
Pegasus Pascal 2.1 ~·

Copyright (c) 1992,1993, 1994 by Pegasoft of Canada
Copyright (c) 1992, 1993, 1994 par Pegasoft of Canada.

Designed and Programmed by Ken 0 . Burtch.

For questions, comments, or orders, please write to the following address:

Pegasoft
Honsberger Avenue, R.R.#1

Jordan Station, Ontario, Canada
LOR lSO

Uses libraries from ORCNPascal, Copyright 1991, The Byte Works, Inc.

ORCA/M 2.0, Copyright 1993, The Byte Works, Inc.

This manual and the related software contained on the diskettes are copyrighted materials. All rights rescrv · .
Duplication of any of the above described materials, for other than personal use of the purchaser, without express

written permission of Pegasoft of Canada is a violation of the copyright law of the United States arid-'t!ahllda; and is
subject to both civil and criminal prosecution. ·if t:'.:q;~~

Pegasoft and Pegasus Pascal are trademarks of Pegasoft of Canada. · -<mtl is
Apple, llGS, GS and GS/OS are trademarks of Apple Computer,Inc.

Unless otherwise noted, trademarks belong to their rei.-pective companies.

Table of Contents

Introduction
A. Installation
B. Getting Started

Editing Your Programs

Compiling Your Programs

IBM Pascal Cross-Compiling

Linking and Running Your Programs

Rebuilding Projects

C. Quick Summary of Pegasus Pascal

D. Details of Pegasus Pascal 2.1 vs. Standard Pascal

1. Indentation determines the scope of control statements

2. PP doesn ' t have visible statement terminators/separators

3. Data declarations

3b. Objects and Methods

4. Comments

5. Literals

6. Assigments

7. Procedure and Function Calls

8. IF ... ELS IF ... ELSE ...

9. Loops

9b. EXJTing loops

10. WITH .. .

11. CASE ... WHEN ... ELSE ...

12. GOTO statement

13. Built-in Subprograms and Constants

14. Expresions

15. Subprogram declarations

15b. Returning from Subprograms

16. Programs

17. Units

18. Pragmas

i. Conditional Compiling Pragmas

ii. Line Macros

iii. Output Directives

iv. Optimize Directive

pg. 1

pg. 1

pg. 2
pg.2

pg. 2
pg. 3
pg. 3
pg.4

pg. 8
pg. 8
pg. 9
pg. 10
pg. 11

pg. 11
pg. 11
pg. 11
pg. 12

pg. 12

pg. 13

pg. 13
pg. 13
pg. 14

pg. 14

pg. 14

pg. 16
pg. 16

pg. 17
pg. 17

pg. 18

pg. 18
pg. 19

pg. 19

v. Other Directives

vi. ORCA/Pascal Directives

19. Reserved Words

20. Predefined Identifiers

21. Combining Pegasus Pascal with Other ORCA Languages ...

22. ORCA/Pascal Alternate Symbols I IIGS Font SupJXlrt

E. A Short Tutorial
A Walk-through

Debugging

A Simple Income Survey

A Program to Count Vowels

A Program to Find the Square Root of a Real Number

A Factorial Program

A Summation Program

A Program to Bubble-Sort an Integer Array

A Unit For Handling Complex Numbers

Creating a Large Project that uses Units

Linking and Cleanup for Projects

F. Troubleshooting
G. Glossary

Appendix I. PPLib
ExPar: The Expression Parser

PPFile: A Faster Way to Manage Files

Turtle Graphics Unit

Strings Unit

pg. 19

pg.20

pg.22

pg. 22

pg.22

pg. 23

pg.24

pg.24

pg.25

pg. 26

pg. 26

pg.27

pg.27

pg.28

pg.29

pg.31

pg. 32

pg.34

pg. 36

pg. 37

pg. 37

pg. 39

pg.40

_ _ _ __ ,,;,,;;~

Introduction

Pegasus Pascal (or PP) is an advanced computer language for the Apple JIGS and the in-house
language of Pegasoft. Based on Pascal, it is designed to reduce spurious syntax errors and offer
increased functionality. It requires ORCA/Pascal 1.4 or greater and System 6 .0 or greater.
Although I have tested it extensively, there is always the possibility of bugs. If you encounter a
problem, please send me your source . PP file and the . p a s file generated by PP, with a description
of the bug, and I will try to get it fixed.

This manual assumes that you are already familiar with the ORCAIP'ascal computer language
and the ORCA shell. PP uses many of the same statements found in Pascal, although the format
may be different. This manual doesn't contain a Pascal tutorial: there are plenty of books available
in local libraries or book stores. Check them out.

For quick starters, read section C.
For a detailed reference, read section D.
For a short tutorial, read section E.

A. Step-by-Step Installation

1. Pegasus Pascal is a shell EXE file for ORCA!Pascal. Place the PP file in the utilities folder of
your ORCA disk.

2 .To make ORCA aware of this new utility, add the following line to the end of the sys cmnd file in
the ORCA Shell/System folder:

pp *U Pegasus Pascal 2 .1

3. Replace the contents of your ORCAPascalDefs folder with the contents of the ORCAPasca l De fs
folder on your PP disks. These files are up-to-date for System 6.0.1. Note: The names of a couple
of toolbox data structures have changed because they conflicted with PP reserved words. Replacing
the ORCAPasca l Defs folder, in rare cases, may force you to change existing Pascal programs.

4. Copy the r cons : PP . r con file into the r cons folder of your startup disk.

5. There are also help files in the Help folder that you can copy into ORCA 's utilities : h e l p
folder. In particular, the file PP . Errors contains the pre-compiler errors from Section F.

You are now ready use Pegasus Pascal when you start ORCA.

Problems'?
Check the troubleshooting section for more information.

B. Getting Started

Editing Your Programs

There is no language type for a PP source progrdm file. I recommend that you use the PASCAL type and end the
name of the source file with a . pp. (The icon file is set up for this format.) Edit the file as you would for any other
source file.

A Note on Tabs: Indentation is important in Pegasus Pascal. PP assumes that the editor tabs are the set to the Pascal
defaults (every 8 columns). lfyou have changed your tab settings, keep this in mind.

Compiling Your Programs

Pegasus Pascal is not like other ORCA languages: it's a utility that translates a Pegasus Pascal program into
standard Pascal to be compiled by ORCA's compiler. This process is called pre-compiling; PP is a pre-compiler or a
"front end" to ORCA/Pascal. Instead of using Compile (or the related commands like CMPLG), you use the PP
utility:

PP [+CJ [+E] [+L] [+F] [+M] [+T] pathname

PP pre-compiles the source file specified by pathname. If there are no errors, ORCA!Pascal will be invoked
automatically to finish compiling your program. The following files are produced:

pathname .pp
pathname.pas
pathname.root
pathname.a

I your Pegasus Pascal program
I the OR CA/Pascal equivalent of your program
I the object code for the main program
I the u~ject code for the rest of your program

PP can be aborted with ctrl-c (traditional Apple 11 key combo) or open-apple-period (key combo used by
ORCA); it can be paused with the spacebar.

If you specify + L, the Pegasus Pascal produces a listing. The listing can be redirected to a file in the usual way
(with >listing.file) and printed with a word processor, or can be sent to . printer. A listing line looks like this:

Example: A Listing line
32 (9,2) WriteLn

32 the line number
9 the indentation of the line, in spaces
2 declaration nesting level at the start of the line (2 is global declarations)
I a vertical bar appears if nu object code is produced for these lines.

+ E will show the expanded version of lines with macros. For example, if Here is a macro for 'Here is a macro'
then you would see something like this during a listing:

Example: A Macro Expansion
57(9 ,2) writeLn !Here

==> WriteLn 'Here is a macro•

The +C option is for a quick syntax check: no pathname. Pas is written to the disk and compiling will be
significantly faster. Use this option wheo you've made many changes to your program and you are think there are a
lot of bugs. This only works for individual files, not projects.

IBM Pascal Cross-Compiling

PP supports basic cross-compiling to two popular IBM Pascal's. Pre-compile a file or project with +M to generate
Microsoft QuickPascal source code. Pre-compile with + T to generate Turbo Pascal source code. You can copy the
".Pas" file to an JBM machine (for example, with a modem) and compile it. The translated symbols are listed below:

Pegasus Pascal 2.1

Fmn To To
PP2.1 OR CA/Pascal Microsoft Pascal

(normal) (+M)

lines end in CIR CIR CIR + UF
BAND & AND
BOR I OR
BXOR ! XOR
BNOT NOT
<< << SHL
>> >> SHR
<no inp.,output> (input,output) <rio input,output>
EXTERN EXTERN EXTERNAL
ELSE (case) OTHERWISE: ELSE:
RANGE ON rrangecheck>} r +} RANGE OFF $rangecheck-} $R-}
FLOAT ON $Float 1 ~ $N +}
FLOAT OFF $Float 0 $N-}

Linking and Running Your Programs

Link and run the object files as you would in any other ORCA language.
For an example of compiling and linking a program, see Section E.

Rebuilding Projects

3

10
Turbo Pascal
(+T)

CIR+ UF
AND
OR
XOR
NOT
SHL
SHR
<no input,output >
EXTERNAL
ELSE

$R-} r+)
$N+}
$N-}

PP + F will fully rebuild a project: the project must be described by a file named project in the current directory.

PP searches the project list until it finds a progrnm or unjt that has been edited. It recompiles that file, and all the

rest of the files in the list. If the +Fis left out, PP onJy recompiles files that have been edited. This is usually safe,

except when changing the export list of a urut, in which case you must use + F.
For more information on projects, see section E.

C. Quick Summary of Pegasus Pascal 2.1

For those of you who want to just dive in, here is a summary of Pegasus Pascal. See section D for more details.

Key to symbols:
UPPERCASE: a Pascal keyword - you can' t use these words for an identifiers
italics: replace with what the italics refers to; eg. paragraph is any legal paragraph
[] : denotes an optional part to a command
bold: a comment
... :you continue in the same way

For example, PRAGMA PExpr [on or o ff J means you can type:
pragma pexpr
pragma pexpr on
pragma pexpr off

Comments, Pragmas and Directives

I - a comment until the end of the line

1$ ORCA!Pascal directive

PRAGMA directive parameters

Current defined pragmas are:
PRAGMA PExpr [On or Off]

PRAGMA Set ident = (or : =) ' string'

PRAGMA If ident = •string•

PRAGMA Else

PRAGMA Endif

PRAGMA List On or Off

PRAGMA Expand On or Off

PRAGMA Macro ident ('param' [, 'param. ' ..])]

