSHAR(l)

NAME
unshar- extracts files from shar archives

SYNOPSIS
unshar {-overwrite} { -nosort} file 1 ftle2 ...

DESCRIPTION
Unshar is a utility which extracts files from the ubiquitous Unix shar archives. It has the
following advantages over existing unshar utilities:

- Small and fast
- Handles many cat and sed formats
- Allows extraction of subdirectories
-Understands ./file type filenames
- Understands file continuation with >>
- Sorts file list by Subject: line
-Exits cleanly with CTRL-C

Unshar treats quotes and imbedded escape sequences intelligently and handles all the cat and sed
formats the author ever seen, including sed commands which strip off more than one letter. There
may be some formats it won't handle, but I've yet to find them.

Invoke unshar with as many archive filenames as you like. All the files in each archive will be
extracted into the current directory. If a file already exists, unshar asks you how you want to
handle it. Entering 'Y' will overwrite the existing file with the version in the archive, 'N' will skip
past the file without extracting it, and 'A' will overwrite this file and any other existing files
without prompting you again. Including the -o flag on the command line causes files to always be
overwritten.

OPERATION
Unshar scans through each archive specified on the command line, looking for lines beginning
with 'cat' or 'sed'. All other lines are ignored. In particular, 'echo' lines are not echoed. This way,
you don't get a load of messages which are in any case fairly meaningless, because the operations
they are describing are unsupported .

. When a shar archive contains a file for which a full pathname is given (as in source/file.c for
example) unshar will create whatever directories are necessary. It also strips off leading/'s and
./'s, to make filenames understandable by GS/OS.

Occasionally, a shar file distribution will contain a file too large to fit into a single shar archive
(archives are typically limited to around 60K or so for transmission over Usenet). One method
some archivers use to get around this is to split the large file into several smaller parts, and use the
shell'>>' redirection operator to concatenate the parts together while extracting the files. In order
for this to work properly, it is important that the archive files are extracted in the correct sequence;
otherwise, all the pieces will get joined together in the wrong order.

To assist with this, unshar does a prescan over all the files listed on the command line, and
checks each file for a "Subject:" line. If it finds such a line, it scans it looking for any hints as to
where the file comes in the sequence. Most shar files you feed to unshar will be directly from a
Usenet sources or binaries group, and will include a volume and issue reference on the subject
line. If unshar can't find such an issue reference, it will look for a Part number and use that
instead.

49

UNSHAR(l) Commands and Applications UNSHAR(l)

Unshar then extracts the archives starting with the lowest numbered file. This helps to ensure that
those extra-large files are created correctly. You can tell when such a file is being created, because
unshar says "Extending file" rath~r than "Unsharing flle". ·

If for some reason you want the flles to be unarchived in the order listed on the command line, you
can specify the '-n' (nosort) switch, and no sorting will take place.

HISTORY
Vl.O First release.

Vl.l Added support for some more unusual uses of sed.
Increased speed, and reduced size slightly.
Fixed bug that truncated lines longer than 80 chars.

V 1.2 Added support for sorting by Subject: line
Added support for flle appending via >>
Fixed small bug in detection of disk write errors

AUTHOR
Eddy Carroll (EMAIL: ecarroll@vaxl.tcd.ie)
Apple //gs port by Andy McFadden (fadden@uts.amdahl.com).

50

WC(l) Commands and Applications WC(l)

NAME
we - display a count of lines, words and characters

SYNOPSIS
we [-I we] [filename ...]

DESCRIPTION
we counts lines, words, and characters in filename s, or in the standard input if no filename
appears. It also keeps a total count for all named files. A word is a string of characters delimited
by SPACE, TAB, or NEWLINE characters.

OPTIONS
Whenfilename s are specified on the command line, their names will be printed along with the
counts.

The default is -lwe (count lines, words, and characters).

-I Count lines.
-w Count words.
-e Count characters.

EXAMPLE
example% we $USRMAN/csh.1 $USRMAN/sh.1 $USRMAN/telnet.1
1876 11223 65895 /usr/share/man/man1/csh.1
674 3310 20338 /usr/share/man/man1/sh.1
260 1110 6834 /usr/share/man/man1/telnet.1
2810 15643 93067 total
example%

51

WHO(l) Commands and Applications WHO(l)

NAME
who - who is on the system

SYNOPSIS
who [who-file] [am I]

DESCRIPTION
Who, without an argument, lists the login name, terminal name, and login time for each current
UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains a
record of all the logins since it was created. Then who lists logins, logouts, and crashes since the
creation of the wtmp file. Each login is listed with user name, terminal name (with '/dev/'
suppressed), and date and time. When an argument is given, logouts produce a similar line without
a user name. Reboots produce a line with 'x' in the place of the device name, and a fossil time
indicative of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you'), who tells who you are logged in
as.

FILES
/etc/utmp

SEE ALSO
ge~id(2), utmp(5)

52

yes (I) Commands and Applications yes(l)

NAME
yes- be repetitively affinnative

SYNOPSIS
yes [expletive]

DESCRIPTION
Yes repeatedly outputs "y", or if expletive is given, that is output repeatedly. Termination is by
interrupt.

53

INTR0(2) System Calls INTR0(2)

NAME
intro - introduction to GNO system calls

DESCRIPTION
This section describes, in alphabetical order, the system calls and kernel interfaces available for
GNO. Certain distinctions of purpose are made in the headings.

Manual Page Command Syntax
Unless otherwise noted, calls described in the SYNOPSIS section of a manual page accept
parameters and require the

name [-option ...] [cmdarg ...]

where:

[] Surround an option or cmdarg that is not required.

name

option

Indicates multiple occurrences of the option or cmdarg.

The name of an executable file.

(Almost always preceded by a"-".)
noargletter ... or,
argletter optarg [, ...]

noargletter A single letter representing an option without an option-argument. Note that more
than one noargletter option can be grouped after one "-".

argletter A single letter representing an option requiring an option-argument.

optarg An option-argument (character string) satisfying a preceding argletter. Note that groups
of optargs following an argletter must be separated by white space and quoted.

cmdarg Path name (or other command argument) not beginning with a"-", or"-" by itself
indicating the standard input.

SEE ALSO
GNO/ME Kernel Reference Manual

54

ALARM(2) System Calls ALARM(2)

NAME
alarm - set and reset alarm timer

SYNOPSIS
#include <gno/gno.h>
long int alarm(long int seconds);

DESCRIPTION
alarm sets the counter on the calling process' alarm timer to the value specified in seconds. If
seconds is (long int) 0, the alarm timer is disabled.

When an alarm timer terminates (by counting down to 0), the calling process is sent a SIGALRM
signal.

RETURN VALUE
The amount of time previously remaining in the timer is returned. No errors are possible.

SEE ALSO
signal(2), sigpause(2)

55

DUP(2) System Calls DUP(2)

NAME
dup,dup2 - duplicate open file descriptors

SYNOPSIS
#include <gno/gno.h>

int dup(intjiledes);
int dup2(intfiledes, intfiledes2);

DESCRIPTION
Given the file descriptor of a valid open file, dup creates a new file descriptor that is synonymous
withfiledes. The new file descriptor is returned. The second form of the call forces an existing
file descriptor filedes2 to refer to the same file as file des. If filedes2 already refers to an open file,
it is closed first.

RETURN VALUE
dup returns the new file descriptor, and dupl returns 0 if the calls are successful. In the event of
an error, -1 is returned and errno is set as follows:

[EBADF]
[EMFILE]

filedes refers to an invalid file descriptor (not an open file)
no more files can be opened; process is at current limit (32).

SEE ALSO
fork(2), open(2)

56

EXECVE(2) System Calls EXECVE(2)

NAME
execve - replace current process with an executable image from a file

SYNOPSIS
#include <gno/gno.h>
int execve(char *pathname, char *cmdline);

DESCRIPTION
execve is the preferred method for loading program files to be executed under the GNO system.
A new useriD is allocated for the process, and the GS/OS System Loader is used to bring the
executable file specified by pathname into memory. pathname can be a partial or complete path.
The executable loaded replaces the executable associated with the current process.

If the executable file does not contain an OMF Stack Segment (SEGKIND = $12), a default stack
of 4096 bytes is allocated to the process. The direct-page pointer is set to the bottom of the stack
memory (for C programs this is irrelevant).

The parameter cmdline is the list of arguments to be passed to the new process (a copy is actually
passed). C programs parse cmdline automatically, and the individual pieces can be accessed
through the argc/argv arguments to main(). cmdline can be accessed from assembly langugage
through the X (high-order word of cmdline) andY (low-order word) registers. However, if the
executable file is of file type S16 ($B3), the cmdline argument is ignored and the X&Y registers
are set to null (i.e. the command line is only passed to an EXE executable). The 8 characters
"BYTEWRKS" are prepended to cmdline before being passed to the process (this is the same
identifier used by the ORCA shell). This Shell Identifier distinguishes the GNO and ORCA
environments from others that don't support the full range of shell calls, and can be accessed from
C with the library function shellid(). The A register is set to the useriD allocated for the process.

GS/OS prefixes 1 and 9 are set to the pathname of the directory containing the executable file; if
the length of the path exceeds 64 characters prefix 1_is set to the null prefix (length 0).
The following information is inherited by the new executable: current machine state, controlling
TTY, process group ID, and prefixes 0 and 8.