PRAGMA Opt imize Space or Off

PRAGMA Range On or Off

PRAGMA Float On or Off

PRAGM.l'. Speak

PRAGMA Source ident

1-iterals

' '•String• • Literal •
$l2AB
12.34
%0101
{), {1 , 2,3}, {a •• zJ

A, A_bc, A2, A

Statements

I string literal
I hexidecimal literal
I decimal literal
I binary literal
I set literals
I identifiers

!Macro [('param' [, 'param2' . . .])]
! Compiler Variable

(or 1=) text

I Macro Expansion

Pegasus Pascal 2.1

GOTO ident

ident- label:

IF expr
paragraph

[ELSIF expr
paragr aph]

[ELSIF .•.]
[ELSE

paragraph]

WHILE expr
paragraph

REPEAT
paragraph

UNTIL expr

FOR var= (or : =) exprl .. expr2 (or exprl DOWNTO expr2)
paragraph

WITH var [,var ...)
paragraph

CASE v ar
[WHEN label [,Label . . .)

paragraph
[WHEN label .. .]]

ELSE
paragraph

EXIT [IF expr
[paragraph]]

ident[dereference/fjeld/indicee] = (or :=) expr
Assignment statements may contain &, the reflexive operand.

mypro c parame [& parame2 ...]

Data Declarations

CONST Cl. = literal or ident
[c2 = literal or ident ... J

VAR vl. [, v2 . ..] : variable type
[= i n i t ial - value]
[v3 .••]

TYPE tl = type d e fini tion or object definition
[t2 = type definition]

LABEL i den t1. [, ident2 ...]

Built-in Subprograms

5

Pegasus Pascal 2.1

INC variable [,amoun t]
DEC variable [,amoun t]

or any ORCA/Paacal subprograms

Subprogram Declarations

PROC name - ident [formal_params]
declarations

BEGIN
paragraph

END name-ident

FUN'C name - i dent
declarations

BEGIN
paragraph

END name - i dent

RETURN [IF expr
[paragraph]

PROC or FUN'C
PROC or FUNC
PROC or FUN'C
PROC or FUNC
PROC or FUNC
PROC or FUNC

type (or name -ident([formal_params]

EXTERN
FORWARD
PRODOS (call -num)
TOOL(toolset -num, tool -num)
USERTOOL(toolset -num, tool-num)
VECTOR(vector-address, tparam)

Method Declarations

PROC class.method
declarations

BEGIN
[INHERITED method]

paragraph
END c lass .method

FUNC c l ass.method

declarati on s
BEGIN

[INHERITED me th o dJ
paragraph

END class .method

6

type)

Pegasus Pascal 2.1

Program Declarations

PROGRAM

[[FROM system or 'path '] USES ident, ident2,
[...] l

declarations
BEGIN

paragraph
END

UNIT

[[FROM syst em or 'path ') USES ident, ident2,)
[...]

exported data declarati ons & exported subprogram headers

IMPLEMENTATION

internal data declarations & comple ted subprograms
END

7

D. Details of Pegasus Pascal 2.1 vs Standard Pascal

1. Indentation determines the scope of control statements
Standard Pascal has a compound statement which is a set of statements starting with the keyword BEGIN and
ending the with the keyword END. PP uses paragraphs instead, which are equally indented statements with possible
blank lines in between. (Blank lines include lines containing only comments.) Common statements are grouped into
paragraphs. Thus, it is exlremely important to keep your indentation nicely even. Paragraphs may be rum tllf:tm~
a program.

Consider the IF statement in standard Pascal:

if i > 3 then begin
WriteLn(' i i e > 3');

WriteLn ('OK?') ;

end;

The conditional lines must be indented in PP:

if i > 3

WriteLn 'i ie > 3 '

WriteLn 'OK?'

The indented lines are a paragraph that will be executed if i is greater than 3. The paragraph may contain a blank
line:

if i > 3
WriteLn 'i ie > 3'

WriteLn ' OK?' I Thie wil l be executed if i > 3

The second Writel...n will be executed the same time as the first one. However, it will be considered OUTSIDE of the
IF if it's outdented :

if i) 3

Wri t eLn 'i is > 3'

WriteLn 'OK? ' I Thie will always b e executed

A Stran~e Case: Consider the IF statement. Because paragraphs use indentation, you can always indent an ELSE (or
ELSIF) part more than the IF part, as long as the ELSE is not indented as far as the conditional statements
paragraph:

if i) 3

WriteLn 'OK.•

ELSE I Thie is weird , b ut it works

BUT if there is an empty conditional paragraph, it isn't legal since the ELSE becomes the paragraph:

if i > 3

ELSE I El se is the conditional - get an error

The general rule is to keep statements like IF ... ELSIF ... ELSE lined up evenly. It looks nicer, and you won't run into

this problem.

2. PP doesn't have visible statement terminators or separators
PP doesn't use semicolons (;) to end statements; in fact, if you use them, you'll get a warning. Each statement must
be on a separate line. If you have a very long line, you can break it up with the hypen symbol(--). The hypen must
be the last symbol on the line.

Pegasus Pascal 2.1

x 1 = 3 + (4 + 2) I This is good
x := 3 + (- -

4 + 2) I This is good
x : = 3 + (

4 + 2) I This is BAD

This also means you can't use one-line IFs or WHlLE's:

if x > 3 Wri teLn •wow!• I This muet be on 2 separate lines

3. Data declarations
CONST Cl = literal or ident

[c2 = literal or ident .. .]
VAR vl [, v2 . ..] : variable type

[= ini tial-value]
[v3 ...]

TYPE t1 = type definition or objec t definition
[t2 = type definition

LABEL i den t1 [, i den t2 .. .]

9

Data declarations let you define the meaning of the information identifiers in your program Standard Pascal requires
these declarations to occur in the following order: labels, constants, types, and lastly, variables. In PP, these
declarations may occur in any order, even interspersed with each other. This way, programmers can group their
declarations by use or some other criteria.

I Wi ndow stuff
Const Windowconet = 25
Var WindowVar : SomeWindowType
Type MyWindowe = array[l . . WindowConst] of graf portptr

I Menu stuff
Const MenuConst = -5 I no probl em in PP !

Var MenuVar : SomeMenuType

Records have no END in their definitions, but fields belonging to the record must be in an indented paragraph:

Type MyRec = record
fl , AFie l d
f2 1 AnotherFi eld

I No END needed

Variant records are similar, except that they resemble PP's CASE statement:

Type MyVari antRec = record
case tag 1 boolean I tag field ie optional
when true

fl 1 integer
when fal se

f2 1 longin t

Simpe variable declarations can have an optional default value:

var Tot all, Total2, Total3 • integer
O I Totall,2,3 start off as zero

Variables can also he external:

Pegasus Pascal 2.1

var i : extern integer Ii is in my assembly language files

Statement labels are identifiers instead of numbers.

Label OverHere, OVer'I'here

3b. Objects and Methods
[OBJECT [(superclass)]

[field-list (• i11ata11ae-variablea•)
[...]
[PROC method-name params or PROC method-name OVERRIDE or
FUNC method-name (params) :type or FUNC methi;>qcname OVERRIDE]

[...]

PROC class.method
[declarations]

BEGIN
[INHERITED method
(statements]

END c lass .method

FUNC class.method
[declarations]

BEGIN
[INHERITED method
[statements]

END class.method

10

Pegasus Pascal offers the same basic object-oriented programming features of ORCA/Pascal. You can declare
objects and methods, inherit instance variables from superclasses, etc. Except for the removal of ENDs and semi­
colons, the use is the same:

Object Declaration Examples:
Type vehicle = OBJECT

Weight 1 integer
Speed : i nteger
x, y : integer
proc Move DistanceX, DistanceY
proc Drawit

car = OBJECT(vehicle
Manual Transmission
Origin : Country
proc BeepHorn
proc Drawit override

Method Declarations EX8.!J!Vles:
proc Vehicle.Move
begin

x = & + DistanceX
y = & + Di stanceY

end Vehicl e .Move

proc Car. Drawit

boolean

integer

var x l , y l : integer I some local var iables
begin

Pegasus Pascal 2.1

inherited Drawit I execute Vehicle.Drawit first
insert statements to draw a car here

end Car.Drawit

4. Comments
I - a comment until the end of the line

11

Standard Pascal uses (* ... "') and { ... } to signify comments in a program. As you've seen, PP uses the vertical bar
(0 to signify a comment. A comment always runs from a vertical bar to the end of a line, unlike Pascal comments
that require a closing symbol. Lines containing only comments do not affect paragraph indentation.

5. Literals

if i = 4

a= b

c
c = d

d will execut e only if i 4

Literals are constants that are defined outright in a program. Literals are the same as standard Pascal, except: PP also
supports binary literals like % 1011. A binary literal starts with a per cent sign (%) and must contain a multiple of 4
hinary digits.

Set literals have a minor change: they use curly set brackets ({}) instead of the less-appropriate square brackets
([]) .

6. Assignments

MySet

Eight

{a,b,c}

%10 00

ident[dereference/field/indices] = (or i=} expr

PP allows the equal sign(=) or colon-equa.I (::)to be used for assignment.
The assignment statement supports a reflexive operand. Something is reflexive if it acts upon itself. If an

ampersand(&) appears in the right side of an assignment statement, it will refer to the identifier (without any [),",
etc.) on the left side. Pronounce the ampersand as "itself'.

i = 5 same as i : = 5

Total = & + 2

List [l] = & [2]
eame ae Total = Total + 2

a = b = c

7. Procedure and Function Calls
myproc params [& params2 ...]

same

eame

as

as

List [l) List[2]

a := (b = c}

Procedure calls have no parentheses (()), resembling the built-in procedures in BASIC. They support a reflexive
operator in a similar way to assignments. Using & after a parameter list will re-invoke the procedure with any
parameters that follow the &. Pronounce the ampersand as "and again with".

LineTo x, y

LineTo x l,yl & x 2 ,y2 & x3,y3, & xl,yl

Unlike standard Pascal, procedures may not be used as parameters to procedlU"es.

Unlike procedures, function calls require parentheses.