Caught signals are reset to the default action. Ignored signals remain ignored across the execve.
Any signals in the parent's queue are not passed to the child, and the child is started with no
signals blocked. The child inherits all the open files of its parent.

RETURN VALUE
A successful execve does not return, as the current executable is replaced with the one specified in
the call. If for some reason the call fails, execve returns SYSERR (-1), and errno is set to one of
the following:

BUGS

[ENOENT]
[EIO]

the pathname specified does not exist
some general 1/0 error occurred trying to load the executable

ORCA/C 1.3 and previous ignore any stack space allocated for it by the GS/OS Loader (which
execve calls) or by default in execve. Stack space in ORCA/C programs is determined by code in
the .root object file, and can be set with the #pragma stacksi ze directive. Read the chapter on
GNO Compliance in the GNO Kernel Reference Manual for more information on this topic.
ORCA/C 2.0 and newer use the system-provided stack space.

SEE ALSO
exec(2), fork(2), wait(2), ioctl(2), tty(4), GNO Kernel Reference Manual

57

EXECVE(2) System Calls EXECVE(2)

58

FORK(2) System Calls FORK(2)

NAME
fork - start a new process from inside the current application space

SYNOPSIS
#include <gno/gno.h>

int fork(void *addr);

DESCRIPTION
fork's argument addr is typically the address of a C function, although it can be any valid address
inside the IIGS RAM space. fork creates a new entry in the process table, and sets up default
settings for the new process. The process is allocated lK (1024 bytes) of stack space, and the
direct page is set to the beginning of this memory. The process is executed in 16-bit full native
mode, and the registers upon entry to the routine are set as follows:

A the useriD assigned to the process
X 0 .
y 0

The child inherits the memory shadowing and machine state parameters of the parent, as well as
signal blocking information and the ID of the controlling TTY. In addition, the child inherits all the
open files of its parent.

A forked process may share code with other children or the parent. However, this is only allowed
in a forWard manner; any forked process that exits by function return will be terminated. Note that
any shared global variables will need to be moderated with some type of mutual exclusion, either
the kernel semaphore(2) routines or custom routines. This includes C stdio routines.

RETURN VALUE
fork returns the process ID of the child, or -1 (SYSERR) if an error occurs, in which case errno
is set as follows:

[ENOMEM] not enough memory to create the new process
[EAGAIN] all process slots full; no more can be created

NOTES
There is no way to pass parameters directly to a child with fork(). Use fork2() instead.

CAVEATS
Most UNIX forks take no parameters; they copy the entire address space of the calling process and
return with a different value in the parent and child. Due to hardware limitations, this sort of
manipulation isn't possible on the llgs. UNIX programs utilizing fork will have to be modified
slightly to work under GNO.

SEE ALSO
fork2(2), exec(2), execve(2), wait(2), screate(2)

59

GETPID(2) System Calls GETPID(2)

NAME
getpid, getpgrp, getppid - return infonnation about processes

SYNOPSIS
#include <gno/gno.h>

int getpid(void);
int getpgrp(int pid);
int getppid(void);

DESCRIPTION
The process ID is a unique value associated with a process, and is needed for many system calls.
pid's can range from 0 (Kernel Null Process) to 32767. Some programs use getpid to seed
random number generators. A much better approach on the IIGS is to use the horizontal and
vertical positions of the electron gun, which can be obtained by reading the word value at absolute
memory location $EOc02E.

getpgrp returns the process group ID of the specified process, pid. This function is usually used
when you wish to send a signal to all members of a process group using k.ill(2).

RETURN VALUE
getpid: The process ID of the caller is returned. No errors are possible.
getppid: The process ID of the caller's parent is returned. No errors are possible.
getpgrp: The process group ID of the specified process is returned. In the event of an error,

getpgrp returns -1 and sets errno to the appropriate error code:
[ESRCH 1 pid is not a valid process ID

NOTES
getpgrp() is provided solely for compatibility with previous versions of the UNIX operating
system. The new Job Control interface should be used exclusively in new software.

SEE ALSO
fork(2), job control(2), ioctl(2), GNO Kernel Reference Manual

60

GETUID(2) System Calls

NAME
getuid, geteuid, getgid, getegid - get user and group identity
getpgrp - get process group

SYNOPSIS
#include <sys/types.h>
uid_t = getuid(void)
uid_t = geteuid(void)
gid_t = getgid(void)
gid_t = getegid(void)

DESCRIPTION

GETUID(2)

Getuid returns the real user ID of the current process, geteuid the effective user ID. The real
user ID identifies the person who is logged in. The effective user ID gives the process additional
permissions during execution of "set-user-ID" mode processes, which use getuid to determine the
real-user-id of the process that invoked them.

Getgid returns the real group ID of the current process, getegid the effective group ID. The real
group ID is specified at login time. The effective group ID is more transient, and determines
additional access permission during execution of a "set-group-ID" process, and it is for such
processes that getgid is most useful.

NOTES
The setr*() functions are not currently implemented in GNO/ME, because set-uid and set-group
ill behavior is specific to the UNIX filesystem.

SEE ALSO
setreuid(2), setregid(2), setgid(3), tty(4)

61

IOCTL(2) System Calls IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(intfd, unsigned long request, void *argp)

DESCRIPTION
Ioctl perfonns a variety of functions on open file descriptors. In particular, many operating
characteristics of character special files (e.g. tenninals) may be controlled with ioctl requests. The
writeups of various devices in section 4 discuss how ioctl applies to them.

An ioctl request has encoded in it whether the argument is an "in" parameter or "out" parameter,
and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl request
are located in the file <sys/ioctl.h>.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Ioctl will fail if one or more of the following are true:

[EBADF]

[Ef:'lOTTY]

[ENOTTY]

[EINVAL]

Fd is not a valid descriptor.

F d is not associated with a character special device.

The specified request does not apply to the kind of object that the descriptor fd
references.

Request or argp is not valid.

SEE ALSO
execve(2), tty(4)

62

JOBCONTROL(2) System Calls JOBCONTROL(2)

NAME
tcnewpgrp, settpgrp, tctpgrp - interface for the new job control model

SYNOPSIS
#include <gno/gno.h>

int tcnewpgrp(intfdtty);
int settpgrp(intfdtty);
int tctpgrp(intfdtty, int pill);

DESCRIPTION
The job control interface is used to control what processes are "in the foreground" on a particular
terminal. Every tty has a process group. Each process is a member of a process group. A process
is a foreground process on a tty if and only if that process and the terminal belong to the same
process group. Certain characters typed on a tty with a nonzero process group produce signals
sent to every process which is a member of the group (e.g. AC).

A process is suspended (stopped) if it performs a sufficiently invasive operation on a tty with a
different process group. This includes these job control calls, reads from a terminal, and writes to
a terminal if configured to do so with ioctl(2). When a tty file is first opened, it is assigned
process group 0; init has process group 0. As init launches login processes on various ttys, it
assigns process groups to those ttys and processes.

tcnewpgrp(fdtty): Allocates a new process group and assigns it to the terminal referred to by
fdtty. If the calling process is not in the foreground, it is sent SIGITOU.

set,tpgrp(fdtty): Sets the current process to have the same process group as fdtty.

tctpgrp(fdtty,pid): Sets the tty to the same process group as pid, where pid is the current process
or a descendant of it.

RETURN VALUE
The calls will return 0 if no error occurs; otherwise, they'll return -1 and set errno to one of the
following:
[EBADF]
[ENOTTY]
[ESRCH]

NOTES

fdtty is not a valid file descriptor
fdtty does not refer to a terminal file
pid is not a valid process identifier

Following are some example uses of the job control interface.

• Forking a pipeline in a job-control shell: The shell starts with tcnewpgrp(fdtty), so that
the tty is in the new process group before there are even any children. It then forks each
process in the pipeline. Each process does settpgrp(fdtty), thus joining the new process
group.

• Handling a stopped child process: When the shell sees that a pipeline has stopped or exited,
it does tctpgrp(fdtty,getpid()) to set the tty to its own process group. To resume the
pipeline it does tctpgrp(fdtty,pid) where pid is one of the child processes, then sends
SIGCONT.

63

JOBCONTROL(2) System Calls JOBCONTROL(2)

• Starting a process under a new tty: When, for instance, telnetd wants to grab a pseudo-tty,
it opens the pty and forks a child process. The child does tcnewpgrp(fdtty) to give the tty
a real process group, then settpgrp(fdtty) to place itself into the foreground.

Security under this scheme is trivial. There is no way a process can join a process group except by
settpgrp(), and that requires a descriptor open to a tty with that pgrp. To make a tty have that pgrp
requires either tcnewpgrp(), in which case nobody else is using the pgrp, or tctpgrp(), which
reduces to the first problem of having a process in the process group. End of security proof.
(Wasn't that easy?) Note that 'using' must be defmed as use both by ttys and by processes; the
system keeps a table of pgrps, each with a total tty + process reference count When the reference
count reaches zero, the pgrp is automatically deallocated.

SEE ALSO
ioct1(2), tty(4), signa1(2), ki11(2), GNO Shell Reference Manual

CREDITS

64

This job control interface waS designed by Dan Bernstein (bmstnd@kramden.acf.nyu.edu). He
was inspired by Chris Torek, and dedicated the system to Mark Teitelbaum. The text of this
manpage is derived from his original specifications.
The GNO/ME implementation was written strictly from specs.

KILL(2) System Calls KILL(2)

NAME
kill - send a signal to a process

SYNOPSIS
#include <gno/gno.h>

int kill(int pid, int sig)

DESCRIPTION
kill is used to send a signal to a process or group of processes. Signals are software interrupts;
they act just like hardware interrupts and can also be used for basic IPC (Inter-process
communication). The various signals are described in signal(2).

sig can be a signal number, or it can be 0, in which case no signal is sent, but error checking is
done (this can be used to verify a process ID). If sig has been blocked (sigblock(2)), the signal
is deferred until it is unblocked, and kill returns immediately. Any previously pending signals of
the same sig are lost (i.e. signals are not stacked).

If pid is 0, the signal is sent to all processes with the same process group ID as the caller, except
for system processes.

Processes may signal themselves, in which case the signal handler is invoked immediately (if one
is installed).

RETURN VALUE
Normally kill returns SYSOK (0). The following conditions can cause kill to return SYSERR (-
1):
[ESHRC]
[EINVAL]

SEE ALSO

pid does not correspond to an existing process
sig specifies an invalid signal number

sigblock(2), signal(2), wait(2)

BUGS
Do not attempt to send signals from inside a CDA (Classic Desk Accessory) or interrupt handler.

65

PIPE(2) System Calls PIPE(2)

NAME
pipe- create an interprocess communication channel

SYNOPSIS
#include <gno/gno.h>
int pipe(intjiledes[2]);

DESCRIPTION
The pipe system call creates an I/0 mechanism called a pipe. The file descriptors returned can be
used in read and write operations. When the pipe is written using the descriptor filedes[1] up to
4096 bytes of data are buffered before the writing process is suspended. A read using the
descriptorfiledes[O] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequent fork calls) will pass data through the pipe with Read and Write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed)
returns an end-of-file.

A signal (SIGPIPE) is generated if a write on a pipe with only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; -1 if an error occurred.

ERRORS
The pipe call will fail if:
[EMFILE] Too many descriptors are active.
[ENFILE] The system file table is full.
[EFAULT] The fildes buffer is in an invalid area of the process's address space.

SEE ALSO
GNO Shell Users Manual, read(2), write(2), fork(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

NOTES

66

In the above text, mention is made to UNIX read and write calls. On the Apple llgs, these refer to
any system calls that do 1/0, namely GS/OS ReadGS, WriteGS; TextTools calls; and C library 110
calls such as read, fread, etc.

SCREATE(2) System Calls

NAME
screate, sdelete, swait, ssignal - semaphore operations

SYNOPSIS
#include <gno/gno.h>

int swait(int sem);
int ssignal(int sem);
int screate(int count);
int sdelete(int sem);

DESCRIPTION

SCREATE(2)

screate is used to allocate a semaphore from the kernel semaphore manager. Semaphores are the
most basic form of interprocess communication, and these routines provide the power necessary to
solve a large number of synchronization and communication problems. (See an Operating Systems
text).

The initial count determines how many times swait can be called before processes are blocked.
count must be >= 0, and is usually set to 1. screate returns a semaphore ID number as an integer.
This ID must be used in all the other semaphore calls.

sdelete releases the specified semaphore, and returns all processes that were blocked to a ready
state.

swait decrements the value of the semaphore (initially specified by count) by 1. If the semaphore
count is less than zero, the process is blocked and queued for release by ssignal.

ssignal increments the semaphore count by one. If the semaphore count is less than zero,
ssignal releases arbitrarily a process that had been blocked; FIFO operation is not guaranteed.

RETURN VALUE
All the functions return SYSERR (-1) if an error occurs, and an OK (0) if no error occurs.

BUGS
There is currently no mechanism for deallocating semaphores that are orphaned by abnormal
process termination.

HISTORY
These semaphore routines were designed for XINU, written by Douglas Comer.

67

SEIDEBUG(2) System Calls SETDEBUG(2)

NAME
setdebug - set debugging output options

SYNOPSIS
#include <gno/gno.h>

int setdebug(int options);

DESCRIPTION
setdebug enables and disables various debugging routines built into the kernel. The routines
display useful debugging information to stderr (except for dbgSIG, see BUGS). Debug output is
enabled by setting the corresponding bit in options, according to the following table. To turn off
all debugging output, options should be set to 0. The various debug options are #defined in
<gno/gno.h>.

dbgGSOS

dbgPATH

dbgERROR

dbgSIG

prints out the call numbers of any GS/OS or ORCNshell calls that are made. The
number is printed in hexadecimal format and is prefixed with a'$' character. For
this and the other GS/OS call debug options, the entire call sequence is enclosed in
parenthesis'()' to ease tracing multiple levels of calls.

If this flag is set, every time a filename argument to a GS/OS or shell call is fully
expanded the expanded version is displayed as follows: "EP: <fullpath>".

For every GS/OS call that is made, if an error occurs the error code is printed in
inverse lettering in hexidecimal format. The code is prefixed with a '#' to
distinguish the error code from a call code on terminals that do not support inverse
mode. If no error occurs on the call, no code is printed. This option has no effect
unless dbgGsos is also enabled.

This flag enables signal tracing. Each time a signal is sent, whether by kill(2), job
control or keyboard, the signal number and target process is displayed. The format
is: "kill (-signum): pid: tpid".

dbgSYSCALL The parameter lists to common system calls are displayed by this option flag. The
actual format of the output varies from call to call. The calls that currently support
this flag are execve(2), fork(2), and the job control routines.

dbgPBLOCK The memory address of GS/OS and Shell parameter blocks is printed for each call.
As with dbgERROR, this option has no effect unless dbgGsos is also enabled.

RETURN VALUE
setdebug returns the previous value of the debug options word.

SEE ALSO
fork(2),execve(2),ioct1(2),kill(2)

BUGS

68

Due to problems associated with signals that are sent during process termination, dbgSIG prints its
information to standard output instead of standard error.

SIGBLOCK(2) System Calls

NAME
sigblock,sigmask - temporarily block signals

SYNOPSIS
#include <Signal.h>

long sigblock(long mask);
#define sigmask(signum)

DESCRIPTION

SIGBLOCK(2)

sigblock is used to temporarily block the reception of signals. The input parameter mask is a bit
vector that specifies which signals are to be blocked; a I in a bit n will block signal n+l. The mask
is bitwise-ored with the current signal mask to create the new signal mask.

sigmask is a macro that can be used to calculate signal masks for sigblock. It takes a signal
number (signum) as an argument and returns a mask that can then be passed to sigblock.

If a signal is sent to a process but is blocked, the event is recorded for later release by
sigsetmask(2). Blocked signals are not stacked; further occurrences of a blocked signal will
overwrite any previous pending signal of the same signum.

It is not possible to block SIGKILL, SIGCONT, or SIGSTOP. This restriction is silently enforced
by the system.

RETURN VALUE
The previous value of the signal mask is returned.

SEE ALSO
kill(2), sigsetmask(2), signal(2)

69

SIGNAL(2) System Calls SIGNAL(2)

NAME
signal- a simplified software signal interface

SYNOPSIS
#include <signal.h>

void (*signal(int sig; void (*jUne(void))(void)

DESCRIPTION

70

Signals are a basic form of IPC (inter-process communication), and are generally used to notify a
process of some atypical event (although there is little restriction on actual use). For example,
signals are sent in each of the following situations: user typing certain chars at a terminal ("'C, "Z,
etc.); execution of an invalid instruction; by request of another process (kill); stack overflow; a
process making an input request while running in the background; an attempt to write to a pipe
with no reader.

Most signals cause termination, unless a handler is installed, or the signal is set to be ignored.
Certain signals cannot have their default action modified; the system silently enforces this
restriction. The following is a list of signals and default actions (taken from signal.h).

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGURG
SIGSTOP
SIGTSTP
SIGCONT
SIGCHLD
SIGCLD
SIGTTIN
SIGTTOU
SIGIO
SIGPOLL
SIGXCPU
SIGUSRl
SIGUSR2

1 hangup
2 interrupt
3 quit
4 illegal instruction
5 trace trap
6 abort (generated by abort(3) routine)
7 emulator trap
8 arithmeticexception
9 kill (cannot be caught, blocked, or ignored)
10 bus error
11 segmentation violation
12 bad argument to system call
13 write on a pipe or other socket with no one to read it
14 alarm clock
15 software termination signal
16@ urgent condition present on socket
17 I + stop (cannot be caught, blocked, or ignored)
18 I + stop signal generated from keyboard
19@ continue after stop (cannot be blocked)
20@ child status has changed
20 System V name for SIGCHLD
21 I + background read attempted from control terminal
22 I + background write attempted to control terminal
23@ input/output possible on a file descriptor
SIGIO System V name for SIGIO
24 exceeded CPU time limit
30 user defined signal 1
31 user defined signal 2

If jUne is SIG_DFL, the defult action for the signal is reinstalled. This is normally termination if
the signal isn't ignored or caught. Signals marked with an @ are discarded, and signals marked
with I + cause the process to stop. If June is SIG_IGN, any future occurences of the signal are
discarded, as well as any pending instances. Any other value is treated as the address of a handler

SIGNAL(2) System Calls SIGNAL(2)

routine. The system will block further occurences of the signal before the handler is called, and
will unblock the signal automatically upon return from the handler. The handler remains installed
after return, unlike earlier UNIX signal facilities.