I invoke LineTo 4 times

Pegasus Pascal 2.1

MyVar = 1.0 / sin (0.5)

8. IF ex pr ..• ELS IF ex pr •.. ELSE ...
IF expr

paragraph

[ELSIF expr

paragraph]

[ELSIF . •.]

[ELSE

paragraph]

12

We've already seen the IF several times. The keyword THEN is omitted and the conditional lines should be in an
indented paragraph. PP allows ELSIF parts to an IF, just like Modula and Ada:

if i > 3
a = i

elsif i > 1 I b = i executes only if (i<=3) and (i > 1)
b = i

else

9. Loops
WHILE expr

paragraph

RE PEAT
paragraph

UNTIL expr

WriteLn 'i is less than 2'

FOR var = (or :=) exprl .. expr2 (or exprl OOWNTO expr2)

paragraph

PP uses the same 3 loops as used in Pascal: While (pre-test), Repeat (post-test), and For (iterative). For any loop,
the statements to be repeated must be indented.

The REPEAT stakment is the same as in standard Pascal:

Good: REPEAT
x = x + l

UNTIL x >3

The WlllLE statement does not use the keyword DO:

while i > j
i = & - l

Wri teLn i

Bad: REPEAT
x = x + l

UNTIL x > 3

The FOR statement has undergone several changes. Like an assignment, equals(=) may be used instead of:=. The
range is specified as a subrange with an ellipsis(..) instead of the keyword TO. (The keyword DOWNTO works if
you want to loop backwards through the range). And like the WHILE, the keyword DO is omitted.

for i = l.. 5
Write Ln i

for i := 5 downto l

WriteLn i

I same as Pascal's • for i 1 = l to 5 do begin•

Pegasus Pascal 2.1 13

9b. EXITing loops
EXIT [IF expr

[paragraph))

You can stop repe.ating any]oop with the EXIT statement, which returns you to the next statement after the end of
the loop. If you use an IF c1ause, you will only leave the loop if the c1ause is true. If you inc1ude the optional
indented paragraph. the paragraph is executed before you leave the loop.

While x > y
if a > b or c < d

exit
x = & + 1

Repeat
x = & + 1

exit if StrArray[x]

same as •exit if a > b or c < dff
leave the while loop

'I found it'
WriteLn 'I found it - now I will the exit the loop'

Until x > StrArraySize

10. WITH ptr /record •..
WITH var [,var . ..)

paragraph

The WI1H statement has no DO. The lines to be prefixed should he in an indented paragraph.

with reel, rec2

Write Ln Fi e ld

11. CASE ... WHEN .•• ELSE ...
CASE var
(WHEN label [,Labe l •• •]

paragraph
[WHEN label . ..]]

ELSE
paragraph

CASEs have undergone several modifications. The keyword OF is omitted. Case labels have no colons; they are
proceeded with the keyword WHEN (to hilight the cases). Instead of an optional OTHERWISE: part, PP has a
required ELSE part. As usual, all the conditional statements must be in indented paragraphs.

case errorMessage
when fatalError

Di spl ayBewilderingMessage
DoHorribleDeathToMakeUserScream

when s eriousError, tool boxError
DoHorribleDeathToMakeUserScream

else
CraehToSyetemMonitor

Never indent the WHENs.

Pegasus Pascal 2.1

12. GOTO Statement
GOTO statement-ident

s ta ternen t- i dent 1

14

Statement Labels and GOTO labels are identifers instead of the traditional numbers; if you use numbers, you will get
an error message. Becaac;e indentation is the key to keeping track of paragraphs, statement labels nrust always be
properly indented to avoid ending paragraphs prematurely.

IF x > 3
WriteLn 'Good•
Here :
y = x I y = x execut es if x > 3

IF x > 3

WriteLn 'Good '
Here: I ends x > 3 paragraph with the WriteLn

y = x I y = x always executes

The GOTO statement hasn't changed.

goto Here

13. Built-in Subprograms and Constants
INC variable [,amount]
DEC variable [, amount]

PP knows all the built-in procedures, functions and constants of ORCA/Pascal. Remember that procedure calls in
PP don' t use parantheses. For a list of the predeclared identifiers, see D/20.

Wri teLn 'WriteLn i s a built - in procedure in ORCA/Pasc al '

PP has two other built-in procedures. INC will add I to a variable. DEC will subtract l from a variable. The
optional expression is the amount you want lo inc/dee the variable, if it's other than one.

i nc x same as x = x + 1 (or x = & + 1)

dee x same as x = x - l

inc x.r same as x.r = x.r + l

dee x[2], 3 same as x[2] = x [2] - 3

14. Expressions
PP uses Modula-2's and BASIC's order of operations (operator precedence): unary operations, brackets,
multiplication/division, addition/subtraction, relations(>,=, etc.), then boole.an operations (and, or, etc.). Using this
order reduces the number of brackets you need in expressions. Jn general, it's easier to use PP's order-of-ops than
standard Pascal's. Consider the statement:

if x = l and y = 2

In standard Pascal, the expression results in a type incompatibility error. Pascal evaluates expressions like this left­
to-right. "x = l and" is part of a boole.an expression, but y is an integer, and you can't AND an integer.

Jn Pegasus Pascal, AND, OR and XOR are always evaluated LAST. The expression "x = I" (boolean) can be
ANDed with "y = 2" (boolean); there is no error.

Exa.nwJes:
i •= 3 * 2 + 4 * 5 I i => (3 * 2) + (4 * s l => 2 6

Pegasus Pascal 2.1

b •= l + 2 = 3 b = > (1 + 2) = 3 => true

b := 3 <> l + 2 b => 3 <> (1 + 2) => false

b := l > 2 or 3 > 2 b => (1 > 2) or (3 > 2) => true

b t= l=l and 2=1 or 3=3 b => ((l = l) and (2=1)) or {3=3) => true

PRAG MA PExpr can force PP to use the standard Pascal order of operations.
The following operators have changed to new keywords/symbols from those used in ORCA/PascaJ:

Bitwise NOT
Bitwise AND
Bitwise OR

Bitwise XOR
Bit shift left
Bit shift right
Not Equal

Example:
x = y BAND iOlllllll

BNOT

BAND
BOR
BXOR
no change
no change

or <> or "'

ORCA!Pascal

&

<<
»
<>

15

Const statements may have numeric expressions on the right side of the equals sign. The compiler recogniz.es + ,-,* /
(use I for DIV), (),**and most ORCA functions. There are a few limitations:

I. The expression may not contain identifiers;
2. The expression cannot start with a function.
'~:Numbers cannot.b@ Ht hex or binary fSRDat.
4. Negation will not work properly in ell cases (eg. -2+ I will cause an error);
5 . Some operators, notably**, only work for integer values.

Example:
program

Const

begin
end

xl
x2
x3
x4
x5
x6
x7
xB
x9
xlO
xll
xl2
xl3
xl4
xl5
xl6
xl7
xlB
xl9
x20
x21
x22

l

0.1
0 + abs (1)

o + arccos{0.5 }
O + arcsin (0. 5)
O + arctan (o . 5 }

0 + COB (0. 5)

0 + exp(0.5}
o + ln (0.5)
O + random
o + randomdouble
O + randomi nte g e r
0 + randomlongint
O + round { 0 . 5 }

O + sgn(- 5)
o + sin(O.S)
o + eqr(0.5}
o + sqrt (9)

o + tan(0.5)
o + trunc (l. 7)
0 + ord{'a')
o + C3 + 12) I 4

Screen Pixele = 640 * 200 I number of p i x e ls on 640x200 s creen

Pegasus Pascal 2.1

15. Subprogram Declarations
PROC name-ident [fo.rmal_params]

declarations
BEGIN

paragraph
END name-ident

FUNC name-ident 1 type (or name-ident ((fo.rmal_parame]) 1 type)

declarations
BEGIN

paragraph
END name- i dent

PROC or FUNC EXTERN
PROC or FUNC FORWARD
PROC or FUNC PROOOS(call-nurn)

PROC or FUNC TOOL(toolset-num, tool -num)

PROC or FUNC USERTOOL (toolset-num, tool -num)

PROC or FUNC VECI'OR(vector-address, tpa.ram)

16

PP procedures are dedared by the keyword PROC instead of the keyword PROCEDURE (Do you know how many

times I've misspelled PROCEDURE when I've heen in a hurry?!) and the parameter list has no enclosing parentheses

(()). The header must occur on one line unless the hypen is used.

pro c MyProc var x,y : integer; j : ptr

PP functions are declared by the keyword FUNC instead of the keyword FUNCTION. The parameter list requires

the parentheses.

func MyFunc (i : integer) : boolean

Any of ORCA!Pascal's special keywords can be used: forward, tool, prodos or extern, and even univ parameters.

They all work the same way as in ORCA!Pascal:

p roc AnAseemblyLanguageProc extern

The executable part of the procedure or function is an indented paragraph enclosed by the keywords BEGIN and

END. The keyword END must be followed by the name of the subprogram.

proc MyProc
func MyFunc
begi n

MyFunc = 0
end MyFunc

begin

integer·

Wri teLn 'Hey! A procedure! '

end MyProc

See D/3b on how to declare methods.

15b. Returning from Subprograms
RETURN [I F expr

[paragraph]]

The return statement will force the early termination of a procedure or function, much in the way exit works with

loops. If the optional if clause is used, the subprogram will only terminate if the clause is tme. If the optional

Pegasus Pascal 2.1

indented paragraph is included, it is executed before the subprogram is terminated.

Fune SomeMathFunction (x,y 1 integer) 1 integer

begin
return if y = O

WriteLn 'Error: can''t divide by 0'

SomeMathFunction = o
SomeMathFunction = x ** 4 d iv y

end SomeMathFunction

16. Programs
PROGRAM
[[FROM system or 'path'] USES ident, ident2,]

[...]
declara ti one

BEGIN
paragraph

END

17

Programs start. with the keyword PROORAM; no name follows, nor any input/output specification. PP always
assumes that you'll want to use the the standard INPUT for Read's and OUTPUT for Write's. You need no $Keep
directive: PP automatically keeps your object code . A short example program:

program
begin

WriteLn ' Thie is really short.•

end

If you have 11 USES list, it must come before any declarations and more than one USES is allowed. Here are some
examples:

Uses MyUnit

From 'misc :' uses x , y

From System uses Common

17. Units
UNIT

I looks for · MyUnit in the current directory

I (prefix 8).