If a signal occurs during certain system calls (wait(), and input from a TTY), the call is
automatically restarted upon return from the handler.

A forked child inherits all signal information, including pending signals and blocking and handler
information. exec() and execve() restore all signal information to defaults and purge pending
signals.

NOTES
The signal handler should be defmed as follows:

void handler (int sig, int code)

sig is the signal that invoked the handler, and code is additional information about the interrupt
condition. Currently, code is always 0. The handler should probably also be compiled using the
#pragrna databank 1 directive, in the event the signal handler is not in the same bank as the C
global data segment (the handler is called with the data bank equal to the program bank).

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned. [E INVAL J will
occur on any of the following conditions:
sig specifies an invalid signal number.
An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

CAVEATS
ORCA/C already provides a signal() function, but it doesn't do a whole lot. GNO's signal.h file
replaces the one that comes with ORCA.

SEE ALSO
execve(2), fork(2), kill(2), sigblock(2), sigsetmask(2), wait(2), tty(4)

7 1

SlOP AUSE(2) System Calls SIGPAUSE(2)

NAME
sigpause - suspend process until a signal arrives

SYNOPSIS
#include <signal.h>
int sigpause(long int mask);

DESCRIPTION
sigpause suspends execution of the calling process until a signal arrives. The mask parameter is
assigned to the set of blocked signals (sigsetmask), and then the process is paused. When a
signal arrives, the regular signal handler (if any) is executed, and then the original signal mask is
restored before returning to the caller. Usually mask is 0 (zero) to pause until any signal arrives.

sigpause is normally used in situations where one must protect a critical section. A typical use
begins with sigblock to block a signal (and enable mutual exclusion); variables modified on the
occurrence of that signal are then manipulated, code is executed, etc. To end the critical section and
wait for more work, sigpuase is called.

RETURN VALUE
sigpause always returns an error (-1) and sets errno to EINTR.

SEE ALSO
signal(2), sigblock(2), sigsetmask(2)

72

SIGSETMASK(2)

NAME
sigsetmask - set signal mask

SYNOPSIS
#include <signal.h>

long sigsetmask(long mask);
#define sigmask(signum)

DESCRIPTION

System Calls SIGSETMASK(2)

sigsetmask is usually used to restore signal masks after modification by sigblock. The
parameter mask is the absolute value the process signal mask will be set to (compare to sigblock,
which adds the argument to the set of blocked signals).

If there are pending instances of signals which become unblocked by the sigsetmask call, they
are 'released' into the system signal queue and their 'pending' status is cleared. The system signal
queue is maintained by the kernel null process, and is used in situations where signals could not
normally be sent (such as interrupt handlers).

sigmask is a macro that can be used to calculate signal masks for sigsetmask. It takes a signal
number, as listed in signal(2), as an argument and returns a mask corresponding to that signal.

RETURN VALUE
The previous value of the signal mask is returned.

CAVEATS
If somehow the process re-blocks a signal released by sigsetmask before the system signal queue
processes it, it will be blocked and marked as pending. This can happen if a signal handler makes a
sigblock call.

SEE ALSO
kill(2), sigblo~k(2), signal(2)

73

STAT(2) System Calls STAT(2)

NAME
stat, fstat, lstat - return status infonnation on indicated flies

SYNOPSIS
#include <sys/stat.h>

int stat(const char *filename, struct stat *s_buj);
int fstat(intfiledes, struct stat *s_buj);
int lstat(const char *filename, struct stat *s_buj);

DESCRIPTION

74

These calls are used to retreive status infonnation about ftles. They do much the same thing as the
GS/OS call GetFilelnfo, except that they return the infonnation in a fonnat compatible with UNIX's
stat calls, and also provide infonnation about pipes and GNO Character Devices.

stat takes arguments filename, a NUL-tenninated string naming the file to get infonnation on, and
s_buf, a pointer to a stat structure, defined in <sys/stat.h>. filename can be a partial or a
complete path. The miscellaneous types instruct stat, below, are defined in <sys/types.h>,
automatically included by stat.h.

struct stat
dev_t st_dev; I*
ino t st_ino; I*
unsigned short st_mode;
short st_nlink; I*
uid_t st_uid; I*
gid_t st_gid; I*
dev_t st_rdev; I*
off_t st_size; I*
time_t st_atime; I*

IIGS) *I
int st_sparel; I*
time - t st_mtime; I*
int st_spare2; I*
time - t st_ctime; I*
int st_spare3; I*
long st_blksize; I*
long st_blocks; I*
long st_spare4[2]; I*

} ;

ID number of device file resides on *I
inode number of file *I
I* type of file and mode *I
number of links to file = 0 *I
user id = 0 *I
group id = 0 *I
device type ID *I
length of file in bytes *I
last access time (same as mod time on Apple

reserved *I
last modification time *I
reserved *I
file creation time *I
reserved *I
size in bytes of blocks on filesystem *I
number of blocks file uses *I
reserved *I

The items marked 'reserved' are not currently used but are reserved for future expansion; do not
use these fields for any reason. st_dev is the device number the file resides on. This number is
the same as the GSIOS device ID number. st_rdev is not currently used, but may in the future
designate a device type code.

st_mode is a bit field representing access mode and type of the file. The flags in st_mode are as
follows:

#define S_IFDIR
#defme S_IFCHR
#define S_IFBLK
#define S_IFREG
#define S_IFLNK

0040000
0020000
0060000
0100000
0120000

I* directory *I
I* character special *I
I* block special *I
I* regular *I
I* symbolic link *I

STAT(2)

#define S_IFSOCK
#defme S_IREAD
#defme S_IWRITE
#define S_IEXEC

0140000
0000400
0000200
0000100

System Calls

I* socket or pipe *I
I* read permission, owner *I
I* write permission, owner *I
I* file is an executable, owner *I

STAT(2)

fstat is similar to stat except the argument is an open file descriptor jiledes. Iifiledes refers to a
character device or pipe, the entire s_buf is set to 0 and only st_mode and st_dev are set.

lstat is similar to stat, but if the filename is a link then information is returned about the link file
instead of the file linked to.

RETURN VALUE
If the call completes without mishap, stat returns a 0. If an error occurs, stat returns -1 and sets
errno to one of the following:

[ENOENT]
[ENOIDIR]

filename does not specify an existing file or directory
an element of filename is not an expected subdirectory

fstat can additionally return
[EBADF] filedes does not refer to an open file descriptor

BUGS
GNO does not yet support hard or symbolic file links on the IIGS. Therefore, lstat operates
exactly like stat. But if there's a case where lstat might be appropriate at a time when links are
supported, then use lstat instead and be ready for the future.

fstat doesn't do anything clever with all the unused fields instruct stat when its argument is a
pipe or terminal.

75

STATFS(2) System Calls STATFS(2)

NAME
statfs - get me system statistics

SYNOPSIS
#include <sys/vfs.h>

int statfs(char *path, struct statfs *buj)
int fstatfs(intfd, struct statfs *buj)

DESCRIPTION
states returns information about a mounted ftle system. path is the path name of any file within the
mounted filesystem. Bufis a pointer to a statfs structure defined as follows:

typedef struct {
long val[2];

} fsid_t;

struct statfs {

} ;

long f_type;
long f_bsize;
long f_blocks;
long f_bfree;
long f_bavail;
long f_files;
long f_ffree;
fsid_t f_fsid;
long f_spare[7];

I* type of info zero for now *I
I* fundamental tiie system block size *I
I* total blocks in file system *I
I* free blocks *I
I* free blocks available to non-superuser *I
I* total file nodes in file system *I
I* free file nodes in fs *I
I* file system id *I
I* spare for later *I

Fields that are undefined for a particular file system are set to -1. fstatfs returns the same
information about an open file referenced by descriptor fd.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global
variable errno is set to indicate the error.

ERRORS

76

statfs fails if one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.
EINVAL path contains a character with the high-order bit set
ENAMETOOLONG The length of a component of path exceeds 255 characters, or the length of

path exceeds 1023 characters.
ENOENT The file referred to by path does not exist
EACCES Search permission is denied for a component of the path prefix of path.
EIO An I/0 error occurred while reading from or writing to the file system.

fstatfs fails if one or both of the following are true:

EBADF
EIO

fd is not a valid open file descriptor.
An I/0 error occurred while reading from or writing to the file system.

TRUNCATE(2) System Calls TRUNCATE(2)

NAME
truncate, ftruncate - set a ftle to a specified length

SYNOPSIS
#include <sys/types.h>

int truncate(char *path, off_t length)
int ftruncate(int fd, off_t length)

DESCRIPTION
truncate() causes the file referred to by path (or for ftruncate() the object referred to by fd) to
have a size equal to length bytes. If the file was previously longer than length , the extra bytes are
removed from the file. If it was shorter, bytes between the old and new lengths are read as zeroes.
With ftruncate(), the file must be open for writing.

RETURN VALUES
truncate() returns:
0 on success.
-1 on failure and sets errno to indicate the error.

ERRORS
truncate() may set errno to:

EACCES

EIO

EISDIR

Search permission is denied for a component of the path prefix of path.
Write permission is denied for the file referred to by path .

An I/0 error occurred while reading from or writing to the file system.

The file referred to by path is a directory.

ENAMETOOLONG The length of the path argument exceeds { PATH_MAX}.
A pathname component is longer than {NAME_MAX} (see sysconf (2V)) while
{_POSIX_NO_TRUNC} is in effect(see pathconf (2V)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EROFS The file referred to by path resides on a read-only file system.

ftruncate() may set errno to:

EINVAL

EIO

SEE ALSO
open (2)

BUGS

fd is not a valid descriptor of a file open for writing.
fd refers to a socket, not to a file.

An I/0 error occurred while reading from or writing to the file system.

These calls should be generalized to allow ranges of bytes in a ftle to be discarded.

77

WAIT(2) System Calls WAIT(2)

NAME
wait, WIFSTOPPED, WIFSIGNALED, WIFEXITED - wait for process to terminate or stop

SYNOPSIS
#include <sys/wait.h>

int wait(union wait *statusp);
WIFSTOPPED(union wait status);
WIFSIGNALED(union wait status);
WIFEXITED(union wait status);

DESCRIPTION

78

wait blocks the caller until a signal is received or one of its child processes terminates. If any
child has died and this has not been reported using wait, return is immediate, returning the process
ID and exit status of one of those children. If that child had died, it is discarded. If there are no
children, return is immediate with the value -1 returned. If there are processes that have not been
reported by wait, the caller is blocked.

If status is not a NULL pointer, then on return from a successful wait call the status of the child
process whose process ID is the return value of wait is stored in the wait union pointed to by
status. The wstatus member of that union is an int; it indicates the cause of termination and other
information about the terminated process in the following manner:

• If the low-order 8 bits of wstatus are equal to 0177 (hex OxFF), the child process has
stopped; the high-order 8 bits of wstatus contain the number of the signal that caused the
process to stop. See signal(2).

• If the low-order 8 bits of wstatus are non-zero and are not equal to 0177, the child process
terminated due to a signal; the low-order 7 bits of wstatus contain the number of the signal
that terminated the process.

• Otherwise, the child process terminated due to an exit() call; the high-order 8 bits of
wstatus contain the low-order 8 bits of the argument that the child process passed to exit or
GS/OS Quit

Other members of the wait union can be used to extract this information more conveniently:

• If the wstopval member has the value WSTOPPED, the child process has stopped; the value
of the wstopsig member is the signal that stopped the process.

• If the wterms ig member is non-zero, the child process terminated due to a signal; the value
of the wterms ig member is the number of the signal that terminated the process.

• Otherwise, the child process terminated due to an exit() call; the value of the wretcode
member is the low-order 8 bits of the argument that the child process passed to exit().

The other members of the wait union merely provide an alternate way of analyzing the status.
The value stored in the wstatus field is compatible with the values stored by versions of the
UNIX system, and an argument of type int * may be provided instead of an argument of type
union wait *for compatibility with those versions.

WIFSTOPPED, WIFSIGNALED, WIFEXITED, are macros that take an argument status,
of type 'union wait', as returned by wait(). WIFSTOPPED evaluates to true (1) when the

WAIT(2) System Calls WAIT(2)

process for which the wait call was made is stopped, or to false (0) otherwise. WIFSIGNALED
evaluates to true when the process was terminated with a signal. WIFEXITED evaluates to true
when the process exited by using an exit(2) call.

If wait returns due to a stopped or terminated child process, the process ID of the child is returned
to the calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
wait will fail and return immediately if one or more of the following are true:

[ECHILD]
[EFAULT]
[EINTR]

SEE ALSO

The calling process has no existing unwaited-for child processes.
The status or rusage arguments point to an illegal address.
The wait call was interrupted by a caught signal.

signal(2), exit(3), rexit(3), execve(2)

NOTES
If a parent process terminates without waiting on its children, the Kernel Null Process (process ID
= 0) inherits the children.

wait is automatically restarted when a process receives a signal while awaiting termination of a
child process, if the signal is not caught; i.e. signal() handler value is SIG_DFL or SIG_IGN.

79

LIBC(3) Library Routines LIBC(3)

GSString255Ptr __ C2GSKALLOC(char *s)
Converts a C-style string to a Class 1 GS/OS string, allocating space for the GS/OS string from C's
malloc() routine. You must specifically deallocate the string with free() when you're through with it.

char * __ GS2CMALLOC(GSString255Ptr g)
Converts a Class 1 GS/OS string to a C-style string, allocating space for the C string from C's malloc()
routine. You must specifically deallocate the string with free() when you're through with it.

char * __ GS2C(char *s, GSString255Ptr g)
Converts a Class 1 GS/OS string to a C string; the buffer space for the C string must be allocated
beforehand by the caller. The return value is the address of the C string passed as argument s.

int _mapErr(int err)
Tries to map a GS/OS error code (err) to a UNIX ermo code (return value). If there is no direct mapping,
EIO is returned.

access

#include <unistd.h>
int access(char *name, int mode)

Returns TRUE (1) if the file specified by name can be acessed according to mode by the calling process.
Values of mode are declared in <unistd.h> and are as follows:

F OK - returns true if the file exists
x-=._oK- returns true if the process has execution permissions for the flle
W _OK - returns true if the process has write permissions for the file
R_OK- returns true if the process has read permissions for the file

bcopy bzero

#include <string.h>
void bcopy(char *bl, char *b2, size_t n)
void bzero(char *buf, size_t n)

bcopy() copies n bytes from memory address bl to memory address b2. bcopy() is functionally similar
to memc;py(), except that bcopy copies from the first argument to the second argument, whereas
memcpy() copies from the second argument to the first argument. If the memory areas overlap, the
results are unpredictable. bcopy() is provided for compatibility with BSD source code.

bzero() clears n bytes of memory starting at buf to 0 (zero). This call is functionally equivalent to
memset(buf,O,n) and is included for BSD source code compatibilty.

· See Also: memcpy, memset, OR CAlC 2.0 Manual

chdir

#include <unistd.h>
int chdir(const char *pathname)

Changes the current working directory (GS/OS prefix 0) to the pathname specified by pathname. If an
error occurs changing the prefix, -1 is returned and the error code is placed in errno.

80

LIBC(3) Library Routines LIBC(3)

crypt

char *crypt(char *pw,char *salt}

crypt is used to encrypt passwords for storage in the /etc/passwd file, and also to validate passwords
entered in the login and passwd programs. pw is the password to encrypt, a NUL- terminated string. salt
is a two- character encryption key that should be randomly generated by the caller in the case of encrypting
a new password, or should be taken as the first two characters of the /etc/passwd password entry in the
case of validating a password.

crypt returns a pointer to the encrypted password, which is formatted as printable ASCII characters and is
NUL terminated. A static buffer is used to hold the result, so to be sure the encrypted password is not
oveiWritten by a subsequent call to crypt copy it before use.
See also: getpass, getpwent

errno strerror perror

char *strarror(int errnum}
void perror(char *s}
extern int errno;

These routines are as documented in the ORCA/C manual, except that they support the full range of
GNO's errno codes. errno is the variable that most library and kernel calls place their return status in.
The codes are defmed symbolically in <errno.h> and are listed here:

EDOM domain error
ERANGE number too large, too small, or illegal
ENOMEM Not enough memory
ENOENT No such file or directory
EIO 1/0 error
EINV AL Invalid argument
EBADF bad flle descriptor
EMFILE too many flles are open
EACCESS access bits prevent the operation
EEXIST the file exists
ENOS PC the file is too large
EPERM Not owner
ESRCH No such process
EINTR Interrupted system call
E2BIG Arg list too long
ENOEXEC Exec format error
ECHILD No children
EAGAIN No more processes
ENOTDIR Not a directory
ENOTTY Not a terminal
EPIPE Broken pipe
ESPIPE illegal seek
ENOTBLK not a block device
EISDIR not a plain file

8 1

LIBC(3) Library Routines LIBC(3)

fsync

int fsync(int fd)

Causes the operating system to flush any 110 buffers associated with the file referenced by file descriptor
fd to disk. This ensures that all information is up to date, in the event of a system crash. This call is only
needed in special circumstances, as when several daemon processes are all modifying the same file
simultaneously (currently impossible with existing ITGS filesystems). This call is basically a FlushGS.

ftruncate

int ftruncate(int fd, off_t length)

Causes the EOF marker for the file specified by file descriptor fd to be set to length. In the event of an
error, ftruncate returns -1 and sets errno.

getgrnam getgrgid getgrent setgrent setgroupent endgrent

#include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);
struct group *getgrgid(gid_t gid);
struct group *getgrent(void);
int setgrent(void);
int setgroupent(int stayopen);
void andgrent(void);
(PO SIX)

This family of functions should be used to access the groups database; applications should never read
/etc/groups directly, as the implementation of the groups database is subject to change.

getgrnam() reads the group database based on group name. It looks up the supplied group name and
returns a pointer to a struct group (see below), or NULL on an error. ·

getgrgid() is similar to getgrnam(), except that instead of looking up group information bast:?d on group
name, a group ID is passed.

To scan the groups database linearly, start the scan with either setgrent() or setgroupent(). The two
functions are identical for pure scanning operations, but have different behavior when mixing scan calls
with getgrnam() or getgrgid().

After calling setgrent or setgroupent, the scan is set to the first entry in the database. getgrent returns
a pointer to the current entry and moves the scan to the next entry. In the event of an error, getgrent
returns NULL. When the program is done with the database, endgrent should be called.