I looks for x and y in the mi sc subdirectory .

I(~·~

I same as old • uses Common•. Use

I for toolsets & uni ts in 1310RCAPascalDefs.

[[FROM system or 'path') USES ident, ident2,]

[...]
exported data declarations & exported subprogram headers

IMPLEMENTATION
inteinal data declarations & completed subprograms

END

Like programs, units start with the keyword UNIT without any name. A $keep is automatically generated for you.
The keyword INTERFACE is omitted, and as is the period(.) after the END.

unit I a very short unit
impleme ntation

end

Compiler variables and line macros cannot be exported from a unit.
Unlike standard Pascal, forward subprograms and subprograms exported from a unit may have

Pegasus Pascal 2.1 18

parameta-s when they are completely defined. This let's you copy and paste a procedure header into a unit's export
area without deleting the parameters first. PP checks to make sure all the parameters were declared previously, but it
makes no other checks.

Example:
unit
proc DrawTriangle x,y ' integer
implementation
proc DrawTriangle x,y
begin

integer I "x,y ' integer" part is optional

Example:

end Draw'I'riangl e
end

program
func CheckStatue 1 boolean forward

func Check:Status
begin

boolean I ": b oolean" part ie optional

end CheckStatus
begin
end

18. Pragmas
A pragma is a compiler directive. Unlike an ORCA!Pascal directive, a pragma is a statement: it must occur on a line
by itself, and it should follow the paragraph indentation rules.

i . Conditional compilation pragmas: Suppose you have a program that contains Writel..n's at strategic places to print
out debugging messages. If your program is working, you don't want to compile the messages, but if a bug comes up,
you want them there.

Conditional compiling lets you inform the compiler of sections of your program that you may (or may not) want
compiled.

In order to conditionally compile, you have to define a compiler variable. PP lets you declare up to 16 variables.
You can think of them as a special kind of string variable that only exists while the compiler running. Their scope
is from the line where they are declared to the end of the program, and for that reason they usually appear before
PROGRAM or UNIT.

PRAGMA Set cornpi l erVarai ble = 'e tring'

Example:
pragma eet UaeDebugStatemente = •yea'

pragma eet ComputerName = 'Apple IIGS'

I declare a compiler var iable

PRAGMA If ident = 'e tring' Checks the compiler variable to see if it matches string. If it does, the statements
following the If directive will be compiled.

PRAGMA El ee Begins compiling if PP wasn't compiling, or else stops compiling if it was.

PRAGMA Endlf End of a conditional compile. Always compiles the statements that follow.

You can't nes1 conditional compiling statements. A second PRAGMA if will simply override the proceeding
conditional compiling PRAGMA.

pragma Set
pragma If

Fruit = 'Oranges'
Frui t = 'Oranges '

Pegasus Pascal 2.1

WriteLn 'We bought some oranges.•

pragma Endif I optional if in front of another pragma if

pragma If Fruit = 'Appl es'
WriteLn 'We bought eome apples.'
pragma Else
WriteLn 'We didn''t buy apples.•
pragma Endif
WriteLn 'We went home afterwards.'

is the same as

WriteLn 'We bought some oranges.•
WriteLn •we didn''t buy apples . '
WriteLn 'We went home afterwards.'

You can test two compiler variables with! (see below):

pragma if x = !y

19

ii . Line Macros: Anyone who has used ORCAIM will know what a macro is. Micol Advanced BASIC users may
have used Aliases, which are very similar. line macros are convenient for short forms of often used statemenL<; or
pieces of statements. A line macro is a macro limited to a single line of text. When a macro is encountered, the
compiler "expands" the macro: unlike a procedure call, the text of the macro is actually inserted into the line in your
program to form a new source line.

PRAGMA MACRO name[('paraml' [, 'param2' ...]) J = text - Defines a new line macro named name for

the specified text. A macro may contain another macro, but remember that macros are only expanded when they are
encountered in a source line.

!name - Expands the macro or compiler variable, substituting the previously defined text in the source line.

p rogram
pragma macro Hello= 'Hello there!'
pragma macro ArraySize = 1 .. 100
Var AnArray : array[!ArraySize] of intege r

i : integer
begin

WriteLn 'Thie is a test.•
WriteLn !Hello
for i = !ArraySize

is the same as

program
Var AnArray : array[l .. 100] of integer

i : integer
begin

WriteLn 'Thie is a test. •
Wri teLn 'Hel lo there!'
for i = 1. . 100

Line macros can also have parameters. These parameters work in a similar way to macro parameters in the C
language. The formal parameters are a list of substrings which can be replaced anywhere in the macro. For example,

pragma macro WriteValue('X') = WriteLn 'The value of Xis ',X: O, '·'

Pegasus Pascal 2.1 20

Notice the quote marks around the parameter 'X'. Since X must he a string, only upper case X's are replaced:
parameters are case-sensitive. When expanded, every occurance of the letter X in the macro will he relpaced, even if
it is in a string literal like 'The value of Xis'.

- - >
= >

!WriteVal ue('Total ')
WriteLn 'The value o f Total is ',To ta l :O, '.'
WRITELN 'The value of Total is ' ,TOTAL : O, '·'

param substring r eplaced
r esulting line

Care must he taken in creating macros for expressions. For example, consider a macro fur squaring any expression:

pragrna macro Square ('-x') = ((-x) * (-x))

The tilda (-)is not used in Pegasus Pascal. If we had used 'x' instead of '-x', an expansion like

y = I Square ('x')

would cause an infinite number of substitutions. (That is, x's in the string would he replaced with x's, and those x's
would he replaced, and so on.) Pegasus Pascal would "time out" after a large number of substitutions and give you
an error. This problem will also occur with 'xl ' or 'xCoordinate' or 'twoxtwo'. With '-x', the tilda disappears after
one replacement and the problem is eliminated.

Also, notice the parentheses. It is usually a good idea if, for macros of expressions, to enclose the whole
expression in a set of parentheses as well as enclosing each occurance of the formal parameter. That way, expressions
like:

y = !Square('x + y') ** z
- - > ((x + y) * (x + y))

==> Y = ((X + Y) * (X + Y)) ** Z

will evaluate correctly.

iii. Ou!J>ut directives: LISTING is used to tum a compiler listing off or on. EXPAND is used to tum the macro
expansion display on or off. These override any +Lor +E options used with the PP shell command.

pragma l i s ting on

pragrna expand off

iv. Optimize directive: OPTIMIZE SPACE: Tells the compiler to compress the program as much as possible:
literally, it inserts the word PACKED in front of every occurrence of the word SET, FILE, RECORD or ARRAY (if
there isn't one already). OPTIMIZE OFF: Stops optimizing. You can further optimize your programs for space and
time using the ORCA!Pascal !$optimize directive.

v. Other directives:
PRAGMA System eye tem_ident Specifies the source machine/language for a cross-compiler. (eg. Pragma System

Apple_IlGS) This pragma is ignored in PP 2.1.

PRAGMA Range on or off Turns range checking on or off. This is the same as ORCA/Pascal's $RangeCheck+
and $RangeCheck-. The default is ORCA's default The pragma is translated when cross-compiling.

PRAGMA Float on or Off Turns on or off a coprocessor math board, like Innovative Systems FPE 68881 card
(available through Resource-Central). The default is ORCA's defanlt. The pragma is translated when cross­
compiling.

PRAGMA Speak Starts Byte Work's Talking Tools (if you have them installed) to speak error messages. Once an
error message is said, PP switches to your editor without waiting for you to press the Return key (very useful and
saves time). You can also impress your friends with your talking computer.

However, there are some bugs: 1. The Talking Tools are not compatible with the Sound Control Panel: the control
panel sounds are disabled by the Talking Tools; 2. ORCA's editor becomes slow and misses the occasional

Pegasus Pascal 2.1 21

keypress; 3. The Tools don't release ttieir memory properly (perhaps related to point 2).

PRAGMA PExpr [on or off] This forces PP to use the older Pascal order of operations. Pragma pexpr off

switches back to Pegasus Pascal's order of operations.

Example:

pragma pexpr I use standard Pascal expressions

program test
var x

S

integer
string[BO)

b : boolean
begin

pragma pexpr off I u se Pegasus Pascal expressions

x := 5 + 2 * 3
b := l + 2 > 3 o r 5 < 4
pragma pe xpr on
s : = 'Test•
WriteLn x, b, s

e n d

use s tandard Pascal expressions

ln this example,• 11 false Test" is written.

vi. ORCA/Pascal directives can be used by using 1$. Most of the ORCA/Pascal directives work fine in Pegasus

Pascal, but there are some exceptions.

a. !$copy and !$append will not insert a Pegasus Pascal file into your Pegasus Pascal program. (PP ignores these

directives, passing them on to ORCA/Pascal, and ORCA/Pascal doesn't know how to compile Pegasus Pascal source

code.) You can use !$copy and !$append to insert ORCA/Pascal source code into your Pegasus Pascal program.

(For more info on these directives, see your ORCA/Pascal manual.)

b. The following directives should :'llOT be used:
!$Keep - PP gem:rates a !$keep automatically
i$LibPrefix - PP 2.0generates1$LibPrefix automatically
1$JSO - may work, but PP may use some of the ORCA/Pascal's non-ISO features. For example, PP uses "otherwise: "

when it precompiles CASEs.

c. The listing directives may not work as expected:
!$Eject - page eject for ORCA/Pascal listing; no effect on PP listings
!$List - generate an ORCA/Pascal listing; no effect on PP listings. Using !$List+ and PRAGMA LIST ON will
produce a listing of your Pegasus Pascal source code, followed hy a listing of the OR CA/Pascal program PP
generated.
!$Title - sets the title for an ORCA/Pascal listing; no effect on PP listings

d. The following directives will work:
1$CDev - create a control panel device
1$ClassicDesk - create a classic desk accessory
1$DataBank - save the data bank on subprogram calls
!$Dynamic - begin a dynamic loader segment
!$Float - works properly, but you should use the FLOAT pragma
1$MemoryModel - fast or slow/long addressing
!$Names - save trace info for debugging
!$NBA - create a new botton action
1$NewDeskAcc - create a NDA
!$Optimize - optimiz.e the object code
i$RangeCheck - works properly, but you should use the RANGE pr.1.gma
!$RTL - exit program with RTL
!$Segment - begin a static loader segment
1$StackSize - change the stack size
1$Too1Parms - use tool calling convention

Pegasus Pascal 2.1 22

1$XCMD - create an external command

19. Reserved Words

The following are reserved words in Pegasus Pascal. They cannot be used for identifier names. Also, any
ORCA/Pascal reserved words not used by Pegasus P.ascal (PROCEDURE, INTERFACE, TifEN, DO, TO ...)are
also reserved words.