If getgrnam or getgrgid is called while scanning the group database, the database will be closed unless
it was opened by calling setgroupent with an argument of 1. This indicates "keep open" mode, and allows
fast random access of the database with the getgrnam and getgrgid functions (which would otherwise
open and close the database for every call).

getopt getopt_restart

#include <getopt.h>
int getopt(int argc, char * const *argv, const char *optstring)
int getopt_rastart(void)

82

LIBC(3)

extern char *optarg;
extern int optind;

Library Routines LIBC(3)

Getopt helps parse command line options as are often used by UNIX utilities. It handles simple flags
(such as "Is -1") and also flags with arguments ("cc -o prog prog.c"). ·

Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a string of
recognized option letters; if a letter is followed by a colon, the option is expected to have an argument that
may or may not be separated from it by white space. Optarg is set to point to the start of the option
argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns EOF. The
special option -- may be used to delimit the end of the options; EOF will be returned, and -- will be
skipped. ·

Getopt prints an error message on stderr and returns a question mark(?) when it encounters an option
letter not included in optstring.

The following code fragment shows how one might process the arguments for a command that can take
the mutually exclusive options a and b, and the options f and o, both of which require arguments:

main(int argc, char **argv)
{ .

int c;
extern int optind;
extern char *optarg;

while ((c = getopt(argc, argv, "abf:o:")) != EOF)
switch (c) {
case 'a' :

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc();

break;
case 'f' :

ifile = optarg;
break;

case 'o' :
ofile = optarg;
break;

case'?':
default:

errflg++;
break;

}
if (errflg) {

fprintf(stderr, "Usage: ... ");

83

LIBC(3) Library Routines LIBC(3)

exit(2);
}
for (; optind < argc; optind++) {

}

}

It is not obvious how ... -' standing alone should be treated; this version treats it as a non-option argument,
which is not always right. Option arguments are allowed to begin with'-'; this is reasonable but reduces
the amount of error checking possible.

getopt_restart should be used in restartable programs, before the first call to getopt, to reinitialize the
optind and optarg variables.

getpass

char *getpaaa(const char *prompt)
BSD

Prompts the user for a password, and returns a pointer to a NUL-terminated string which contains the
password the user typed. A password may be up to 8 characters long, and if the string the user
types is longer than that the returned string is truncated to 8 characters. Argument prompt is the string to
print before requesting input. Input characters are obscured - that is, not echoed - as the user types them.
The backspace and delete keys may be used to edit input, although in practice this is difficult to use
because the user cannot see what he types.

A static buffer is used to to hold the password, so to be sure the password is not overwritten by a
subsequent call to getpass, copy it before use.
See also: crypt, getpwent

getpwnam getpwuid endpwent setpwent

#include <pwd.h>
struct passwd *getpwn~(const char *name);
struct pas_swd *getpwuid (uid_t uid) ;
void endpwent(void);
struct passwd *getpwent(void);
int setpwent(void);

The family of functions defined in <pwd.h> are used for accessing the /etc/passwd user database.
PrQgrams should never access this database directly, as the file format or other implementation details may
change in the future.

getpwnam() reads the user database based on user name. The argument name is a pointer to the user
name to lookup. getpwnam() returns a pointer to a passwd structure or NULL on an error.

getpwuid() reads the user database based on a user ID code. Argument uid is the user ID to return
information on. getpwuid() returns a pointer to a passwd structure or NULL on an error.

The remaining three functions are used for scanning the user database. The database is initialized by using
the setpwent() function; an internal access marker is set to the first entry in the database.

getpwent() is used to retrieve the current entry, returning a pointer to a passwd structure, and moving the
marker to the next entry. If there are no more entries to scan, getpwent() returns a NULL pointer. If the

84

LIBC(3) Library Routines LIBC(3)

database should be scanned again, setpwent() may be called again to reset the marker to the first entry.
In the event of an error accessing the database, NULL is returned.

When the application is through with the database, it should call endpwent().

struct passwd { I* see getpwent(3) *I
char *pw_name; I* pointer to user name *I
char *pw_passwd; I* pointer to encrypted password *I
int pw_uid; I* user ID *I
int pw_gid; I* group ID *I
int pw_quota; I* 'quota' field - not used *I
char *pw_corrunent; I* pointer Corrunent field *I
char *pw_gecos; I* not used *I
char *pw_dir; I* pointer to user's '$horne' directory name *I
char *pw_shell; I* pointer to path of user's login shell *I

} i

Not all of the string entries in struct passwd are used in GNO/ME, but those that are are all NUL
terminated strings.

getwd

#include <unistd.h>
char *getwd(char *pathname)

Gets the current working directory (GS/OS prefix 0) and copies it to the string space pointed to by
pathname. pathname must point to a buffer large enough to hold the largest conceivable pathname. In
practice, a 256 byte buffer works well, but with the plethora of GS/OS file systems now available 256
may be much too small. Due to this problem, we recommend you use getwd carefully, and with a future
GNO release switch to getcwd (not yet available).

If an error occurs during the operation, getwd returns NULL and places the error code in errno.
Otherwise, getwd returns the prefix in pathname.

gtty stty

#include <sgtty.h>
int gtty(int filedes, struct sgttyb *argp)
int stty(int filedes, struct sgttyb *argp)

Set and get TfY status information in the sgttyb structures pointed to by the argument argp. See ioct1(2)
and tty(4) for more details. These routines are basically short-cuts to
ioctl(filedes, TIOCSETP, &structure) and ioctl(filedes, TIOCGETP, &structure).

index rindex

char *index(char *a, int b)
char *rindex(char *a, int b)
(BSD)

These functions are identical to strchr() and strrchr(), respectively. See your C compiler manual for
more information. These functions are provided only for compatibility with BSD source code.

85

LIBC(3) Library Routines LIBC(3)

is a tty

#include <sgtty.h>
int isatty(int filedes)

This function returns true (1) if the file descriptor refers to a TTY (this includes PTYs) file. For all other
types of descriptors, false (0) is returned.

login

#include <utmp.h>
void login(struct utmp *ut)

Writes the /etc/utmp structure pointed to by ut to the utmp file. The slot in /etc/utmp actually written to
depends on the return value of the ttyslot() function, which maps each tty device to a unique slot number,
based on the contents of /etc/ttys.

This function should not generally be used by application code.

mkdir

int mkdir(char *dirname)

Creates a subdirectory (folder) with the name specified by dirname. Similar to the shell 'mkdir'
command.

mktemp mkstemp

char *mktemp(char *path)
int mkstemp(char *path)

Creates a filename based on the string path that is guaranteed to be unique. The string path must have the
following format: ·

"/volume/dirl/ .. ./dirX/fileXXXXXX" (Colons are also accepted as delimiters)

The 'XXXXX' at the end of path is filler space that will be replaced with a string that will make path a
unique filename.

The unique string is generated by using the current process ID and a single character ASCII value; this
may change in the future, and as such this behavior should not be relied upon.

mktemp() does not actually create any files, as compared with tmpfile() in the C library.

mkstemp() does create a file by calling open() on a unique pathname generated with mktemp().

mktemp() returns a pointer to the new pathname (path), and mkstemp() returns a file descriptor to the
new file, as would be returned by open().

open creat close read write lseek

#include <fcntl.h>
int creat(const char *path, int mode)
int open(const char *path, int oflag, ...)
int close(int filds)

86

LIBC(3) Library Routines

int read(int filds, void *but, size_t count)
int write(int filds, void *but, size_t count)
long lseek(int filds, long offset, int whence)

LIBC(3)

These are similar to the low-level 1/0 routines provided by ORCNC. However, the GNO versions of
these routines deal with actual GS/OS refNums for filds. (ORCNC's versions use a special library
maintained definition of file descriptor in order to fake the UNIX dup() system call. Here they revert to
standard UNIX usage because GNO provides a real dup(2) handled within the kernel).

open() uses vararg (variable argument) parameters. The third parameter is only expected (and is required)
if O_CREAT is one of the flags specified in 'mode', and specifies the access permissions to be given the
new file.

IMPORTANT NOTE: GNO's read()/write() functions take a size_t count, whereas ORCA's only take
unsigned count. When recompiling code with the new GNO libraries, make very certain that any
programs that use read()/write() do a #include <fcntl.h>, or it is likely that your programs will crash.

opendir readdir rewinddir closedir

#include <dirent.h>
DIR *opendir(char *filename)
struct dirent *readdir(DIR *dirp)
void rewinddir(DIR *dirp)
closedir(DIR *dirp)
(POSIX 1)

This family of functions provides a machine-independent way to read a list of files (and information about
them) from directories.

opendir() opens the directory specified by filename and prepares it for the scan operation. opendir()
returns a pointer to a structure which is used in the other dirent calls.

readdir() takes a DIR * as argument and returns information about the next file in the directory. The
return value is a pointer to a dirent structure (described below).

If you wish to scan the directory again without closing and then reopening the directory, use
rewinddir(). It resets the scan to the beginning of the directory.

When finished with the directory, call closedir().

#define MAXNAMLEN 32 I* maximum filename length *I

struct dirent I* data from getdents()lreaddir() *I

} ;

long
off_t

d_ino;
d_off;

unsigned short d_reclen;
char d_name[MAXNAMLEN);
unsigned short d_namlen;

I* inode number of entry */
I* offset of disk directory entry */
/* length of this record */
I* name of file */

I* length of filename *I

dirent is the structure returned by readdir() that contains information about the file. d_ino is not used on
the Apple IIGS because neither ProDOS nor HFS have the concept of an "inode", but to simulate its use a
unique d_ino value is returned for each readdir() call. d_off is the offset in the directory of the current
file; the first entry is number 1, the second 2, etc. d_reclen specifies the length of the entire dirent

87

LIBC(3) Library Routines LIBC(3)

structure. d_name is a short array containing the filename of the current file read from the directory.
d_namlen is the length of the string in d_name.

More specific information can be obtained by passing d_name to the stat() system call.
See also: stat(2)

needsgno

int needsgno(void)

This function returns 1 if GNO is operating, and 0 if it is not. Use this function to abort programs that use
GNO-specific features, or to allow them to enable non-GNO environment dependent code.

parsearg

-GNO_PARSEARG subroutine (4:commandline,4:argptr)
-GNO_PARSEARG(char *commandline, char **argptr)

. This function will take the command-line passed to a utility and parse it into an argv,argc structure like
those used inC programs. This was written NOT as a replacement for a C parser, but for use by assembly
language programmers writing shell commands.

commandline is the raw command line string as passed by the shell in the X & Y registers. argptr is a
pointer to an argv'O-style array. parsearg returns the number of arguments found in the accumulator.

This function ASSUMES that the Byte Works Memory Manager has been started up and is usable.

This function is based on actual GNO/ME shell (gsh) parsing code.

pcreate pbind pgetport psend preceive pdelete preset pgetcount

#include <sys/ports.h>
int pcreate(int count)
int pbind(int portid, char *name)
int pgetport(char *name)
int psend(int portid, long int msg)
long preceive(int portid)
int pdelete(int portid, int (*dispose)())
int preset(int portid, int (*dispose)())
int pgetcount(int portid)

The Ports IPC mechanism is a very flexible, powerful and efficient method of interprocess
communication. A port is a queue that can contain a number of 32-bit values. The size of the port (how
many messages it can contain) is specified in the pcreate() call.

Creation of a port is done with pcreate(). You must specify the size of the port in this call, which must
be at least 1 (one). The larger the port, the more data it can hold without blocking a process sending data
to the port. pcreate() returns a port ID value that must be used in subsequent calls to the Port IPC
routines.

A name may be associated with a port; this allows totally unrelated processes to access a port without
having to communicate the port ID through some other method, and without knowing the process ID of
the other. To bind a name to a port, call pbind(). The name argument may be any length, but at most 32
characters are significant. If a name has already been bound to the chosen portid, an error is returned. To

88

LIBC(3) Library Routines LIBC(3)

get the portid of a port by its name, use the pgetport() call. Pass in the name of the port whose port ID
you wish to obtain. If no port has that name, an error is returned. Names are only unbound from a port
when a port is deleted.

psend() is used to send a 32-bit datum to a port. If the port is full (that is, if there are more unread
messages in the port than are specified in the pcreate() call) then the sending process blocks until a
message is read from the port. Messages are retrieved from a port using the preceive() call. pgetcount()
returns the number of messages in the port that have not been received; this may be used to avoid blocking
on a psend() call.

If you wish to clear the contents of a port, say to synchronize communication after an error condition, use
the preset() call. The arguments to this call are the port ID and the address of a 'dispose' function. Each
message in the port, before being cleared, is passed to the dispose function so that appropriate clean-up
action may be taken on the data. For example, if the messages correspond to the address of memory
blocks obtained with malloc(), you could pass 'free()' as the dispose function to automatically deallocate
that memory. If you don't wish to take any special action on the data being cleared, pass NULL for the
dispose argument.

To destroy a port, make the pdelete() call. It accepts the same arguments as preset() and they operate as
described above. The difference between preset() and pdelete() is that the latter totally destroys a port; it
may no longer be used. preset() clears a port's data but leaves the port open for more data transmission.

For an example of the use of ports, see the source code to the print spooling utilities (lpr, lpd, FilePort).
These are available from Procyon upon request

regexp

Compile and execute regular-expression programs. Use 'man regexp' for details.

send receive recvtim recvclr

#include <gno/gno.h>
int send(int pid, unsigned long msg);
unsigned long receive(void);
unsigned long recvtim(int timeout);
unsigned long recvclr(void);

These kernel functions comprise GNO's message-passing IPC system. Messages are unsigned 32-bit data
values. A process sends a message to another by using the send() call. You must specify the process ID
of the recipient and the message to pass. To receive a message, a process makes the receive() call. If no
message has been sent to the process, the process sleeps until a message arrives. recvclr() is used to clear

· any pending message a process may have waiting. recvtim() is similar to receive() but takes a timeout
argument, specified in 1/IOths of a second. If no message has been received in timeout/10 seconds,
recvtim() fails and returns -1. The message buffer for a process is only one message deep; any attempt to
send() a message to a process that already has one queued results in an error. For an IPC system with a
deeper queue, see the Ports IPC section.

A receive() that is interrupted by a signal will abort and return -1, with ermo set to EINTR.

setenv unsetenv

#include <unistd.h>
int setenv(const char *name, const char *value, int rewrite)
void unsetenv(const char *name)

89

LIBC(3) Library Routines LIBC(3)

Set the value of the environmental variable name to be value. If rewrite is set, setenv replaces any current
value. The variable is considered 'exported', according to the shell convention for variables. No errors are
possible, and the only return code is 0.

unsetenv removes the environmental variable specified by name from the variable table. The variable is
no longer accessible, and any value that was assigned to that variable is deallocated. No errors are
possible, and there is no return value.

statfs

int statfs(char *path, struct statfs *but)

Returns information on the filesystem that the file path resides on. The information is placed in a structure
pointed to by the input argument buf Read statfs(3) for more information.

strdup

#include <string.h>
char *strdup(const char *str)

strdup() creates a copy of the NUL-terminated string pointed to by str. It allocates a piece of memory
exactly large enough to hold the string with the malloc() library function. When you no longer need the
copy, dispose of it with free().
See also: strcpy(), malloc(), free()

strsep

#include <string.h>
char *strsep(char **stringp, const char *delim)

Gets a token from string *stringp, where tokens are nonempty strings separated by characters from delim.

strsep writes NULs into *stringp to end tokens. delim need not remain constant from call to call. On
return, *stringp points past the last NUL written (if there might be further tokens), or is NULL (if there
are definitely no more tokens). If *stringp is NULL, strsep returns NULL.

termcap

The termcap library accesses the /etcltermcap database, which is used to provide terminal- independent
support for advanced terminal features, such as various text modes, scrolling regions, cursor movement,
and more. Use 'man termcap' for more details.

tty name

#include <unistd.h>
char *ttyname (int fd)

Returns the filename of the tty referenced by file descriptor fd. If fd does not refer to a tty file, ~TULL is
returned. Otherwise, a pointer to the filename (NUL-terminated string) is returned.

tty filenames are in the format ".ttyXX", where XX is a device designator. When porting existing BSD
code, take care to watch for code that depends on the existence of a '/' character in the string, as UNIX tty
files are in the form "/dev/ttyXX".

90

LIBC(3) Library Routines LIBC(3)

The string pointer returned points to a static buffer, and will be overwritten on any further calls to
ttyname. Copy the string if you wish to preserve it.

unlink

int unlink(char *fname)

Causes the link file specified by fname to be removed. Since GNO/ME does not yet support symbolic or
hard file links, this function operates the same as the remove() (or DestroyGS) routine.

91

TTY(4) Device Drivers TTY(4)

NAME
tty - general terminal interface

SYNOPSIS
#include <sgtty.h>

DESCRIPTION
This file documents the special file . tty and the terminal drivers used for user-oriented 1/0.

The Controlling Terminal
Every process has associated with it a controlling terminal, which is the terminal the process was
invoked from. In some versions of Unix, the controlling terminal association is responsible for
job control; this is not so under GNO. A process' controlling terminal is inherited from its parent.
By opening the special file .tty, a process can access its controlling terminal. This is useful where
the input and output of a process was redirected and the process wants to be sure of outputting or
getting input from the user at the terminal.

A process can remove the association it has with its controlling terminal by opening the file .tty and
issuing an

ioctl(f, TIOCNOTrY, 0);

This is often desirable in server processes.

Process Groups
Every terminal has an associated process group. Any time a signal-generating special character is
typed at the terminal, the terminal's process group is sent that signal. Unix systems set process
groups using ioctl() calls, but under GNO a new interface method is used; process group
assignments are controlled with the JOB CONTROL(2) routines.

Modes
There are four modes in which terminal drivers operate. These modes control how the driver deals
with 110.

cooked

cbreak

raw

This is the default mode of the terminal driver. If an incoming character is one of
the special characters defined in sgttyb, tchars, or ltchars, the appropriate action is
performed (see below). This mode also allows for input editing, as input is
internally buffered line by line, and data is returned to a reading process only when
CR is entered.

Input is returned on a per-character basis, instead of line by line as in cooked mode.
If no data is available, a read will block the calling process. If data is available, a
number of characters up to but not exceeding the requested number will be
returned. Special characters such as t_intrc are not handled, but are passed on to
the caller as data.

Like cbreak mode, except that no input or output processing whatsoever is
performed.