AND
BOR
DIV
EXIT
FUNC
INC
OBJECT
PRAG MA
REPEAT
UNIT
VAR

ARRAY
BXOR
DOWNTO
EXTERN
GOTO
INHERITED
OF
PROC
RETURN
UN1V
VECTOR

20. Predefined Identifiers

BEGIN
CASE
ELSE
FILE
IF
LABEL
OR
PRO DOS
SET
UNTIL
WHEN

BAND
CONST
ELSTF
FOR
IMPLEMENTATION
MOD
OVERRIDE
PROGRAM
STRING
USERTOOL
WHILE

BNOT
DEC
END
FORWARD
IN
NOT
PACKED
RECORD
TOOL
USES
wrrn

FROM

TYPE

The following are predefined identifiers in Pegasus Pascal A predefined identifier is a constant, variahle, type,
procedure or function declared globally by a language. These are available in any Pegasus Pascal program, and can
be redefined like any other global identifier; however, it is usually a bad idea to redefine a global identifier, since the
original function of the identifier will he lost.

Note: Although INC and DEC are predefined identifiers, PP~ treats them as reserved words.

ABS ARCCOS
BOOLEAN BYTE
CNVDS CNVTS
CNVSL CNVSR
COS DEC*
END DESK ENDGRAPH
EXP FALSE
INPUT INSERT
LONGINT MAXINT
NIL ODD
OUfPUT PACK
PRED PUT
RANDOMLONGINT READ
REWRITE ROUND
SELF SHELLID
SQRT STARTDESK
TAN TEXT
TRUNC4 UNPACK

Example:
proc MyProc

ARCSIN ARCTAN
CHR CHAR
CNVRS CNVSD
COMMANDLINE CONCAT
DELETE DISPOSE
EOF EOLN
GET HALT
INTEGER LENGlH
MAXINT4 MEMBER
OPEN ORD
PAGE POINTER

ARCTAN2
CLOSE
CNVSI
COPY
DOUBLE
ERROR OUTPUT
INC*
LN
NEW
ORD4

RANDOM RANDOMDOUBLE
POS
RANDOMINTEGER
RESET READLN REAL

ROUND4 SEED
SIN SIZEOF
STARTGRAPH SUCC
TOOLERROR TRUE
USERID WRITE

SEEK
SQR
SYSTEMERROR

TRUNC
WRITELN

THIS IS NOT RECOMMENDED - JUST AN EXAMPLE.

type char = boolean I you can't declare character var'e in MyProc
I i ie a BOOLEAN - strange, but it ie legal var i : char

begin
ii= true

end MyProc

21. Combining Pegasus Pascal with Other ORCA Languages: Using EXTERN

In PP 1.0.2, you could treat the Pegasus Pascal programs as if they were ORCA/Pascal programs: you could USE

Pegasus Pascal 2.1 23

ORCA/Pascal units in a Pegasus Pascal program, or USE Pegast.L.<; Pascal units in an ORCA/Pascal program. Also,
you could compile and link ORCA/M and ORCA/C subroutines into Pegasus Pascal programs using EXTERN.
EXTERN tells Pegasus Pascal that the Linker will know the files that contain the subroutines. PP accepts the
declaration •as is": if the EXTERN declaration is wrong, your program will probably crash when you run it.

In PP 2.1, even though PP translates your programs into ORCA/Pascal, ORCA/Pascal unit<; cannot be included in
the USES list (because PP will look for a • .ps" file, and it won't find one). To use OR CA/Pascal units, you will
have to use EXTERN, the same way as ORCA/M or ORCA/C.

Example:
unit Misc;

{An ORCA/Pascal unit called "Misc")

interface uses Common;
an exported variable) var MiscCount : integer;

procedure UppercaseString(var s
implementation

PString); {an exported procedure

end {unit) .

program
I a Pegasus Pascal program called "main" that u ses "misc "

from system uses Common
var MiscCount : extern integer
proc UppercaseString var s : PString ext e r n

begin
e nd

To use the unit, use this link command:
link main misc keep=main

This technique is used in the ExPar demo in the Libraries folder. Since ExPar is an ORCA/Pascal unit, the Parse
procedure and the error variable must be external.

22. ORCA/Pascal Alternate Symbols I IIGS Font Support

Standard Pascal allows certain symbols to be used in place of the normal Pascal symbols. In the early days of
Pasca.I, many computers didn't have keyboards with keys for "{", "}•and some of the other keys that are common
today. Pegasus Pascal does NOT accept any of these alternate symbols: they are available on the IIGS keyboard.

Also, Pegasus Pascal does not allow EXTERNAL to be used instead of EXTERN.
Pegasus Pascal recognizes the following Apple JIGS font characters in yow- programs:

as 3.141592654
as DIV
as ..

as# or<>
as<=
as>=

E. A Short Tutorial on Pegasus Pascal

A Walk-through
Let's go step by step through the creation of your first Pegasus Pascal program. The shortest PP prngrdrn looks like
this:

Pegasus Pascal

program
begin

end

which. in ORCA!Pascal. is
I $keep •short• l
program short(input,out put) ;
beg in

end.

This is a very uninteresting program, since it doe1'11't actually do anything. However, it does reveal the fundamental
structure of every PP program:

1. the progrdrn header: every program starts with the keyword PROGRAM.
2. the declaration part follows, declaring any variable or subprograms used in the main program. In this case,
there isn't any.
3. the keyword BEGIN
4. the executable part follows, the list of instrnctions the computer is to follow. In this case, there isn't any.
5. the keyword END

You could compile and run this program. PP is very good at doing nothing, hut it would be far more interesting if
we could perform some practical work. For instance, we could display the answers to some simple calculations on the
screen.

p rogram
I My first PP p rogram
begin

e nd

WriteLn 2+2 & 3*4

Write 'The letter after "a" is •
WriteLn chr (ord('a') + l

{$keep 'short •)
program short(input,output) ;

I My f i rst ORCA/ Pasc al p rogram
begin

Wri teLn (2 +2) ;
WriteLn (3 *4) ;
Write(' The letter after "a" i s') ;
WriteLn (chr (ord ('a') +l)) ;

end.

This program contains some instructions for the computer to follow. First, WriteLn is used twice to write the
answer to 2+2 and 3*4 on the screen. Second, Write is used to write some text without moving to the next screen
line. Finally, WriteLn is used again to display the letter which follows the letter "a". Notice that PP doesn't use
panmtheses around procedure parameter lists, nor do the statements end with semicolons. The ampersand is used in
procedure calls to call a procedure repeatedly. To run this program, type at the ORCA prompt:

1. Edit short .pp
2. pp short . pp
3.link short k eep=short

4. short

Debugging

to type in the program
to compile the program
to create an executable program
to run the program

The pre-compiler catches all syntax errors (such as spelling keywords wrong); it automatically starts the editor and
loads your program for you. Any semantic errors (such as type errors) will be caught by ORCA!Pascal, which
automatically loads your PP program Because the ORCA/Pascal program was generated by the pre-compiler, it's
pretty bard to read. To make tbjngs easier to debug, the line number of the line in the original Pegasus Pascal
program appears in curly set brdckets ({}). For instance, in the program "short", you could see something like this
from ORCA!Pascal:

{7} WRITELN (ORD (ORD ('A') + l) ;

• type mismatch

Pegasus Pascal 2.1 25

This means that in line 7 of short.pp, WriteLn chr (ord (•a') + l) , you typed the word "ord" instead of

"chr" . Apple-period will abort the compile and switch to the editor. You can now go to line 7 to fix the typo.
PP will check your identifiers to see if they have been declared or not. If PP finds an identifier that is not

declared, it checks the list of declared identifiers for a similar identifier. If it only finds one similar identifier, it
assumes you made a spelling mistake and corrects the mistake for you and continues compiling.

Example: If your PP source code is

program
var Count : integer

begin
i f Coutn = o

PP will give you a warning like this

Warning in line n
IF COUTN = 0

· ·-- · Misspelled identifier replaced
-- -- - ------- ------ -- - - -- Further Info-- - -- - ---- - - - ------ ­
Identifier COUTN is changed to COUNT

A Simple Income Survey
The following program performs a simple income survey. Jt counts the numbt:r of people in each income bracket and

displays the totals when all the numbers are entered.

program
I A s imple income survey

label Start start of input loop

var Income : real
cl, c2 , c3, c4 , cs

= 0

count : integer
= 0

answer : char
begin

Start :
Count = & + l

integer count the number of entries in income
categories 1 , 2 , 3, 4 and 5

count the number of people

used to answer yes/no ques tion

WriteLn ' Enter amount of income for person #', Count:O, ': '
ReadLn I ncome
if Income <= 19999.99

cl = & + l
elsif Income >= 20000 and Income <=

c2 = & + l
elsif Income >= 30000 a nd Income <=

c3 = & + l
e lsif Income >= 50000 and Income <=

c4 & + l
e lse

cs & + l
WriteLn & ' Enter more data (y/n) ? '
ReadLn Answer
if Answer = •y • or Answer = ' y '

goto Start

29999.99

49999 . 99

79999 . 99

Pegasus Pascal 2.1 26

Wr iteLn 'The survey reeults are '
Wri teLn ' -- -- - -- - - --- -- - --- ---- '
Write Ln •category 1: ' ,cl
WriteLn ' Ca tegory 2: ' , c2
WriteLn •category 3 : ' , c3

WriteLn ' Category 4: I , c4
WriteLn 'Category 5: I , cs

end

When this program begin the label start is declared; the variables used in the program are declared, and the totals for
the five income categories (cl to c5) are initialized to 0. The computer repeatedly asks for the income of a person.
A category between cl and c5 is selected by the 1F statement. The ELSIF parts are only used if a category has not
previously been chosen, and the ELSE part is used if no other category describes the income. If there is more data to
enter, the program uses GOTO Start to repeat the instructions starting at the label Start:. The reflexive operand, &

(pronounced 'iL<ielf') refers the variable being assigned to, in this case, Total .