Summary of terminal control modes

92

TTY(4) Device Drivers TTY(4)

sgtty

Due to the colorful history of Unix systems, the data structures used to manipulate terminal modes
and settings are separated into four groups. Future revisions of GNO will implement the POSIX
termio interface, which consolidates these structures into one place.

The basic ioctls use the structure defmed in <sgtty.h>:

struct sgttyb {

} ;

char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
short sg_flags;

sg_ispeed and sg_ospeed indicate the baud rates for input and output according to the following
table. Speed changes that do not apply to a particular piece of hardware are ignored (for instance,
the console driver does not access a serial port so all baud rate settings are, in effect, impossible).
Also, not all the baud rates supported by a particular device are allowed to be set from this
interface.

These symbolic names for the baud rate settings are defined in <sgtty .h>.

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
B110 3 110 baud
B134 4 134.5 baud
B150 5 150 baud
B300 7 300 baud
B600 8 600baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
B19200 and
EXTA 14 19200 baud
B38400 and
EXTB 15 38400 baud
B57600 6 57600 baud

The sg_erase and sg_kill fields specify the line-editing erase and kill characters. sg_erase is Ox7F
(delete) by default, and sg_kill is not currently used.

sg_flags is a bitmapped value that indicates various state settings for the terminal driver (values are
in hex).

EVENP
ODDP
RAW
CRMOD
ECHO
CBREAK
TANDEM

Ox80 Use Even parity (serial devices only)
Ox40 Use Odd parity (serial devices only)
Ox20 Raw mode: wake up on all characters, 8-bit interface
OxlO Map CR into LF; output LF as CR-LF
Ox08 Echo (full duplex)
Ox02 Return each character as soon as typed
OxO 1 Automatic flow control

93

TTY(4) Device Drivers TTY(4)

94

RAW and CBREAK modes were described above, in Modes.

If the CRMOD bit is set, a line feed character is appended to any echoed or ouputted carriage
return.

The ECHO bit controls input echoing; if enabled, any characters read from the terminal are
echoed. This behavior differs slightly from Unix, where input characters are echoed as soon as
typed.

TANDEM mode enables automatic software flow control utilizing the special characters t_startc
and t_stopc in tchars (below). Whenever the input queue is in danger of overflowing, the system
sends t_stopc; when the queue has drained sufficiently, t_startc is sent. This mode has no effect
on the console driver.

Note: t_startc and t_stopc are used for both directions of flow control; when t_stopc is received
from a remote system (or user), the terminal stops output, and when t_startc is received output
resumes. Certain drivers may also require t_stopc and t_startc to be the same character, in which
case one or the other setting will be ignored. See the driver's documentation for details.
Basic loctls

Most ioctl() calls apply to terminals. They have the form
#include <Sgtty .h>

ioctl(int flledes, unsigned long code, void *arg)

arg is usually a pointer to a structure or int The ioctl codes that apply to sgtty are:

TIOCGETP Fetch the basic parameters associated with the terminal, and store in the sgttyb
structure pointed to by arg.

TIOCSETP S~t the terminal's basic parameters according to the sgttyb structure pointed to by
arg. The input queue is flushed, and the call waits for the output queue to drain
before the parameters are changed.

T I oc s E TN This is like TIOCSETP, except there is no delay and the input queue is not flushed.

With the following codes arg is ignored.

TIOCEXCL Set "exclusive-use" mode. The terminal may not be opened again by any process
until all existing references are closed.

TIOCNXCL Turns off "exclusive-use" mode.

TIOCHPCL When the last reference to the terminal is closed, the terminal line is forced to hang
up. This applies only to modem drivers.

With the following codes, arg is a pointer to an int.

TIOCGETD The current line discipline number is stored in the int pointed to by arg. This value
is currently ignored.

T I o c sET o The line discipline is set according to the int pointed to by arg.

TTY(4) Device Drivers TTY(4)

TIOCPLOSH The specified queue is flushed. If the value pointed to by arg is zero, both the input
and output queues are flushed. If the value is FREAD (defmed in <sys/file.h>), the
input queue is flushed. If the value is FWRITE, the output queue is flushed.

The last few calls permit detailed control of the driver. In cases where an argument is required, it
is described. Otherwise, arg should be a NULL pointer.

TIOCSTI The character pointed to by the argument is placed in the input queue as if it had
been typed on the terminal.

T I oc s B RK Begins a break sequence on the terminal.

TIOCCBRK Ends a break sequence.

TIOCSDTR The DTR line is turned on

TIOCCDTR The DTR line is turned off

TiocsTOP Output is stopped as ift_stopc had been typed on the terminal.

TIOCSTART If output is stopped, it is resumed as ift_startc had been typed on the terminal.

TIOCOOTQ The number of characters in the output queue is returned in the int pointed to by
arg.

PIONREAD The number of characters immediately available for input from the terminal is
returned in the int pointed to by arg. This is the preferred method of non-blocking
110 (checking for the presence of characters without waiting for them).

Tchars
The second structure associated with a terminal defines special characters. The structure is defined
in <sys/ioctl.h> which is automatically included by <sgtty.h>.

struct tchars {
char
char
char
char
char
char

} ;

t_intrc;
t_quitc;
t_startc;
t_stopc;
t_eofc;
t_brkc;

I* interrupt *I
I* quit *I
I* start output *I
I* stop output *I
I* end-of-file *I
I* input delimiter (like nl) *I

The default values for these characters are "C, "\, "Q, "S, "D and -1 respectively. A value of -1
for any of the characters means that the effect of that character is ignored. The stop and start
characters may be the same to produce a 'toggle' effect. It is not recommended to set any of the
other characters to the same values; the order in which the special characters are checked is not
defined, and the results you get may not be what was expected.
The ioctl calls that apply to tchars are:

T I oc G ETC Returns the special characters settings in the tchars structure pointed to by arg.

95

TTY(4) Device Drivers TTY(4)

'l' I oc s :e: 'l'C The special characters are set according to the given structure.

Local mode

The third structure in the terminal interface is a local mode word. The various bitfields in this word
are as follows (values are in hex):

LCRTBS
LPRTERA
LCR1ERA
LTILDE
LMDMBUF
LLITOUT
LTOSTOP
LFLUSHO
LNOHANG
LPASSOUT
LCRTKIL
LPASS8
LC1LECH
LPENDIN
LDECCfQ
LNOFLSH

OxOOOl
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080
OxOlOO
Ox0200
Ox0400
Ox0800
OxlOOO
Ox2000
Ox4000
Ox8000

Backspace on erase rather than echoing erase
Printing terminal erase mode
Erase character echoes as backspace-space-backspace
Convert- to' on output (for Hazeltine terminals)
Stop/start output when carrier drops
Suppress output translations
Send SIG'ITOU for background output (not implemented)
Output is being flushed
Don't send hangup when carrier drops
Cooked mode with 8-bit output
BS-space-BS erase entire line on line kill
Pass all 8 bits through on input, in any mode
Echo input control chars as A?
Retype pending input at next read or input character
Only AQ restarts output after AS
Inhibit flushing of pending 110 when intr char is typed

The ioctl's used to access the local mode follow. arg in all cases is a pointer to an int.

TIOCLBIS The bits of the local mode word specified by' 1' bits in the argument are set; this
operation is a bit-wise OR.

'l'IOCLBic The bits of the local mode word specified by '1' bits in the argument are cleared;
this operation ANDs the local mode with the bitwise negation of the argument.

T I oc L s E 'l' Sets the local mode word to the value of the argument.

'l'IOCLGET Returns the local mode word in the int pointed to by arg.

Local Special Characters

96

The fourth terminal structure is another set of special characters. The structure is named ltchars
and is again defined in <ioctl.h>.

struct ltchars (
char t _suspc; I* stop process signal *I
char t_dsuspc; I* delayed stop process signal *I
char t_rprntc; I* reprint line *I
char t_flushc; I* flush output (toggles) *I
char t_werasc; I* word erase *I
char t_lnextc; I* literal next character *I

} i

Defaults for these characters are AZ, AY, AR, AQ, AW, and AV. As with tchars, a value of -1
disables the effect of that character. Only t_suspc is currently implemented for the console driver.

The applicable ioctl functions are:

TTY(4) Device Drivers TTY(4)

TIOCSLTC sets the local characters according to the ltchars structure pointed to by arg.

TIOCGLTC retreives the local characters, storing them in the argument.

Window/terminal sizes

Provision is made for storage of the current window or terminal size along with the other terminal
information. This info is recorded in a winsize structure, and is defined in <ioctl.h>:

struct winsize
unsigned short
unsigned short
unsigned short
unsigned short

} i

ws_row;
ws_col;
ws_xpixel;
ws_ypixel;

I* rows, in characters *I
I* columns, in characters *I
I* horizontal size, pixels *I
I* vertical size, pixels *I

A '0' in a field indicates that the field value is undefined. '0' is the default when a terminal is first
opened. These values are not used by the terminal driver itself; rather, they are for the benefit of
applications. The ioctl calls for winsize are:

TIOCGWINSZ Returns the window size parameters in the provided winsize structure.

TIOCSWINSZ Sets the window size parameters. If any of the values differ from the old ones,
a SIGWINCH signal is sent to the terminal's process group.

FILES
.tty
.ttyco (console driver)
.tty* (user-installed drivers)

SEE ALSO
GNO Shell Reference Manual, stty(l), ioctl(2); signal(2)

97