A Program to Count Vowels
This program counts the number of vowels typed. A person types in one letter at a time, and the program stops

when a slash (/) is typed .

program
I A Program t o count v owels

var Vowe l Count : integer count the numbe r of peopl e

= 0
ch : char a letter

b egin
Wr ite Ln ' Pl ease enter y o ur t ext b e l ow {in upper- case) ,'

WriteLn •one l ett e r a t a time . En d with '' / ' ' . ' &

ReadLn ch
while Ch # ' / •

if Ch='A' o r Ch= ' E ' or Ch=' I ' o r Ch = ' O ' o r Ch=' U'

VowelCount = & + 1
Re adLn ch

Wr ite Ln & 'The numbe r of v owel s in the text

end

' , VowelCount: 0, ' . '

The variable VowelCount is cleared. The program asks the user to type in one letter at a time. The &, in the
WriteLn, calls WriteLn again with no parameters, which leaves a blank like after the message. Instead of using a
GOTO, a WHILE is used to repeat the indented statements which follow it. These sratements are called a paragraph.
The IF and READLN are repeated until a slash is read. After a"slash is read, the total is displayed.

A Program to Find the Square Root of a Real Number
This is a program that computes the square root of a real number. You could, of course, use the built-in Pascal
function SQRT, but we' ll use this to demonstrate the FOR loop.

program
I A Progr am to f ind the square r oot o f a r e al number.

var EPS : real Accuracy

begi n

= 0. 000001

Maxite r at ion : integer
8

XO, XOld , N : r e al
i : int eger

WriteLn ' Enter t h e real number :'

Maxi mum numbe r o f i t e r a tions

Pegasus Pascal 2.1 2 7

ReadLn N
if N >= 0. 0

end

XO = N / 2.0 I Just an initial guess

XOld = XO
for i = l .. Maxiteration

e x it if abs(XO * XO - N) <= EPS * N

XO = (& * & + N) I (2 . 0 * &)

exit i f abs (XO - XOld) <= (EPS * XO)
XOld = XO

WriteLn ' The square root is ',XO

In this program, the FOR loop will repeat the indente-0 paragraph which follows it Maxlteration times. By changing
the constant Maxlteration, you can change the number of times the loop repeats. XO is the cWTent guess for the
vaJue of the square root of N: the more times you repeat, the better the guess will be. EPS is a constant
representing the accuracy of the calculation. If a good guess is found before all the iterations have been use-0 , the
program jumps out of the FOR loop, using the EXIT IF, and imme-Oiately displays the answt:T.

A Factorial Program
This is a simple program to compute the factorial of a number.

p rogram
I A program t o find fact orials

var x : inte ger

func Fact(n :integer) :integer
begin

i f n > l

Fa c t
else

Fact
end Fact

n * & (n - 1)

l

begin

e n d

Wri teLn ' Give me a number : '
ReadLn x
WriteLn ' Fac torial i s ',Fac t (x)

This program declares a function name-0 Fact. Fact requires an integer parameter (n) and returns an integer value.
The & refors the the identifier on the left of the= (the identifier "Fact"). Fact is calle-0 a recursive function be it
calls itself to compute the factorial of n: The factorial of n equals n * the factorial of n-1 . The factorial of l or 0 is
1. .

A Summation Program
This is a simple summation program.

program
var x : integer

proc Summation t i mes : integer
var i, Total : integer
= O initialize to O

begin
for i = l . . time s

Pegasus Pascal 2.1

Total = & + i
WriteLn 'Surrunation is ',Total

end Summation
begin

end

WriteLn ' Enter a number: '

ReadLn x
Summation x

28

Summatjon is a procedure that computes the summation of its parameter, times. The For loop repeats the indented

paragraph (that is, the assignment statement) times times. Each time, the value of i is added to Total . The & refers

to the identifier to the left of the=, Total.

A Program to Bubble-Sort an Integer Array
A bubble-sort is one of the standard methods of sorting a small quantity of data. The program sorts a list of integer

numbers.

program
I A Program to bubbl e-sort an array of integers

type IArray = a rray[l .. 500] of integer

var a : IArr ay
size, i : integer

p roc Bubblesort var a : iarray; var a Size

var temp, outer_cou~t , i : integer
b : boolean

begin
Outer Count = l
repeat

i = 0

i nteger

b = fa l se I b wi ll be true if an s wap occurs

repeat
inc i
if a [i] > a [i+l]

Temp a[i] I swap a [i] with a[i +l]

a[i] = a [i+ l]
a[i+l] =temp
b = t rue

un t il i = aSize - Outer Count

unti l (OUter_ Count = aSize) or (not b)

e nd BubbleSort

begi n
Wr i teLn ' Enter the size of the array of integers : '

ReadLn Size

I We input the array of integers

for i = l. . Size
WriteLn ' Ente r integer ', i : O, ' : '
Re adLn a[i]

Bubbl eSort a,Si z e

I Output the s orted array

WriteLn & ' The s orted i ntegers: '

Pegasus Pascal 2.1 29

WriteLn • - ------- ----- ------- •
for i = l .. Size

WriteLn a[i)
end

The procedure called Bubblesort has two parameters: a, an integer array, and aSize, the total number of integers in the
array. The "Var" in front of "a" means that any changes made to "a" will be reflected in the actual parameter used.
The REPEAT loop repeats the indented paragraph between the REPEAT and the UNTIL. INC is a built-in
procedure that adds I to i: this is the same as i = i + I, or i = & + I. Whenever two adjacent integers are out of
order, they switch positions in the list. b becomes true if a switch occurs. The process continues until no more
swaps occur.

A Unit For Handling Complex Numbers
This is a unit that contains da.ta declarations, procedures, and functions for arithmetic with complex numbers.

unit
I A unit that handles complex numbers .

Type Complex = record
r real
imaginary : real

definition of a compl ex number
r eal part
imaginary par t

Complex i nput/output

proc Re adComple x var z : Complex
proc WriteComplex z : Complex

I Complex math operations

proc Add zl, z 2 : Compl ex; v a r result : Complex
proc Subtract zl, z2: Complex; var result : Complex

proc Mult iply zl, z2: Complex; var result : Complex
proc Divide zl, z2: Complex; var result : Complex
pro c Negate z l : compl ex; var result : Complex
proc Conjugate z l : Complex; var res ult : Complex

proc Absolute zl : Complex; var resul t ' real
func IsZero(z : complex) : boo lean

implementation

proc ReadComplex var z : Complex
begin

WriteLn & ' Enter a complex number , r eal then ima ginary, '

WriteLn 'Ending each with the Return key.• &
ReadLn z.r & z.imaginary
WriteLn

e nd Readcomp lex

proc WriteComplex z : Complex
begin

WriteLn & z .r, ' + i * ', z .imaginary &
end Wr iteComplex

proc Add zl, z 2: Complex; var result
begin

result. r = zl .r + z2. r

Complex

Pegasus Pascal 2.1

result.imaginary
end Add

zl.imaginary + z 2 .imaginary

proc Subtract z l , z 2: Complex; var resul t

begin
result.r = zl . r - z2 .r

Complex

result.imaginary= zl.imaginary - z2.imagi nary

end Subtract

proc Multiply zl, z2: Complex; var result : Complex

begin
result.r = z l .r * z2.r - zl. i maginary * z2.imag inary

result.imaginary= zl.irnaginar y * z2 . r + zl.r • z2.imaginary

end Mul tiply

proc Divide zl, z2: Complex; var result , Complex

I Note: no division by zero check
v ar Denom : real

begin
denom = z2.r • z 2 .r + z2.imaginary • z2.imaginary

result.r = (zl.r * z2.r + zl.imaginary * z2.imaginary) / denorn

result.imaginary = (zl .imaginary * z2.r · zl.r • z2.imaginary) / denom

end Divide

proc Negate zl : complex; var result

begin
result .r = -zl. r
result.imaginary

end Negate

proc Conjugate zl
begin

result . r = z 1 . r
result.imaginary

end Con jugat e

-zl.imaginary

Complex; var result

-zl .imaginary

Comple x

Complex

proc Absolute zl : Complex; var r e sult : real

begin
result = sqrt(zl. r • zl.r + zl.imaginary * z l . imaginary)

end Absol ute

func IsZero (z : complex) : boolean

I ·IsZero is true if the complex number is close to o. o
var r esult : real

begin
Absolute z, res ult
if result < 0.0001

IsZero
else

IsZero
end IsZero

end

true

false

30

A unit is a collection of procedures, functions, variables, etc. that may be invoked by a program (or programs, or
another unit) stored elsewhere in other files. In this unit, Complex is a record containing I.he real and imaginary

Pegasus Pascal 2.1 31

parts of a complex number. Following the data declarations is a list of all procedures and functions in the unit that

can be used by other programs. This first part of a unit is called the "interface" or the "export" list. After the

keyword implementation, the rest of the unit is invisible to outside programs. The implementation part contains

the complete declarations of the procedures and functions we described in the interface list.

Creating a Large Project that uses Units
Before starting any large project, you should create a project file. A project file is a text file that contains a list of

all the units and the main program you are going to use in your project. When you create a project file, PP can

compile all the parts of your project for you. For this reason, the List must be in the order that the units must be
compiled, and the main program must always be the last file in the list. (There may be more than one possible

arrangement..)
Type pp +f with no filename and Pegac;us Pascal will search for a file named project in the current directory.

Figyre 1: A Simple Project

Example:

program
uses MyUnit,
jAnotherUnit

My Program.pp

MyUnit . pp
AnotherUni t . pp
MyPrograrn.pp

unit unit
juses MyUnit

AnotherUnit.pp My Unit.pp

Pegasus Pascal will read the list, checking the age of each of the files until it finds one that needs compiling. PP

then recompiles that file and every file until the end of the list, to make sure the changes haven't affected any of the

subsequent units or the main program.
This lets you rebuild a large project safely and easily.
Tf you type pp without the + F, PP will recompile only source files that have changed (any files dependant on those

source files will he ignored). This rebuilds a project faster, hut assumes the unit interface list is unchanged (the

identifiers between "Unit" and "Implementation").
In this project, we'll be using one unit and (as always) one program. We'll create a text file, called Proj ect , that

contains the following:

triunit.pp

tridemo. pp

If you ever make a program of 1000 lines or more, you'll want to break it up into pieces so you won't have to

recompile the whole thing every time you make a tiny change. Here's an example unit (edit it as triunit. pp):

Unit
from system use s Common , QuickDrawII

an example of a simpl e unit , saved as "TriUnit . pp"

here's a list of what ' s defined i n the unit

proc DrawTriangle x , y : i nteger I a procedure to d r aw a tri angle

implement a t ion! the complet ed definitions follow

proc Dr awTriangle x,y : integer
b egin

Pegasus Pascal 2.1

end

MoveTo x, y
LineTo x, y +30 & x+30 ,y+ l 5 & x, y

end Dr aWI'r iang l e

32

DrawTriangle is a procedure to draw a small triangle somewhere on the screen. We might want to use this procedure
in a bunch of different programs, so we made a unit and placed it inside. Unlike a program, a unit always starts with
the keyword UNIT and ends with the keyword END. Since a unit is only a collection o f stuff that's never meant to

be executed directly, there is never a main program. Compiling Tr i uni t .pp, you'll get the following files:

TriUnit .pp
Tr iUnit .pas
TriUn i t.int
Tri Unit .a
TriUnit .ps

I our Pegasus Pascal unit
I the translation into ORCA/Pascal
I uses list & exported declarations, for the ORCA/Pascal compiler
I the actual object code of the unit, for the linker
I exported declarations, for PP

Now we'll write a program to use the unit:
Pr og ram

f r om system u s e s Common ,

u ses TriUnit
b e gin

end

S t a rtGraph 3 20
DrawTr iangl e 10 , 1 0

ReadLn
EndGr a ph

QuickDrawII I list e very thing Tr i angleUni t u s es

I me n t ion ou r Dr aWI'ri angle unit

s wi tch t o graphi c mo de
draw a triangle at coordinates 10 , 1 0

wait unti l s omeon e press es the ret urn k ey
swit c h bac k t o regula r , o l d t e x t mode

From ... Uses tells Pegasus Pascal where the unit files are located. Uses (without a From) tells PP to look in the same
directory as the program. If you use From System, PP assumes the necessary files are located in the
ORCAPascalDets folder. Because we're using units, we need a uses list: that's a list of all the units we'll be using. If

we saved the DrawTriangle wiit in a file with the name Tr i Unit . pp, we include Tri Un it in our uses list. Then we

just use DrawTriangle as if we included it in our program!

To compile our whole project, all we have to type is:

pp +f

Pegasus Pascal will open our project file and recompile all the files that need to be recompiled. When you link,
you'll have to include the names of both the program and the wiit.

l ink t r i uni t t r i d emo keep =t r i d emo

Linking and Cleanup for Projects

If you leave a blank line after the list of files to compile, any additional text is treated as shell commands. LINK is

one of the shell commands you can use. You can include here any cleanup commands you want executed when a
project has been successfully rebuilt.

Example of a project file:

t riunit. p p
trid emo . pp

* l ink t h e p rogram
l ink t riu nit t rid e mo keep=t r idemo

* de l e t e al l " .pas " f i les created by PP

Pegasus Pascal 2.1

delet e = .pas
* write a message on the screen
echo Running the program ...

* run the program that we compiled and l inked

t r iderno

33

Because PP executes you shell commands on a one line at a time, don' t use loops or hranches in your project file.

F. Troubleshooting

File not found : ... : If it appears whenever you try to run PP (ie. ' ... :PP' is not found). cheiek to make sure you
installed PP correctly.

The spacing of stuff looks funny in listings: PP ignores tabs in listings. To keep the listings neat , change the
fifth default in the SYST ABS file in the shell folder to a 1 instead of a 0. This tells the ORCA editor to translate
tabs into the appropriate number of spaces. See your ORCA documentation for more details.

Make/PriZITI/EXEC: EGO System's Make and ORCA's PriZin may not work with PP (I get an out-of-memory
error). It will work from a standard ORCA EXEC file; 1 haven't tried the shell version of Make.

Pre-compiler Errors

Actual parameter must be a string literal: Mac,To parameters must be enclosed in single quote marks.

Binary numbers use groups of four O's and l's: This isn't an appropriate binary literal Make sure you have
enough digits.

Can't use defaults here: You can't define default values for global variables in units.

Closing parenthesis missing: Every open parenthesis must have a closed parenthesis. Make sure you have the
proper number of each. Also make sure any enumerated types or function parameters are all declared on one line.

Don't know the label somelabel: This label hasn't been declared. Check to make sure you spelled it right and that
you declared it.

Don't know this Pegasus Pascal directive: There is no such directive for this version of Pegasus Pascal. Make
sure you spelled the directive correctly.

Don't recognize this statement: The line does not contain an executable statement. This can happen when ENDs
are indented too far.

ELSE without a CASE I IF: An ELSE was found with no com:sponding IF or CASE. Check your indentation.

ELSIF without an IF: An ELSIF was found with no corresponding IF. Check your indentation.

End of statement - extra stuff at end of line: The statement was completed at the point indicated. Make sure you
don't have too many parentheses.

E:X'1Ts too complex: Implementation restriction - you can only use EXIT for the first 9 loops in your (sub)program.
Break up the souce into smaller procedures.

EXIT without a loop: An EXIT was found with no corresponding loop. Check your indentation.

Identifier declared (twice): The identifier is already declared at this scope level in the program.

Identifier expeded: PP expected an identifier here. Make sure you didn't use any PP reserved words like WHEN
or FOR as an identifier.

Identifier not declared: The identifier is not declared at this scope level in the program. Make sure that you
spelled the identifier right.

Identifier Possibly l\1isspelled: The identifier ii,.n't declared, and PP can't find a simple correction.

Infinite substitution into macro: This usually occurs when the formal parameter for a marco in contained in the
actual parameter.

Method/Subprogram Expected: A data declaration or statement was found in the subprogram declarations.

Missin~ quote mark: The closing quote mark appears to be missing, or a string literal is expected.

Pegasus Pascal 2.1 35

No DO in Pegasus Pascal: The keyword DO isn't used in PP; PP will usually give you a warning and try to
continue compiling as if the keyword wasn't there.

No OF in Pegasus Pascal: The keyword OF isn't used :in PP; PP will usually give you a warning and try to

continue compiling as if the keyword wasn't there.

No semicolons at end of statements: Semicolons aren't used at the end of a statement; PP will usually give you a
wam:ing and try to continue compiling as if the semicolon wasn't there.

No THEN in Pegasus Pascal: The keyword THEN isn't used in PP; PP will usually give you a warning and try
to continue compil:ing as if the keyword wasn't there.

Number expected: A numeric literal is required.

ORCA gave up here: Internal error.

Pre-<:ompiler error #n: Internal error.

Proc/Func names don't match: The name given lo the subprogram isn't the same a<> the name given to the END.
Check to make sure the subprograms are nested properly and that you spelled the names right in each case.

Syntax error: This is a general error used when there is no other message that covers the condition. This comes up
whenever a line doesn't make sense (eg. "for x = .. l 5" will cause a syntax error).

There is an unused forward declaration: A procedure or function was declared as FORWARD, or was declared in

the interface list of a unit, but was not completed.

Too many closing parentheses: A closing parenthesis was found where it wasn't expected.

Too many labels: The maximum number of labels that PP can handle has been exceeded. Break up your program

differently or try using fewer labels. '

Too many macros_: Use less macros in your program.

Too many or too few parameters: Check your parameter list with the macro definition to make sure your parameters

are right.

Too many Types/Vars/Consts for me to handle: The maximum number of data declarations that PP can handle ha<>
been exceeded. Try to use fewer lines, or break up the declarations differently.

Unexpected ASCII character: An unused character (such as the tilta (-))appeared in your program.

Use & only in assignments or proc calls: & was used somewhere where it isn't allowed.

WHEN without a CASE: An WHEN was found with no corresponding CASE. Check your indentation.

Pegasus Pascal 2.1 36

G. Glossary

Actual Parctmeter: The variable or value passed to a procedure, function or macro.

Export List: See Tnterface List.

Formal Paramet.er: The parameter as declared in a procedure, function or macro header.

Header: For subprograms, the first line of a subprogram, which defines its name and parameters.

Interface List: The declarations in a unit between the "from ... uses" lists and the keyword "implementation".

Keyword: A word that has special meaning to a computer language. All PP keywords are reserved words. Unlike

Modula-2, keywords are not case-sensitive.

Literal: Any constant that's defined outright in the source code of a program. eg. 123, 'a string', {a,b,c} are all

literals.

Macro: In computer languages, one string which stands for another. An alias.

Paragraph: A set of statements that are equally indented equally or more than the first statement.

Pragma: A compi!f::f directive. See D/18 for more details.

Pre-compiler: A 'front-end' to a compiler. Compiles a program into a form that can be compiled by a second
compiler.

Project: A collection of units and a main program thal composes a complete application, etc.

Reflexive: Acting on oneself; in assignments, an a">signment to a variable with an expression that includes the
variable itself.

Reserved Word: A keyword that can't be used as an identifier.

Semantics: Loosely, the meaning of a statement. In English, the syntax of the word 'five' is it's spelling, and its

semantics is the value 5.

Scope: The range of lines over which an identifier may be used.

Stat.enmt: A command for the computer to follow, such as a procedure call or an assignment. Statements must occur

on separate lines in PP.

Subprogram: A procedure or function.

Syntax: The structure of a language; see semantics.

Appendix I: PPLib

PPLih (short for "Pegasus Pascal Library") is a collection of useful procedures and functions for your Pegasus
Pascal programs. The currenl lihrary contains four sets of subprograms: Ex.Par, an expression parser; PPFile, a file

manager; Strings, a sel of PString handlers; and Turtle, a turtle graphics unit.

To use PPLib in your own programs, please include the following:

Contains materials from the ORCA/Pascal Run-Time Libraries, copyright 1987-1989 by Byte Works, Inc.
Used with permission.

Contains materials from the PPLib library, Copy~g~I 1992-1994 by Pegasoft of Canada. Used with
penDISSlOn.

Installing PPLib

To install PPLib, simply copy the PPLib file into your Libraries folder, and copy the contents of the accompanying
ORCAPascalDefs folder into your Libraries:ORCAPascalDefs folder.

ExPar: The Expression Parser

ExPar evaluates integer (or longint) expressions, useful in simple spreadsheets, databases and financial programs.
Since these functions are written in ORCNPascal, you will have to declare lhem as EXTERN in your program. (See
Appendix ll - Section IH, 6.) For an example of whal ExPar can do, see the ExPar demo.

There are two simple functions:
I. f unc Parse (s: Pstring) : l ong i nt. This evaluates the expression in strings and returns the value as a

long integer.
2. func IsParseError : boole an. This returns true if an error occurred during the last Parse.

For example,
WriteLn Parse(' 5 * 2 + 1 0 ')

writes 20 on the screen.

PPFile: A Faster Way to Manage Files

To use PPFile, include Common, GSOS, and PPFile in your FROM SYSTEM USES list.

PPFile is a set of file handling subprograms that allow you to create, destroy and access files. They are similar to
the built-in subprogr.ims found in ORCNPascal: Open, Reset, etc. PPFile uses GS/OS calls for fast access, and
provides you with extra options not found in ORCNPascal's subprograms. You cannot interchange ORCA

functions wilh PP functions on the same file. However, because PPFile uses GS/OS calls, you can use
GetRefNumGS and use your own GS/OS calls with files opened by PPFile.

Note: When you read from or write to a file, all info is 1>p:ci fied hy a pointer; the @ operator is an easy way to get a

pointer to any variable. For example, in a file of integers, to write a variable "i "'s value to a file, you would use:

PPWrite fi l eID, @i . I equiva l ent to ORCA ' s Write filevar, i .

When you open a file, you have to specify the size of a file's records, as well as the size of any initial header you
may have created. If you don't have a header (the usual case), make the size 0. Never make the record size 0.

For example, to open and close a file of integers:

Const MyFile = l

PPOpen MyFi le , ' Int.Fil e ', eizeof (integer) , O, 9! 0

I Opens a fi le name d 'Int .Fi l e ' .

Int . file contains records t h e size of integers, and has no h ead e r .

If no file e x i sts, a new one will be created wi th

Pegasus Pascal 2.1

I filetype 6 (binary file) , auxtype o.

PPClose MyFile
I Closes ' Int .Fil e'

PPFile is V<Titten in Pegasus Pascal. The unit definition looks like this:

unit
from system uses Corrnnon, GSOS

Const PPMaxFiles = l6

Type Fi leID = l .. PPMaxFiles

I Basic functions

Pree PPRewrite fid Fi leID; fname : PString; recsize , first size i nteger;

ftype : integer ; a type : long int

Pre e PPReset fid : FileID; fname : PString; rec s i ze, first size integer

Pree PPOpen fid : File ID; fname : PString; recsize , f i rst s i ze integer;

ftype : i nteger ; a type : long int

Pree PPCl ose fid FileID
Pree PP Read f i d FileID; data univ ptr

Pree PPWrite fid FileID; data univ ptr

Proc PPRead2 f i d FileID; data univ ptr; size l ong int

Pree PPWrite2 fid Fil e I D; data univ ptr; size l ongint

I Random Access

Proc PPTop fid File I D jump t o t op of f ile

Pree PPBottom f id Fil eID jump to bottom o f file

Proc PPS eek fid FileID; rec : l ong int go t o a r eco rd

Fune PP Rec (fid FileID) long int current record #

Fune PPSize (fid FileID) : long int size of f ile, in records

I Misc Functions

Pree PPFlush f i d
Proc PPCloseAll
Pree PPFlushAll

I File Maintenance

FileID

Pree PPDelete fnarne PString

f lushe s a file - makes a f ile safe

closes all o pen GS /OS f iles

flush all open GS/OS fil es

Deletes the file

Proc PPRe name f name l, fname2 : PString Renames file f namel as fname 2

PPRewrite opens a new file for writing or overwrites an old one.
PPResel opens an old file for reading.
PPOpen opens a file for reading or writing.
PPClose closes a file. PPCloseAll closes all open (GS/OS) files.
PPRead reads one record and advances to the next position. Records are numbered from 0, as in ORCA.
PPWrite writes one record and advances to the next position.

38

PPRead2 and PPWrite2 are the same as PPRead and PPWrite, except that they read an arbitrary numher of bytes.

You can use these to read and write any header info you may store at the start of your file.
PPTop moves to the top of the fi le. If there is a header, it moves to the header; otherwise, it moves to record 0.
PPBottom movei; to the bottom of the file, the position after the last record. Anything you write will be appended
to the file. PPSeek moves to any record. For example, PPSeek fileID, 0 moves to the first record in the fi le.
PPRec returns the current record number.
PPSize returns the size of the file (in records).

Pegasus Pascal 2.1 39

If you le.ave a file open fur a long pt:riod of time, you should "flush" the file whenever you update it. Flushing
ensures the file is safe, in case of a power failure. PPFlush flushes a filt:. PPFlushAJI flushes all open GS/OS files.
In addition, there are two file maintenance functions: PPDelete will delete a file. PPRename will change the name
of a file.

Turtle Graphics Unit

Turtk is a turtle graphics library for schools. Turtle graphics was first used in the language Logo, and has since
been used to te.ach math, geometry and computer science to young srudents. The "turtle" is a triangle that appe.ars in
the center of the screen, one point up. It's a marker (cursor) for an imaginary turtle looking towards the top of the
screen. When the rurtle walks, it draws a line as if a crayon was tied to its tail. The turtle can walk forward<>,
backwards, tum left or right, and can switch crayons to draw in different colours.

A prognun called PlayPen, which can be run from the Finder, lets you play with turtle graphics. The menus are
designed to reflect the commands you can use from Pegasus Pascal. This program is also a fun introduction to
graphics and geometry for young children.

To use turtle graphics in your PP programs, include the Common, QuickDrawII, Turtle names in your FROM
SYSTEM USES list. The first two statements of your program must be StartGraph 320 and WakeUp (to wake up
the turtlt:!). Your program should end with EndGraph.

My Turtle library does many of the things that Logo's turtle can do, although some of the names are differnnt. I'vt:
tried to keep the names simple and intuitive for children to use. The turtle knows how to do the following things:

Erase It
Makeit

_Big
Small
Fat
Thin
Normal

Walk steps

Colourit or Colorit
Red Green

erase t h e screen
change the line and scale settings. You can use it r epeatedly.

increase the drawing scale - zoom in
decreas e the drawing scale - zoom out
make lines thicker
make lines thinner
restore t he scale to 1 00 % and lines to l pixel thick

draw a line i n the current direction the given steps in length

change the colour/color . The turtle knows :
Yellow Blue _Orange

_ Pink Brown Purpl e Violet Whi te

_Blac k _Grey _Gr ay _Nothing

Bac kup steps
Left angl e
Righ t angle
TurtleOff
TurtleOn
Go Home
Print str
Saveit

I Use Colourit _Nothing to move without drawing.
I draw a line backwards

change the direction left by angle degrees
change the direction right by angle degrees
makes the turtle invi s ible (you will draw faster)
makes the turtle visible again
move the tur tle home (to the center screen, facing up)
print a s tring on the screen - eg . Print 'Hello '
save t he picture as •@ : My . Picture", which can be l oaded by a

paint program to b e edited or p r inted .

Example (of a program usini: Turtle):
program

from system uses Common , QuickDrawII, Turtle

begin
StartGraph 320
Wake Up
Walk 50
Right 1 20
Walk 50
Right 120
Walk 50
Right 120
ReadLn

switch to 320x200 graphics mode
wake up the turtle
walk f orward 50 pixels
turn r i ght 120 degrees
walk
turn
walk
turn
we drew a triangl e - wait for Return key

Pegasus Pascal 2.1 40

EndGraph I swi t ch back t o text mode
end

Strings Unit

This is a library of useful string handling subprograms. There are character test fimctions, string conversion
procedures, string searches and other useful routines like extra space removal. The test fimctiuns recognize foreign
characters, although the other procedures do not as yet. Here's a listing of the unit header:

unit
from System Ueee Common

I String Teets ---- ---- -- --- - --

func IsAlphaNum(s : PString) : boolean TRUE if stri ng i s a l phanumeric

func IsAlpha (s : PStri ng) : boolean TRUE if string is alphabetic

func IaASCII(s : PStr i ng) : boo lean TRUE if chars a r e ASCII 0 . . 127

func IsContro lC(s : PString) : boolean TRUE i f string is control chars

func Isinteger(s : PString) : b ool ean TRUE if string is digits

f unc IsNumeric(s : PString) : boolean TRUE if string is digits or period

fun c IsLower (s PSt r ing) boolean TRUE i f string is l ower - case

f unc IsSimilar (a, s 2 : PString) : boolean I case insensit i v e string test

func IsSpace(s : PSt r ing) : boolean TRUE if string is wh i te- apace chars

func IsHex(s PStrin g) boolean TRUE if string is hex digits

func I sUpp e r (s : PString : b oolean TRUE if stri ng is upper -case

I String Conversions ----- ----- -

proc StrToASCII v a r s : PString discard h igh bits

proc StrTOLower var
proc StrToProper var
proc StrToUpper var
proc StrFix var S

6

S

:

: PString
s: PStr ing

PString
PString

convert string t o l owe r case
convert to 'proper name / title
conver t string t o uppe r case
remove leading/ trailing spaces

I String Proce ssing - ------------

func CharSearch(s : PString; c : char; p : i nteger

I f ind the pth occurance of c i n s
: i n teger

f unc StrSearch(s , s 2 : PString ; p : int eger) : integer

I find the pth occur ance of s 2 in s

proc StrDuplicate v a r s : Pstring ; time s : integer

I duplicate the s tring s times times
proc StrLeft s : PString; var Left : PString; n : i nteger

I r e turn the n leftmost characters
proc StrRight s : PSt r i ng; var Right: PString ; n : integer

I return the n righ tmost characters
func StrSeed(e : PString) : integer

I convert s into hash table inde x value - 0 ... $3FFF

p roc Tab hdist : integer
I move the cursor to a part icular column on t h e text screen

I like Applesoft 's tab.

Example (of a program using Strings):
program

from system uses Common , Strings
var response , PString

Pegasus Pascal 2.1

begin
WriteLn ' Type "Yes " to stop ' &

repeat
ReadLn respons e

until IsSimilar(Re sponse , 'ye s')

e n d

41

